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Abstract

In this article, a new technique for features extraction from SAR interferograms is presented. The technique
combines the properties of auto-associative neural networks with those of more traditional approaches such as
discrete Fourier transform or discrete wavelet transform. The feature extraction is chained to another neural module
performing the estimation of the fault parameters characterizing a seismic event. The whole procedure has been
validated with the experimental data acquired for the analysis of the dramatic L’Aquila earthquake which occurred
in Italy in 2009. The results show the effectiveness of the approach either in terms of dimensionality reduction or in
terms retrieval capabilities.
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Introduction
Cross-track radar interferometry is a processing tech-
nique of synthetic aperture radar (SAR) data based on
the generation of an interferogram using two complex
images of the same area acquired with slightly different
look angles (for a more detailed treatment refer to Bürg-
mann et al. [1]). Since its first applications in the 1990s,
SAR Interferometry (InSAR) technique has been applied
to several geophysical problems, among which we find
seismology, volcanology, hydrogeology, glaciology, sub-
sidence studies, and topographic mapping. SAR interfer-
ograms are generally affected by different types of errors
[1]. Phase noise in interferometry is introduced by the
radar system, by the propagation path through the vari-
ably refractive atmosphere, by spatial decorrelation of
the electromagnetic fields scattered back from the sur-
face elements. In most of the cases, such as DEM gener-
ation, where a pixel-based information is required, to
reduce noise a multi-look processing is frequently imple-
mented by averaging neighboring pixels. However, in
other InSAR applications, the pixel-based information is
less important with respect to the overall spatial fringes
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distribution observed over the area of interest. In the
Earth Sciences domain active tectonics is a framework
where the application of InSAR achieved rather sig-
nificant results. Indeed, this technique is used by seis-
mologists to better detect and measure the surface
displacement field originated by a seismic event. More
specifically, the retrieval problem is focused on the esti-
mation of the fault parameters from the InSAR differen-
tial interferogram. This latter is generated by computing
the phase difference of two radar images, acquired be-
fore and after an earthquake, on a pixel-by-pixel basis.
The phase component is wrapped modulo 2π, being
characterized by the phase cycles caused by the surface
displacement. Elements such as the shape and period-
icity of the fringes, the number of lobes, and their orien-
tation represent the information carried from the
interferogram. In [2] a Neural Network (NN) approach
for the retrieval of tectonic parameters from an acquired
SAR interferogram has been introduced. It has been
shown that once the network is trained, it can perform
the inversion automatically, directly from wrapped data,
hence in a fast and objective way, which represents a
considerable advantage with respect to more standard
techniques discussed in specialized literature. Although
the results obtained are very encouraging and represent
a significant step towards the automation of the retrieval
process, some improvement can be applied, especially in
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the design of the network performing the inversion task.
In fact, in the original approach each differential inter-
ferogram, before being used as input to the NN algo-
rithm, has been sampled considering 1 pixel every 10. If,
on one side, this choice reduces the complexity of the
network topology without discarding significant in-
formation, on the other side it still involves the use of
rather huge network topologies with a number of con-
nections of the order of millions. An additional reduc-
tion of the input dimensionality could still increase the
NN mapping ability and computational efficiency. A net-
work with fewer inputs has fewer adaptive parameters to
be determined, which need a smaller training set to be
properly constrained [3]. This leads to a network with
improved generalization properties providing smoother
mappings. In addition, a network with fewer weights
may be faster to train. All these benefits make the reduc-
tion in the dimension of the input data a normal pro-
cedure when designing NN, even for a relatively low
dimensional input space.
Starting from these motivations in this article we

present a new technique to extract the essential features
contained in a SAR interferogram image. The method
consists in using Auto-Associative Neural Networks
(AANN) combined with harmonic analysis approaches
based on discrete Fourier transform (DFT) and discrete
wavelet transform (DWT). The new complete inversion
algorithm has been tested on the coseismic interfero-
gram of the dramatic event of the earthquake occurred
in the province of L’Aquila (central Italy) in April 2009
[4]. Although the seismic parameter estimation is con-
sidered as the field of application, the same technique
can be used for other scenarios where the fringes spatial
distribution is the critical information of the image and
an approach for dimensionality reduction is required.

Methods
Harmonic analysis
As far as we know, no specific techniques for dimensional-
ity reduction applied to SAR interferograms have been pre-
sented in literature. On the other hand, a lot of algorithms
have been developed for image filtering or denoising.
Among them, harmonic analysis [5], a field of mathematics
that studies the representation of functions as overlapping
of fundamental waveforms, is recognized to be one of the
most effective approaches. It is known that a multivariate
function f can be well approximated by the linear combin-
ation of the elements of a given basis:

f ¼
X

k
αkγk ð1Þ

where ak are the coefficients which express the correlation
of f with the basic functions γk. This type of operation is
called harmonic analysis. When harmonic analysis is
applied to image data, the discrete image can be seen as a
two-dimensional signal and it is possible to consider a set
of mathematical tools that perform a transformation suit-
able to extract some features otherwise difficult to be iden-
tified. This can be done by means of particular functional
operators like the DFT and the DWT. Both the transforms
express the signal as coefficients in a function space
spanned by a set of basis functions. The basis of the DFT
is complex exponential functions, representing sinusoid
functions in the real domain, and the multiplying coeffi-
cients are complex numbers as well. The basis of the DWT
is scaled and shifted versions of a mother wavelet real-
valued function. In this case, the coefficients have real
values. It has to be noted that more sophisticated transfor-
mations with respect to DFT and DWT exist, which are
characterized by properties of invariance to changes in ro-
tation and shift. However, such properties are not useful
for the purpose of this study where the orientation and the
position of the fringes represent crucial pieces of informa-
tion. Low pass filtering of the DFT and DWT transformed
images can be considered for the extraction of low spatial
frequency features. An energy conservation criterion can
be adopted to guide such an extraction of the transform-
ation coefficients.
In Figure 1, the phase spectrum of an interferometric

image computed by means of a 2D DFT is shown. The
original interferogram has a fixed dimension of 1500 ×
1500 pixels, and, as it can be seen, large areas of the
image are uniform. In such areas a high correlation be-
tween values of locally near pixels is observed. The
performance of a filter for dimensionality reduction op-
erating in the spatial domain, such as the one adopted in
[2], should be in principle improved by considering a
transformation to a domain, such as frequency, where
these kind of redundancies can be more effectively re-
moved. The coefficients computed by means of the DFT
are complex and can be visualized as images corre-
sponding to the amplitude and the phase spectrum.
From Figure 1, the symmetry of both spectra is evident

(the image is a real signal); this means that considering
about the half of the samples it is possible to reconstruct
the other half. An additional comment is that the com-
ponents with higher values in the amplitude spectrum,
representing the spatial frequencies that carry more en-
ergy, are low-frequency components. Therefore, consid-
ering that the information of interest mostly appears at
large scale variation, an approach conserving the low-
frequency coefficients of the DFT seems to be appro-
priated. Moreover, the modulus of the DFT is primarily
a measure of local contrast variation of the image. The
phase mainly contains information about the features lo-
cation. For example, an image shift adds a linear term to
the phase and has no effect on the modulus. From these
considerations, we can assume that, in general, the



Figure 1 The synthetic interferogram used to develop several computational examples in the text (left) and its DFT amplitude (center)
and phase (right) spectra.
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phase carries information on the structure of the image,
while the modulus is associated to the intensity of indi-
vidual image elements. Since the information of interest
are related to the shape, the orientation, and periodicity
of the fringes, the features extraction has been imple-
mented using only the phase spectrum, omitting the in-
formation contained in the amplitude spectrum which is
considered less significant.
A similar processing has been applied by means of the

2D DWT. Signals showing non-stationary characteristics
could be missed using the classical Fourier analysis be-
cause of the unlimited time definition of the basis func-
tions. Instead the harmonic analysis contained in the
DWT allowed us to obtain a representation of the signal
that analyzes the frequency content in a multi-scale do-
main. The coefficients can be visualized in a wavelet
power spectrum (WPS) plot where the two horizontal
axes represent the scale factors in the two image dimen-
sions. Each WPS point is associated to a color represent-
ing the magnitude of the coefficient, the higher is the
magnitude, the higher is the correlation between the sig-
nal and the wavelet elements (at the given scale factors).
In the 2D case, the lower scaling factors are placed in
the lower left quadrant. Figure 2 shows the WPS
obtained for the same interferogram considered in Fig-
ure 1. Note that the Daubechies’ function [6] has been
used as mother wavelet.
We see that the coefficients with the highest values of

correlation are in the left lower quadrant of the WPS,
corresponding to lower values of the scale factors. This
is in agreement with what was seen using the DFT,
where the highest energy contents were located at the
low frequencies. A further consideration regards the
capability of a better detection, with respect to DFT, of
higher spatial frequency features.
A metric to measure the performance of the trans-

formation and to cut off the less significant components
can stem from the analysis of the signal energy in the
transformed domain. To this aim, the cumulative energy
(CE) quantity associated to the number of considered
coefficients can be used. In Figure 3, an example of CE
curves for both DFT (left) and DWT (right) is shown,
respectively.
A preliminary analysis has been performed considering

a set of 120 synthetic interferograms (equals to the 10%
of the whole data set) to identify the average number of
coefficients that retain the 80% of the total CE, for the
DFT and DWT, respectively. Then, considering these
average measures, the first 5,000 coefficients of DFT and
the first 500 coefficients of DWT have been extracted
for each interferogram.
Note that due to its spatial-frequency localization

property the DWT enables the representation of an
interferogram by means of less coefficients. In Figure 4,
the original interferogram and its reconstructions
obtained by inverting both the DFT and DWT, consider-
ing the 80% and the 60% of CE, are presented. For a
comparison with the method used in [2] the interfero-
gram obtained with the spatial sampling is also shown in
Figure 4. We see that the threshold on CE assures that
the main patterns of the fringes distribution are pre-
served. This is still not valid if the number of the consid-
ered coefficients is significantly smaller. Two different
methods to judge the effectiveness of a reduction criteria
can be considered at this stage. A first metric consists in
computing the compression ratio (Cr), i.e., the ratio in
terms of bytes necessary to represent the image before
and after the compression. A second performance index
can be represented by an objective fidelity criterion.
In (2), the expression of the compression ratio is

shown.

Cr ¼ n1
n2

ð2Þ

where n1 and n2 are the number of bytes representing
the image before and after the compression, respectively.
As far as the objective fidelity criterion is concerned, the
root mean square error (RMSE) between the original



Figure 2 The synthetic interferogram example (left) and its corresponding WPS (right).
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interferogram and the reconstructed one has been
adopted.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM�1

i¼0

XN�1

j¼0
f̂ i; jð Þ � f i; jð Þ
h i2r

ð3Þ

In the above equation, f̂ is the reconstructed copy of
the interferogram f of dimension M × N. The Cr and
RMSE values for the DFT and DWT obtained for the syn-
thetic interferogram of Figure 1 are shown in Table 1; the
values corresponding to the spatial sampling applied in
[2] are also reported.
The results reported in Table 1 show the effectiveness

of the harmonic analysis approaches in comparison to
the spatial sampling technique. With the transforms the
Cr increases and the RMSE decreases.
Figure 3 The CE trends for the synthetic interferogram example, for t
Whatever the inversion algorithm used to characterize
the seismic source might be, the quality of the DInSAR
data is also a concern. In particular, the loss of coherence
between the two SAR acquisitions generates decorrelation
on some areas of the interferogram. This latter is one of
the principal factors affecting the final results. Anyway,
with the harmonic analysis approach, such a problem
could be mitigated. Indeed, the low pass approach filters
the high-frequency noise, which is the one due to the lack
of coherence (γ). As proven by Lee et al. [7] the interfero-
metric phase noise in the real domain can be characterized
by an additive noise model:

ϕ ¼ ϕxþv ð4Þ

where ϕ is the measured phase, ϕx is the original phase
without noise, and v represents a zero-mean noise
he DFT (left) and DWT (right) coefficients.



Figure 4 Application of DFT and DWT to the synthetic interferogram example. Synthetic interferogram example (a), and reconstructed
ones by means of: spatial sampling (b), DFT and DWT. first 5000 DFT components(c), first 200 DFT components (d), first 500 DWT components (e),
first 50 DWT components (f).

Picchiani et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:155 Page 5 of 13
http://asp.eurasipjournals.com/content/2012/1/155
depending on |γ| and the number of looks L. Bamler and
Hartl [8] define this dependency for a single-look (L=1)
interferogram as a function of the absolute value of the
complex coherence |γ| as

σ2ϕ;L ¼
π

3
� π arcsin γj jð Þ þ arcsin2 γj jð Þ

� Li2 γj j2� �
2

ð5Þ
Table 1 The compression ratio Cr and the RMSE values
for the interferograms obtained by means of spatial
sampling, DFT, and DWT, respectively

Spatial sampling DFT DWT

Cr 100 450 4500

RMSE 150.60 43.15 27.67
In the above equation, σ2ϕ;L is the phase standard devi-

ation, related to the phase noise, and Li,2 is the Euler’s
dilogarithm, defined as

Li2 γj j2� � ¼X1
k¼1

γj j2k
k2

ð6Þ

In Figure 5, three cases of simulated interferograms
with decreasing coherence and the corresponding results
obtained by means of spatial sampling, DFT, and DWT,
are shown. The additive phase noise has been computed
considering coherence mean values equal to 0.8, 0.6, and
0.4, respectively.
By comparing these results with that of Figure 4, it can

be noted that the two proposed harmonic approaches
are less sensitive to decorrelation than the spatial sam-
pling. This consideration has been validated computing



Figure 5 (See legend on next page.)

Picchiani et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:155 Page 6 of 13
http://asp.eurasipjournals.com/content/2012/1/155



(See figure on previous page.)
Figure 5 Synthetic interferogram example with different levels of phase noise added corresponding to simulated decreased coherence
values and noise mitigation results by spatial sampling, DFT, and DWT. In the upper row, from left to right the interferograms with |γ| = 0.8,
|γ| = 0.6, and |γ| = 0.4 are, respectively, shown. The second row reports the corresponding results obtained by spatial sampling technique. In the
third row, the results of DFT are shown. Finally, in the last row the results of DWT are reported.
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the RMSE values for the reconstructed noisy interfero-
grams, reported in Table 2.
From the results summarized in Table 2, it can be

noted that the two transform approaches show a better
behavior than the spatial sampling on noisy data.

Nonlinear PCA
AANNs have already been successfully used in remote
sensing for data dimensionality reduction in different
applications, such as atmospheric microwave radiometry
[9] and in the processing of hyperspectral data [10]. A
nonlinear PCA can be implemented by means of a multi-
layer NN with a particular architecture called auto-
associative [11]. This latter is characterized by a symmetric
topology in which the input layer and the output layer
have the same number of elements and three more hidden
layers are present. As shown in Figure 6, the central layer
has a smaller dimension than the input–output layers,
hence such a layer can be seen as bottleneck layer.
Through the AANN scheme the input pattern is mapped

onto itself applying an unsupervised learning based on
the minimization of the sum of quadratic errors:

EM ¼ 1
2

XN

n¼1

Xd

k¼1
yk xnð Þ � xnk
� �2 ð7Þ

where the yk xnð Þ is the output of the network, xnk is the
target pattern (equal to the input), while the double sum
is computed on the dataset dimensionality N and on the
different patterns of the dataset d. The two symmetric
sections of the AANN implement two distinct functional
mappings F1 and F2. The first mapping projects the
original vector xn onto a sub-space S of dimensionality
m< n, defined by the activations of the units in the
bottleneck layer. This mapping, due to the first hidden
layer of nonlinear elements, is essentially arbitrary and
in particular it is not restricted to the linear case. The
F2 mapping re-projects the m-dimensional space S onto
the n-dimensional starting space. Therefore, F2 defines,
through a nonlinear transformation, how S is included
in the original space of input vectors xn. An AANN
Table 2 The RMSE values for the reconstructed noisy interfer

RMSE |γ|=1.0 RMSE |

Spatial sampling 150.60 151.58

DFT 43.15 51.28

DWT 27.67 33.55
actually operates a nonlinear principal components ana-
lysis (NL-PCA), containing the linear PCA as a particu-
lar case. It has the advantage of not being limited by
linear transformations; however, the dimensionality of
the subspace S must be defined before the training pro-
cess, which involves the implementation and the com-
parison of multiple networks with different values of m.
The hybrid approach
In the previous sections, we have reviewed the potential
of different dimensionality reduction approaches for their
application to interferograms. In our case, the final pur-
pose is to be able to handle a vector of a rather limited
dimensionality to be used for the retrieval of tectonic
parameters from the SAR interferogram. Considering the
harmonic analysis (DFT or DWT) we have seen that, in
the best case (DWT), at least a number of about 500
coefficients have to be used to keep the most significant
information content. Even if the reduction from the ini-
tial dimensionality is dramatic, 500 components may still
represent a number of inputs involving a rather compli-
cated MLP topology, with thousands of adaptive coeffi-
cients to be determined. In fact, such a topology can still
be cause of overfitting during the training phase. On the
other hand, a straightforward use of NL-PCA can have
the advantage of yielding an input vector consisting of a
rather limited number of components but the AANN
performing this task, receiving as input the whole SAR
interferometric image, would be again characterized by a
highly complex topology, hence the computational bur-
den would be still difficult to manage in this case. We
then propose the hybrid approach shown in Figure 7
where a first processing step relies on the harmonic ana-
lysis and, in a second step, the AANN is applied. Such an
approach should in principle lead to the determination of
a considerably reduced number of components for the
interferogram representation without involving the train-
ing of huge AANN topologies. Note that DFT and DWT
are considered as two alternative possibilities to imple-
ment the harmonic analysis.
ograms for the spatial sampling, DFT, and DWT methods

γ|=0.8 RMSE |γ|=0.6 RMSE |γ|=0.4

152.49 153.42

61.23 72.24

46.36 61.96



Figure 6 A generic AANN scheme. The topology is composed by input and output layers of the same size, two symmetric hidden layers, and a
bottleneck layer. After the training, the values of the bottleneck correspond to the nonlinear principal components of the given dataset.
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Experimental set-up
An ensemble of synthetic differential interferograms has
been generated by a recursive implementation of the
Okada formulation [12], explaining in a close analytic
form the surface deformation due to a seismic event by
a dislocation model in an elastic half space:

ui ¼ 1
F
∬
Σ
Δuj λδ jk

@uni
@ξn

þ μ
@uji
@ξk

þ @uki
@ξ j

 !
vk

" #
dΣ ð8Þ

In the above equation, ui (x1, x2, x3) is the displace-
ment field due to a dislocation Δuj (ξ1, ξ2, ξ3) across a
surface Σ in an isotropic medium, δjk is the Kronecker
delta, λ and μ are Lamé’s coefficients, specifying the
Figure 7 The whole work flow of the retrieval procedure. The diagram
the classification of the fault mechanism, and the retrieval of the fault para
elastic medium, νk is the direction cosine of the normal
to the surface element dΣ. The term ui

j is the ith com-
ponent of the displacement at (x1, x2, x3) due to the jth
direction point force of magnitude F at (ξ 1, ξ 2, ξ 3). To
obtain the synthetic interferogram the displacement vec-
tor u computed by Equation (8) is projected onto the
satellite line of sight using the two angles, the radar inci-
dence (from vertical) and the azimuth of the satellite
ground track (from North). The computed phase is fi-
nally wrapped applying the operator W{}:

W ϕf g ¼ mod ϕ þ π; 2πf g � π; 2 �π; π½ Þ ð9Þ
is composed by the chain of the pre-processing stage, the NNs for
meters.



Figure 8 Examples of synthetic interferograms generated by means of the Okada forward model. In the upper row, three examples
relative to normal fault are shown. The second row reports interferograms relative to strike slip faults. Finally in the last row thrust examples are
shown.
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In Figure 8, some examples of the generated synthetic
data are shown. The generated dataset has been used to
train the NNs performing the information retrieval. De-
pending on the seismic source mechanism, faults can
schematically be classified into three main groups: nor-
mal fault, strike slip fault, and reverse fault (thrust). The
main parameters defining the fault geometry are length
(km), width (km), bottom depth (km), strike angle (deg),
that measures the angle between the fault and the N–S
direction, and the dip angle (deg), that measures the in-
clination of the fault plane with respect to the surface.
In this study, we have considered constant slip values
along the fault plane, allowing fault length and width,
fault dip and strike angles, bottom depth, to vary within
pre-defined ranges. The synthetic dataset on which the
Table 3 Ranges for the fault plane geometric parameters con

Fault class Length (km) Width (km) Dip an

Normal 9–21 (3) 6–8 (2) 45–85

Strike slip 25–125 (25) 15–20 (5) 70–11

Thrust 10–50 (10) 10–20 (10) 30–70

Numbers between parentheses indicate the chosen step for each parameter.
NNs have been trained is composed by 1,200 interfero-
grams of 1500 × 1500 pixels. In Table 3, the range of
variation for the different fault parameters and for the
three fault mechanism is shown, while Table 4 shows the
statistical characterization of the synthetic dataset.
The steps of the proposed inversion method can sche-

matically be summarized as

1. Synthetic interferograms generation through Okada
formulation, considering a set of fault parameters
spanning the variations of the phenomena behavior.

2. DFT or DWT feature extraction.
3. NL-PCA developed by means of AANN performing

an additional dimensionality reduction starting from
the DFT or DWT selected coefficients.
sidered in the simulations

gle (deg) Strike angle (deg) Bottom depth (km)

(10) 90–180 (30) 8–12 (4)

0 (10) 90–180 (30) 20–25 (5)

(10) 90–180 (30) 10–20 (10)



Table 4 Statistics (mean and standard deviation values) of the parameters to be retrieved for each output parameter
and for each type of faults

Length (km) Width (km) Dip angle (deg) Strike angle (deg) Depth (km)

Mean values

Normal 15.42 7.01 64.93 136.20 10.05

Strike 76.13 17.83 91.46 134.80 22.43

Thrust 29.46 14.26 48.33 135.00 15.26

Standard deviation values

Normal 4.28 1.00 14.72 32.72 2.00

Strike 33.94 2.48 14.44 33.83 2.50

Thrust 13.55 4.96 14.16 32.92 5.00
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4. Training and testing of the NN for the classification
(hereafter NN1) of the fault mechanism (normal,
strike slip, or thrust).

5. Training and testing of three NNs (hereafter NN2),
one for each fault mechanism, for the retrieval of
the fault parameters (length, width, depth, dip angle,
strike angle).

After different trials, the two architectures for NN1 and
NN2 that showed the best performance have the con-
figurations [50]–[30]–[10]–[3] and [50]–[30]–[10]–[5],
respectively.
The test of the NNs performance, that can be assumed

also as a test on the effectiveness of the pre-processing
feature extraction phase, has been developed by means
of an independent subset of synthetic data. In Table 5,
the classification accuracy of the NN1 considering the
DFT and the DWT features extraction is shown. Finally
in Table 6, we report the values of the RMSE obtained
over the different fault types and for the two pre-
processing algorithms.
In general, we see that both considered approaches

(using DFT or DWT) are characterized by good esti-
mation capabilities. If the use of DFT shows better
accuracy in terms of fault classification, the DWT
seems to be more precise in the retrieval task. This
can be explained considering that the DWT yields a
more effective dimensionality reduction, which can be
significant when the inversion task, as in the param-
eter retrieval case, is more easily affected by the over-
fitting problem.
Table 5 Confusion matrix showing the accuracy of the result

True Estimated (DFT+AANN feature extraction)

Normal Strike slip Thrust

Normal 150 0 0

Strike slip 0 150 0

Thrust 0 0 150

DFT+AANN and DWT+AANN feature extraction are both considered.
A comparison with the scheme obtained considering,
as in [2], a simple data dimensionality technique based
on spatial sampling has also been carried out. We ob-
served that, with the new technique, the time necessary
for training the NN performing the inversion dramatic-
ally decreases by a factor of 20. Also improvements in
the accuracies obtained in the classification and in the
parameter retrievals have been noted.
L’Aquila earthquake test case
The procedure described above has been tested on a dif-
ferential interferogram imaging the seismic event oc-
curred in central Italy near the city of L'Aquila. On April
6th, 2009 (01:32 GMT), the Abruzzi region (Central
Italy) has been affected by an Mw 6.3 earthquake. The
seism heavily hit the main city of the province, L’Aquila,
and strongly damaged its historical heritage. The earth-
quake caused the partial or complete collapse of a sig-
nificant number of highly vulnerable, recent, and
historical buildings. The mainshock, located at a depth
of approximately 9 km, was followed in the next week
by seven aftershocks with Mw> 5, the largest of which
(Mw= 5.6) occurred on 7th April, 15 km SE of the main-
shock and 5 km deeper (Figure 9). The focal mechanism
of the mainshock indicates a pure NW–SE normal fault
dipping SW [13], in agreement with the extensional tec-
tonics of the Apennines. The results, obtained with dif-
ferent approaches and algorithms based on geodetic
measurements from GPS, leveling or InSAR, already
presented in literature are shown in Table 7.
of the classification exercise

Estimated (DWT+AANN feature extraction)

Normal Strike slip Thrust

138 0 12

0 128 22

0 1 149



Figure 9 Map showing the epicentral zone of the 2009 L'Aquila earthquake. The red stars show the epicenter of the mainshock, occurred
on 6th April 2009, and the epicenter of the largest aftershock on 7th April. The red lines on the map mark the previously known fault. With the
green circles the city of L’Aquila and the other towns located in the epicentral zone are shown.
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We applied DInSAR techniques on descending orbit
C-Band Envisat images (April 27th 2008–April 12th
2009) obtaining the interferogram used as input for the
proposed procedure. The computed SAR interferogram
is shown in Figure 10, while the results from the NN re-
trieval scheme are synthesized in Table 8.
Table 6 Accuracy of the parameter retrieval results on the ind

RMSE values DFT+

Length (km) Width (km) Di

Normal 0.22/0.16 0.13/0.10 0.1

Strike 0.27/0.24 0.12/0.12 0.1

Thrust 0.28/0.29 0.25/0.24 0.2

DFT+AANN and DWT+AANN feature extraction are both considered.
The classification problem as well as the retrieval
problem was satisfactorily managed with both the pre-
processing stages. Indeed, the NN correctly associated
the L’Aquila interferogram to a normal slip mechanism.
Furthermore, the estimated geometric parameters were
consistent with the results from Table 7.
ependent sub-set

ANN/DWT+ANN

p angle (deg) Strike angle (deg) Depth (km)

6/0.17 0.20/0.15 0.17/0.16

1/0.12 0.18/0.18 0.10/0.09

0/0.16 0.19/0.13 0.09/0.09



Figure 10 Differential interferograms relative to the L’Aquila earthquake, computed by application of the InSAR technique on C-Band
Envisat images acquired from ascending orbits.
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The energy released by the earthquake has been esti-
mated computing the Mw (moment magnitude) by using
Kanamori’s formulation [17]:

MW ¼ 2
3
logM0 � 10:7 ð10Þ

where Mo =μWLδ is the seismic moment, μ� 3.2 × 1011

(dyne/cm2) the shear modulus, W and L are the fault
width and length, and δ is the slip. The Mw values com-
puted for the two sets of retrieved parameters are
reported in Table 8 and are quite compatible with the
assessments from seismological measures.

Conclusion
In this study, we addressed the problem of feature extrac-
tion from SAR interferograms in the particular framework
Table 7 Geometric parameters of L’Aquila earthquake source

L’Aquila geometric parameters Length
(km)

Width
(km)

Dip angle
(deg)

Atzori et al. [14] 12.2 14.1 47

Walters et al. [15] uniform elastic
dislocation model

12.2 7 54

Walters et al. [15] distributed
slip model

19 7 54

Anzidei et al. [16] 13 15.7 55.3
of the analysis of tectonic events. Both the harmonic ana-
lysis, based on DFT and DWT, and a neural approach,
based on AANN, have been considered for the final
objective.
We found that a hybrid approach chaining the har-

monic analysis and the neural technique was the most ef-
fective one. Indeed, the harmonic analysis alone is not
capable of shrinking the original interferogram image
dimensionality up to the desired level. On the other hand,
the single application of the AANN would have involved
the use of too complex network architectures. In fact, the
results obtained with the implemented processing chain are
rather satisfactory, since the time necessary to train the net-
works performing the final inversion (split in a classification
stage and a parameter retrieval stage) was dramatically
reduced and at the same time the parameter estimation
as retrieved by cited authors

Strike angle
(deg)

Bottom depth
(km)

Data used

133 11.51 DInSAR+GPS

144 11.7 DInSAR

144 13 DInSAR

140 - DInSAR



Table 8 Geometric parameters of the seismic source as retrieved by the NN for the two pre-processing stages
(DFT+ANN and DWT+ANN)

Earthquake/inverted parameters Length
(km)

Width
(km)

Dip
(deg)

Strike
(deg)

Top depth/
bottom depth (km)

Mean slip
(cm)

Mw

L’Aquila (DFT +ANN) 13.58 6.88 63.00 135.00 3.7 / 9.80 100 6.30

L’Aquila (DWT+ANN) 18.00 7.30 73.00 155.00 3.5 / 10.50 100 6.38
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accuracy improved, with respect to the case where dimen-
sionality reduction is performed simply by interferogram
sub-sampling. The capability of the harmonic analysis to
mitigate the effect of decorrelation characterizing a SAR
interferometric pair has also been demonstrated. The
complete processing chain has finally been validated with
the real case of L’Aquila earthquake of April 2009. The
obtained results are in good agreement with the conclu-
sions of other analysis presented in the literature. The mag-
nitude moment Mw, computed with the Kanamori’s
formulation utilizing retrieved geometric parameters of the
fault plane, is compatible with the value obtained by seis-
mological analysis. The fault classification results, obtained
by means of the synthetic dataset, have shown a better be-
havior of the DFT with respect to the DWT. This can be
due to the fact that in this case the method selected for lim-
iting the number of coefficients to be used, relying on CE
measure, might not be the optimum one, so further investi-
gation are required. On the other hand, in the parameter
retrieval results, where probably the overfitting risk
increases, the DWT+AANN performs slightly better than
DFT+AANN. In fact, the values of Cr and RMSE show
better performance of DWT in the pure dimensionality re-
duction task.
The choice of considering uniform distributions for

the slip vector components along the fault plain can be
considered as a limitation of the whole inversion pro-
cedure. Such a limitation, however, can be removed, or
reduced, by a refined implementation of the forward
problem model. On the other hand, different advantages
can be put forward. In particular, the possibility to re-
trieve the fault parameters directly from wrapped data,
or a certain degree of tolerance to the phase noise, as
shown in the Section 2. Moreover, when the classifica-
tion and retrieval NNs have been trained, these can rap-
idly be applied to invert data with a high level of
objectivity.
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