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Abstract

We present a novel method for human action recognition (HAR) based on estimated poses from image sequences.
We use 3D human pose data as additional information and propose a compact human pose representation, called a
weak pose, in a low-dimensional space while still keeping the most discriminative information for a given pose. With
predicted poses from image features, we map the problem from image feature space to pose space, where a Bag of
Poses (BOP) model is learned for the final goal of HAR. The BOP model is a modified version of the classical bag of
words pipeline by building the vocabulary based on the most representative weak poses for a given action. Compared
with the standard k-means clustering, our vocabulary selection criteria is proven to be more efficient and robust
against the inherent challenges of action recognition. Moreover, since for action recognition the ordering of the poses
is discriminative, the BOP model incorporates temporal information: in essence, groups of consecutive poses are
considered together when computing the vocabulary and assignment. We tested our method on two well-known
datasets: HumanEva and IXMAS, to demonstrate that weak poses aid to improve action recognition accuracies. The
proposed method is scene-independent and is comparable with the state-of-art method.

Keywords: Human action recognition, Human pose estimation, Gaussian process regression, Bag of words

Introduction
Human action recognition (HAR) is an important prob-
lem in computer vision. Application fields include video
surveillance, automatic video indexing and human com-
puter interaction. One can categorize the scenarios found
in the literature into several groups: single-human action
[1], crowds [2], human-human interaction [3], and action
recognition in aerial views [4], to cite but a few. Although
the method proposed in this article mainly concentrates
on single-HAR, it can be also applied to all the afore-
mentioned scenarios, given that the 2D silhouettes of the
agents are able to be extracted from image sequences.
Most solutions for HAR learn action patterns from

sequences of image features like Space-Time Interest
Points [5,6], temporal templates [7], 3D SIFT [8], optical
flow [9,10], Motion History Volume [11], among others.
These features are commonly used to describe human
actions which are subsequently classified using techniques
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like Hidden Markov Models [10,12-15], and Support Vec-
tor Machines [6]. Recent and exhaustive reviews of meth-
ods for HAR can be found in [16,17]. While most of
the related work are concentrating on exploring differ-
ent input features and classification methods, very few of
them explores the use of 3D motion capture data for 2D
action recognition.
Ning et al. [1] propose a model by adding one hidden

layer to conditional random fields (CRF) containing pose
information. One of the advantages is that every video
frame has an action label, so that action segmentation
is integrated with action recognition as a whole. How-
ever, the optimal number of consecutive frames which
contribute to the decision of the action label of the cur-
rent frame is given by the model. In our proposal, the
optimal frame number is calculated from the training
data. Also, while Ning et al. in [1] use CRFs to model
relations between image features and action labels, we
label motion sequences with a bag of poses (BOP) model,
an extension of bag of words (BOW). BOW has been
widely applied in classification problem [18-22]. We will
show that compared with BOW from only 2D image fea-
tures, incorporation of weak poses combined with BOP
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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improves action recognition accuracy. The average action
recognition accuracy of the proposed method is better
than that in [1].
In this article, our main hypothesis is that estimat-

ing 3D poses from 2D silhouettes can be advantageous
for action recognition. A challenge of this solution is
the inherent ambiguities between 2D image features and
3D poses. Some researchers use multiple-view videos
[23-25], although single-view image sequences are more
generic and easy to acquire. Moreover, recent work shows
that even in monocular image sequences, reconstruction
ambiguity can be tackled using regression methods like
relevance vector machine (RVM) [26]. RVM is a special
case of Gaussian Process Regression (GPR) [27]: while
RVM considers the most representative training samples
(thus being fast in the learning step), GPR takes all the
training samples thus being a more accurate regression
technique. For this reason, GPR has been successfully
used for modeling the mapping between 2D image fea-
tures and 3D human poses [28,29].
Inspired by these works, the whole procedure presented

in this article is shown in Figures 1 and 2. In essence the
method is composed of two steps: training and prediction.
In training, a set of Gaussian processes (first row Figure 1)
and the BOP model (second row Figure 1) are learnt. On
one hand, Gaussian processes are trained with pairs of 2D
image features and our intermediate 3D pose representa-
tion or weak poses. For each dimension of the weak pose
parameter space, we define a Gaussian process to map

from 2D image features to this particular dimension. On
the other hand, the BOP model is trained with weak poses
and motion sequences. We introduce temporal informa-
tion in BOW by grouping consecutive video frames. Simi-
lar to graphical models which account for the influence of
neighboring data, in our case we take into account those
neighboring frames by merging consecutive frames in a
single word. After choosing the most representative weak
poses for the vocabulary, each motion sequence is repre-
sented as a histogram and SVMs are finally trained. In
the prediction step, given an unknown video sequence,
we predict human poses with the trained set of Gaussian
processes, and represent the video sequence using the his-
togram of the vocabulary. After that, we label the action
by the trained SVMs.
The rest of the article is organized as follows: next

section introduces our human body model and human
posture representation; Section Weak pose estimation
using GPR describes how we use a set of Gaussian pro-
cesses for learning the mapping from 2D image features
to 3D human poses; in Section BOP for action recogni-
tion, we describe a procedure for incorporating temporal
information in a BOW schema, showing the results in
Section Experimental results. Finally Section Conclusions
and discussion presents the future avenues of research.

Data representation
The flexibility of the human body and the variability of
human actions produce high-dimensional motion data.

Figure 1 Learning step: we train Gaussian processes to learn the regression function from shape context descriptors (SCDs) toweak
poses. In parallel, a BOP model is built for each action class by extracting key poses and training SVM classifiers.
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Figure 2 Predicting phase. The test video sequence is described using shape context descriptors as in the learning phase (see Figure 1).Weak
poses are predicted from shape context descriptors using trained Gaussian processes and the video is represented as a histogram of the vocabulary
learned in the training phase. The video is finally labeled using the ensemble of trained SVMs for each action class.

Given a number of video sequences of a single actor
executing certain actions, in training each image has its
corresponding 3D motion capture data. How to repre-
sent these data in a compact and effective way is also
a challenge.
We select a compact representation of human pos-

tures in 3D, in our case a stick figure of 12 limbs. For
representing 3D motion data, a human pose is defined
using twelve rigid body parts: hip, torso, shoulder, neck,
two thighs, two legs, two arms and two forearms. These
parts are connected by a total of ten inner joints, as
shown in Figure 3a. Body segments are structured in a
hierarchical manner, constituting a kinematic tree rooted
at the hip, which determines the global rotation of the
whole body.
Some works represent human poses with 3D joint posi-

tion, others have explored representing limb orientation
with polar angles or direction cosines (DCs). In the latter
case, the orientation of each limb is represented by three
DCs of the angles formed by the limb in the world coor-
dinate system. DCs embed a number of useful invariants,
and by using them we can eliminate the influence of dif-
ferent limb lengths. Compared to Euler angles, DCs do
not lead to angle discontinuities in temporal sequences.
Lastly, DCs have a direct geometric interpretation which
is an advantage over quaternions [30].
So we use the same representations for human postures

and human motions as in [31]: a limb orientation is rep-
resented using three parameters, without modeling self
rotation of the limb around its axes, as shown in Figure 3b.

This results in a 36-D representation of the pose of the
actor in frame j of video i:

ψ i
j =[ cos θx1 , cos θ

y
1 , cos θ z1 , . . . , cos θx12, cos θ

y
12, cos θ z12] ,

(1)

a b
Figure 3 The 3D stick figure model used for representing human
pose and limb orientation represented as direction cosine. (a)
Ten principal joints corresponding to the markers used in motion
capture are used for 3D stick figure. (b) Limb orientation is
represented with the direction cosines of angles (θ xl , θ

y
l , θ

z
l ) between

the limb l and the axes.
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where θxl , θ
y
l and θ zl are the angles between the limb l and

the axes as shown in Figure 3b.
With DCs, we represent the motion sequence of the i-th

video as a sequence of poses:

� i
o =[ψ i

1,ψ
i
2, . . . ,ψ

i
ni ] , (2)

where ni is number of poses (frames) extracted from
video i.

Universal action space (UaSpace)
Since natural constraints of human body motions lead
to highly correlated data [32], we build a more compact,
non-redundant representation of human pose by applying
principle component analysis (PCA) to all actions. This
universal action space (UaSpace) will become the basis for
vocabulary selection and finally classification using BOP.

By projecting human postures into the UaSpace,
distances between poses of different actions can be com-
puted and used for classification. Figure 4 shows pose vari-
ation corresponding to the top (in terms of eigenvalues)
nine eigenvectors in the UaSpace. From the figure, one
can see which pose variations each eigenvector accounts
for in the eigenspace decomposition. For example, one can
see that the first eigenvector corresponds to the charac-
teristic motion of the arms and the second eigenvector
corresponds to the motion of the torso and the legs. In the
following section, we describe how weak poses are esti-
mated from video frame feature descriptors using GPR.
We denote the pose representation in the reduced

dimensionality space as weak poses or ψ ′, and the motion
sequence of UaSpace the i-th video is represented as:

� i =[ψ i
1
′,ψ i

2
′, . . . ,ψ i

ni
′] , (3)
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Figure 4 Visualizing the nine principal variations of the pose within UaSpace learnt from HumanEva data. Each plotted stick figure is a
re-projected pose by moving it in one eigenvector’s dimension from −3 up to 3 times the standard deviation.
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whereψ i
j
′ is theweak pose corresponding to the j-th image

frame in i-th video sequence.

Weak pose estimation using GPR
We use SCD to represent the human silhouette found
using background subtraction [33]. Shape context is com-
monly applied to describe shapes given silhouettes [34,35],
and have been proven that it is an effective descriptor for
human pose estimation [36].
The main idea of our SCD is to place a sampled point

on a shape in the origin of a radial coordinate system and
then to divide this space into different range of radius
and angle. In this way, the number of points that fall in
each bin of the radial coordinate system are counted and
encoded into a bin of an histogram. In our experiments,
we place the origin of radial coordination on the cen-
troid of a silhouette and divide radius into five bins equally
spaced and divide angle into 12 equally spaced bins, as
shown in Figure 5. As a result, the SCD vector is 60-D.
Figure 6 shows examples of extracted silhouettes of actor
“S1” performing action “Box” and action “Gesture”. From
the figure, we can see that background subtraction with
the method in [33] gives promising background results.
Although there are variances of centroid positions among
similar silhouettes, from observations, we can say that
centroids are still reliable. We set the centroid of the sil-
houette as the center of the local coordinate system, and
the largest diameter is set as 1.25 times the diagonal length
of the silhouette bounding box.

Figure 5 Radial coordinates for SCD. The origin of the polar
coordinate system is placed on the centroid of the bounding box of
the silhouette. The radius is divided equally into 5 bins and the circle
is divided equally into 12 bins.

The normalization of the resulting SCD has a signifi-
cant impact on the performance of GPR. We exploit two
different ways of normalizing data: standard deviation
and individual normalizations. Suppose sorig denotes the
original SCD from one image, and

sorig =[ np1, np2, . . . , npi, . . . , np60] , (4)

where npi is the number of pixels that fell in the i-th bin.
In standard deviation based normalization, we calcu-

late standard deviations from all training SCDs std =
[ std1, std2, . . . , std60]. Then we normalize each dimen-
sion of the SCD by dividing it with the corresponding
standard deviation. Then the normalized SCD can be
represented as:

snorm1 =
[
np1

std1
,
np2

std2
, . . . ,

npi

stdi
, . . . ,

np60

std60

]
(5)

In individually normalizing method, we divide the pixel
number in a bin by the total pixel number of the SCD. That
is, if we represent the total number of pixels in one SCD
as npSum, then in individually normalizing method, the
normalized SCD is defined as:

snorm2 =
[

np1

npSum
,

np2

npSum
, . . . ,

npi

npSum
, . . . ,

np60

npSum

]
.(6)

We compare these two different ways of normalizing
SCDs in experimental results.

Gaussian process regression
The problem of predicting 3D human postures from 2D
silhouettes is highly non-linear. Gaussian processes have
been effectively applied for modeling non-linear dynamics
[37-39]. For example, Gaussian process has been applied
to non-linear regression problems, like robot inverse
dynamics [40] and nonrigid shape recovery [41].
With the method described in the above section, we

extract human silhouettes from training video sequences
and describe them with normalized SCD.

S =[ s1, s2, . . . , sp] , (7)

where si is the vector of SCD extracted from the i-th train-
ing video sequence. Themethod described in [26] predicts
3D poses from 2D image features using RVM. RVM is
more efficient during learning, but less accurate since
RVM is a special case of GPR: during the learning phase,
RVM takes the most representative training samples while
GPR takes all training samples. Additionally, GPR has
been successfully applied to pose estimation and tracking
problems, for example [28,29]. So in our approach, we will
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Box

Gesturesb

a

Figure 6 Samples of extracted silhouettes of actor “S1” performing action “Box” and “Gesture” with the method in [33]. Silhouette
centroids are marked in red square.

use GPR for modeling the mapping between silhouettes
and weak poses.
According to Rasmussen and Williams [27], Gaussian

process is defined as: a collection of random variables, any
finite number of which have (consistent) joint Gaussian

distribution. A Gaussian process is completely specified
by its mean function and a covariance function. Integrat-
ing with our problem, we denote the mean function as
m(s) and the covariance function as k(s, s′), so a Gaussian
process is represented as:
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ζ(s) ∼ GP j(m(s), k(s, s′)), (8)

where

m(s) = E[ ζ(s)] ,
k(s, s′) = E[ (ζ(s) − m(s))(ζ(s′) − m(s′))] , (9)

We set a zero-mean Gaussian process whose covari-
ance is a squared exponential function with two hyperpa-
rameters controlling the amplitude θ1 and characteristic
length-scale θ2:

k1(s, s′) = θ21 exp
(

− (s − s′)2

2θ22

)
. (10)

We assume prediction noise as a Gaussian distribu-
tion and formulate finding the optimal hyperparameters
as an optimization problem. We seek the optimal solu-
tion of hyperparameters by maximizing the log marginal
likelihood (see [27] for details):

log p(Ψ ′|s, θ) = −1
2
Ψ ′TK−1

Ψ ′ Ψ ′−1
2
log |KΨ ′ |−n

2
log 2π ,

(11)

where KΨ ′ is the calculated covariance matrix of the tar-
get vector (vector of training weak poses in UaSpace) Ψ ′
under the kernel defined in Equation (9).
With the optimal hyperparameters, the prediction dis-

tribution is represented as:

Ψ ′∗|s∗, s,Ψ ′ ∼ N (k(s∗, s)T [K + σ 2
noiseI]

−1 Ψ ′, k(s∗, s∗)
+σ 2

noise−k(s∗, s)T [K+σ 2
noiseI]

−1 k(s∗, s)),
(12)

where K is the calculated covariance matrix from training
2D image features s and σnoise is the covariance of Gaus-
sian noise. We train a set of Gaussian processes to learn
regression from SCD to each dimension of the weak poses
separately.

BOP for action recognition
Given a test video sequence, we extract SCDs from image
sequences and then predict the weak pose by the set
of trained Gaussian processes. With the predicted weak
poses, the problem turns into a classification problem in
the UaSpace.
Inspired by BOW [18-20], we apply the following steps

for action recognition: compute descriptors for input data;
compute representative weak poses to form vocabulary;
quantize descriptors into representative weak poses and
represent input data as histograms over the vocabulary, a

BOP representation. Next we explain how to compute the
vocabulary and perform classification with our modified
BOP model.

Vocabulary selection
The classic BOW pipeline uses k-means for calculating
the vocabulary. But this way of calculating the vocabu-
lary does not give promising action recognition results
[42]. While energy-based method proposed in [42] gives
comparatively better results when applied for each action
separately, it is not applicable here. Because the num-
ber of key poses calculated from energy-based method
is closely related with numbers of motion cycles. When
we use one vocabulary for all actions, key pose num-
bers increases dramatically. While the number of training
sequences stays the same. Even we use techniques to cre-
ate new training sequences, the experiment results are not
ideal.
We combine these two methods and propose a new

method for computing the vocabulary. First, we select
candidate key weak poses using energy optimization as in
[42]. The key weak poses are pre-selected as:

Fi
pre = {f i1, f i2, . . . , f il }, (13)

where f ij corresponds to local maximum or local mini-
mum energies in i-th motion sequence. And l is the total
number of local maximum and local minimum values.
Note, l is not a fixed value, and it depends on number of
motion cycles and motion variations in the sequence.
Without taking into account temporal information, we

cluster all preselected key weak poses from all perfor-
mances: Fpre = {F1

pre, F2
pre, . . . , F

p
pre}, where Fi

pre is calcu-
lated as in Equation (13) and p is the number of training
motion sequences. Then, we select k most representatives
weak poses Fk from Fpre with k-means. So Fk makes the
vocabulary. We call the proposed method as energy-k-
means. We will show in experiment section comparisons
between the energy-k-means, k-means and energy-based
method.
To incorporate temporal information into our solution,

we consider d consecutive frames as one unit. That is, key
weak poses with temporal information are preselected as

Ft
pre = {Ft1

pre, Ft2
pre, . . . , Ftl

pre}, (14)

where

Ftj
pre =[ f frm−d+1

j , f frm−d+2
j , . . . , f frmj ] (15)

is the j-th candidate for key weak poses. Ftj
pre is a concate-

nation of d consecutive weak poses and f frmj corresponds
to local maximum or local minimum energies in j-th
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motion sequence, and tl equals the total number of pres-
elected key weak poses. Then, the vocabulary is calculated
as k-means clustering centers Ft

k from Ft
pre.

Temporal step d is a critical factor. Experimental results
show that, for weak poses, after temporal step d reaches a
certain value, classification results remain comparatively
steady. In Section Temporal step size, we will show how
we fix d using cross validation on training data.

Action classification
A vocabulary is calculated as a collection of characteristic
key weak poses. Then we represent our motion sequences
statistically as occurrences of these characteristic key
weak poses, that is, histograms over the vocabulary.
To be specific, the i-th motion sequence � i repre-
sented as in Equation (3) in UaSpace can be represented
statistically as:

histi =[ n1, n2, . . . , nj, . . . , ntk] , (16)

where nj is the number of weak poses in � i that are near-
est (Euclidean distance) to j-th word in vocabulary Fk .
To incorporate temporal information, we start from d-th
frame of video sequence Vi, and compare a concatenation
of consecutive d weak poses with each entry of the vocab-
ulary Ft

k . And tk in Equation (16) is the number of words
contained in vocabulary Ft

k .
For each action, we train a SVM with histograms and

their corresponding action class labels. We choose a lin-
ear kernel according to experimental results and use cross
validation to fix the cost value as 5. For measuring classi-
fication results, we use classification accuracy:

accuracy = tp + tn
tp + tn + fp + fn

, (17)

where tp, tn, fp, fn refer to true positive, true negative,
false positive and false negative, respectively. tp + tn rep-
resents correctly classified samples, and tp + tn + fp + fn
is the total number of all samples. We use this criterion as
the maximizing target when we do cross validation to fix
parameters, for example, number of Gaussian process m
and temporal step size d.

Experimental results
To verify robustness of our method, we choose two public
datasets: HumanEva and IXMAS. Ning et al. [1] gives state
of art action classification accuracy for HumanEva dataset.
We will compare with this result with our experiments
on this dataset. There are several related works on action
recognition with IXMAS dataset, for example [23-25,43].
Gu et al. [44] listed all state of art experimental results
on this dataset. Among all, we will compare with exper-
imental results in [43], because this method uses single

viewpoint as input like our method while other methods
need multiple viewpoints.
The composition of the data are:

1. HumanEvaa dataset [45]. This dataset contains six
actions: “Walking”, “Jog”, “Gesture”, “Throw/Catch”,
“Box”, and “Combo”. We consider the first five
actions, since “Combo” is a combination of
“Walking”, “Jog”, and “Balancing on each of two
feet”. Four actors perform all actions a total of three
times each. Trial 1 has both video sequences and 3D
motion data; in trial 2, 3D motion data are withheld
for testing purposes; trial 3 contains only 3D motion
data.

2. IXMASb dataset. We further apply trained models
from HumanEva dataset to IXMAS dataset, to test
robustness of our method. From this dataset, we
take four actions: “Walk”, “Wave”, “Punch” and
“Throw A Ball”. They correspond to actions
“Walking”, “Gesture”, “Box” and “Throw/Catch” in
HumanEva dataset.

We take only the frontal view from the two dataset. Note
that positions of vision cameras in these two dataset of
frontal view are not set exactly the same.

Model training
In our experiments, we take the first half of each per-
formance for training < S,� > and the second half for
validation < SVal,�Val > and use cross validations to
fix model parameters like number of Gaussian processes,
vocabulary size, temporal step sizes and so on.

Energy-k-meansmethod for vocabulary computation
In this section, we compare the proposed energy-k-means
method with the traditional k-means and the energy-
based method proposed in [42].

Table 1 Comparisons of classification accuracy (%) among
energy-k-meansmethod, k-meansmethod and
energy-basedmethod in [42]

Methods
Number of GPs

3 6 10 20

Energy-k-means Voc size 5 73.9 86.8 86.3 86.1

10 67.7 83.6 82.9 84.4

15 64.1 83.9 82.6 85.4

20 64.7 79.0 77.5 78.4

k-means Voc size 5 67.2 65.7 58.6 57.9

10 52.9 68.6 67.9 66.4

15 60.7 51.4 62.9 67.9

20 52.2 48.6 55 64.3

Energy-based 35.7 39.3 64.3 64.3
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Table 2 Vocabulary size calculated with energy-based
method with different numbers of Gaussian processes

Number of GPs

3 6 10 20

Voc size 608 602 639 641

Table 1 shows that the proposed energy-k-means
method outperforms the k-means and the energy-based
method in all experiment configurations. While for the
k-means and the energy-based method, proper parame-
ter settings are needed for better results. For example,
with 10 Gaussian processes, the k-means outperforms the
energy-based method when the vocabulary size equals 10,
while the energy-based method performs better when the
vocabulary size equals 5, 10 and 20. The reason that the
energy-based method does not give promising results is
big vocabulary size, see Table 2. Although we synthesize
training data, still the number of training sequences is not
enough for this vocabulary size.

Number of Gaussian processes
We train a set of Gaussian processes to learn mappings
between SCDs and weak poses in UaSpace with the train-
ing data < S,� >. We calculate pose estimation errors
between estimated weak poses �̂ and the ground truth
weak poses � ′ as:

ε = 1
N

P∑
p=1

Fp∑
f=1

‖ψ̂ − ψ ′‖2, (18)

where N is the total number of frames used for train-
ing, P is the total number of training performances and
Fp is frame numbers of the p-th training performance.
To discard missing human detection, we first calculate
the energy of SCD for each training frame and filter
the training sequences based on calculated energies by
keeping 90% of the energies over all frames. This effec-
tively eliminates frames containing catastrophic silhouette
extraction failures.

In our experiments, we evaluate different numbers of
Gaussian processes (recall that we use one Gaussian pro-
cess for each dimension in our weak pose space). From
Table 3, we observe that with fewer than 20 Gaussian
processes, increasing the number of Gaussian processes
results in noticeable increases in classification accuracy
and also decreases in pose estimation error. Our explana-
tion for this is: a small numbers of Gaussian processes are
not able to capture or describe all the motion possibili-
ties for actions, which results in predictions that are not
accurate. After 20 Gaussian processes, increasing number
of Gaussian processes does not result in notable increases
in classification accuracy or decreases in pose estimation
error. So the best trade-off between accuracy and model
complexity is found with 20 Gaussian processes with a
vocabulary size of 10. The subsequent experiments are
computed with these optimal settings.

Temporal step size
We also use cross validation to get optimal temporal step
size d. We add Gaussian noise of different scales to the
original 3D marker positions to test the robustness of the
prosed method. We run each noise scale five times and
calculate average accuracy for all noise scales. Experiment
results are shown in Figure 7. This figure shows relations
between numbers of temporal steps, numbers of key poses
and action recognition accuracies. From the figure, we can
see that the size of temporal steps has more influences
than the number of key poses (vocabulary size). And after
the size of temporal steps reaches 13, classification accu-
racy becomes rather stable. This implies that the decisive
factor in action recognition comes from the continuous
motion. Motion elements of short duration is more rep-
resentative for an action than the overall distribution of
important poses. Later on, we fix temporal step size as 13
for the rest of our experiments.

The effect ofweak poses
To verify the effect of the incorporation of weak poses. We
use only image features as input for modified BOW with

Table 3 Comparison of classification accuracy (%) andweak pose reconstruction error with different numbers of Gaussian
processes and different vocabulary size

Number ofGPs

3 6 10 15 20 25 30

Voc size 5 73.9 86.8 86.3 86.0 86.1 86.1 85.6

10 67.7 83.6 82.9 83.0 84.4 84.2 84.2

15 64.1 83.9 82.6 80.8 85.4 83.9 83.7

20 64.7 79.0 77.5 79.7 78.4 84.2 82.2

Mean error 0.399 0.304 0.241 0.200 0.169 0.146 0.127

Reconstruction error is the difference between predictedweak poses and ground truth weak poses.
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Figure 7 The relations between number of temporal steps, number of key poses and action recognition accuracy.

the optimum parameter settings. That is, we use energy-
k-means for vocabulary selection and set vocabulary size
of 10. Cost of support vector machine is as 5 and temporal
step size is as 13. But instead of in UaSpace, vocabularies
and histograms are calculated in 2D image feature space.
Action recognition accuracy with only image features on
the validation set is 80.0%, while the action recognition
accuracy for the proposed method is 84.4% (see Table 3).

Action recognition accuracy
We utilize a BOP model in classifying actions, as
described in Section BOP for action recognition. A set of
Gaussian processes and a BOP model are trained on all
training data including training and validation data. With
the trained models, we evaluate our method on the test
data from both HumanEva and IXMAS datasets.
As we take the whole performance as one training exam-

ple, we have an acute lack of training data. We address
this problem by synthesizing training data like [46]. We
first split training performances into sub-performances.

Then, we translate sub-performances with trans times the
maximum difference of the training data, where

trans={−0.20,−0.15,−0.10,−0.05, 0.05, 0.10, 0.15, 0.20},
(19)

and scale sub-performances by

scale = {0.80, 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, 1.20}. (20)

We also split and translate test performances into sub-
performances. The procedure is the same as for train-
ing date. Experimental results for HumanEva dataset are
shown in Table 4. The method from [1] shows upper
bound accuracy for initialized latent pose conditional
random field model (LPCRFinit in [1]) with the same
training and test data.
In our experiments, normalization of input data is a

very important step for GPR to make good predictions. So
we experimented with two different ways of normalizing

Table 4 Comparison of action recognition accuracy (%) in HumanEva between our methods and themethod presented in
[1]

Acc. Box Jog Gest Walk T/C All− T/C All + T/C

[1] 98.9 99.0 63.7 99.6 no 90.3 No

Std-norm 88.4 75.1 87.6 91.0 80.0 85.5 84.4

Ind-norm 97.1 91.8 91.9 94.6 80.0 93.9 91.1

Classification accuracy is defined as correctly labeled samples over total number of samples (refer to Equation (17)). “Std-norm” and “Ind-norm” refer to standard
deviation normalizing method and individually normalizing method (refer to SectionWeak pose estimation using GPR). The column “All − T/C” shows the average
classification accuracy for all actions excluding “Throw/Catch” and and the column ”All + T/C” including “Throw/Catch”. Bold values show the best results of action
recognition accuracies averaged over all actions.
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Figure 8 Two exampled frames of good estimation ofweak poses in HumanEva dataset.Weak poses are back-projected from UaSpace to the
original parameter space and visualized as human poses.

data: standard-deviation based and individual normal-
izations. Our method with individual normalization has
better average classification accuracy than the approach
presented in [1].
Due to illumination changes and errors from back-

ground subtraction, human silhouettes from every image
frame have variant qualities. As a result, the total pixel
numbers vary from one frame to another. Individually
normalizing method eliminates these differences. So that,
later histograms are computed on the same basis. On

the contrary, standard deviation based normalization are
more suitable to cases while different dimensions from
image features have different range of variations. In this
case, different dimensions are separately normalized. In
later experiments, we fix our normalization as individual
normalization.
From experimental results, we observe that for

“Throw/Catch” action, in both normalization strate-
gies, classification accuracy are not as satisfactory as
other actions. One possible reason for this is the limited
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Figure 9 An example of bad estimation of aweak pose in HumanEva dataset.
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Table 5 Action recognition accuracy (%) of our individually
normalizingmethod for IXMAS dataset using themodels
learnt fromHumanEva dataset compared with themethod
prosed in [43]

Accuracy Punch Wave Throw a ball Walk All actions

Ind-normal 75.0 79.2 75 87.5 79.2

[43] 86.8 79.9 82.4 79.7 82.2

number of training samples for this action. We are using
PCA in reducing representation dimensionality. In this
case, if training examples for an action are too few, the
variations of this action would not be able to be captured
by the main eigenvectors. As a result, action recognition
accuracy is not as good as other classes. Another observa-
tion is, for “Jog” and “Box”, individual normalization has
a much better performance than the standard-deviation
based one. Our explanation for this is, “Jog” and “Box”
have more variate poses compared with “Gesture” (the
lower body parts of the performer are relatively stable),
“Throw/Catch” (the lower body parts are also relatively
stable) and “Walking” (the movements of body parts are
not as fierce as in “Jog” and “Box”). As a result, when we
normalize all training data together, these action classes
are more likely to be influenced. While individual normal-
ization keeps variate information of the SCD from each
image frame.
To visualize results of weak pose reconstruction, we

project weak poses from UaSpace back to the original
parameter space. Figures 8 and 9 show some examples
of estimated weak poses. We can see that in Figure 8,

pose estimation results are satisfactory. In Figure 9,
there is a difference between the estimation and the
ground truth. Since our ultimate goal is action recog-
nition but not pose estimation, we will not concentrate
on further improvements on pose estimation. This pose
estimation precision give promising action recognition
accuracies.
We run the experiments on a personal computer with

four 3.19Hz processors, and 12GB memory. Most of the
time, the usage of CPU is around 30%, that is, the power
of a single core. The time cost for training one Gaussian
process is 6.5 h, and predicting one dimension is 3.1min.
And the time cost for calculating the vocabulary is 0.2 s.
We further test our action model (trained with

HumanEva data) on IXMAS dataset and experimental
results are shown in Table 5. We compare our results with
method in [43]. Note that camera settings in HumanEva
dataset and IXMAS dataset are slightly different. This
results in slight difference between human silhouettes
from these two dataset. Also although we have four corre-
sponding actions, they are not exactly the same action.We
label all actions in IXMAS dataset semantically with those
from HumanEva dataset. For example, “Gesture” action
in HumanEva dataset semantically contains “Wave” and
“Come”. The proposed method is scene independent but
not viewpoint independent. The compared method [43] is
trained on IXMAS dataset and tested on the same dataset.
We need to consider all these factors when compare these
two methods.
Despite the differences between these two datasets, our

models trained on HumanEva dataset obtain a relatively
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Figure 11 An example frame of bad estimation of aweak pose in IXMAS dataset.

close result as method in [43]. We even achieve better
results with action “Walk”. One explanation is that test
data in “Walk” have more frames than other actions in
IXMAS dataset, and our holistic method performs bet-
ter with more frames. Another reason might be, “Walk”
is a comparatively repetitive action that does not have as
much variance as other actions when performed by a dif-
ferent human. While for other action, this is not the case.
For example, for “Box” in HumanEva dataset, performer
“S1” does not move his legs while performer “S2” jumps
forward and backwards during the performances.
In Figures 10 and 11, we show sampled reconstruction

of weak poses. We can see that in the condition of simi-
lar camera viewpoint and similar silhouette shapes, like in
Figure 10, reconstructed poses can be very precise. While
the differences between HumanEva dataset and IXMAS
dataset, for example, different ways of actors perform-
ing the same actions, might cause some false prediction.
One example is shown in Figure 11, where a walking pose
is predicted as a running pose because the fierce move-
ment of the legs is similar to that in a running pose
from training.

Conclusions
In this article we have proposed a novel approach to action
recognition using a BOP model with weak poses esti-
mated from silhouettes. We have applied GPR to model
the mapping from silhouettes to weak poses. We modify
the classic BOWpipeline by incorporating temporal infor-
mation. We train our models with the HumanEva dataset
and test it with test data from HumanEva and IXMAS

datasets. Experimental results show that our method per-
forms effectively for the estimation of weak poses and
action recognition. Even though different datasets have
different camera setting and different perception about
performing actions, our method is robust enough to
obtain satisfactory results. Note that although the pro-
posed method is not view-invariant, it is straightforward
to extend to multiple view solution by including training
data from all viewpoints. In prediction phase, viewpoint
will be naturally selected in the regression procedure.
In further work, it would be interesting to model the

dynamics of human poses in actions and also utilize this
as priors for action recognition. An integrated regression
model that incorporated 3D pose and 3D motion models
into the GPR model described in this paper would likely
improve the robustness of both weak pose estimation and
action recognition.

Endnotes
a http://vision.cs.brown.edu/humaneva/
b http://4drepository.inrialpes.fr/public/viewgroup/6
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