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Abstract

and 2.3 km?) respectively.

A novel system named unsupervised multiple classifier system (UMCS) for unsupervised classification of optical
remote sensing data is presented. The system is based on integrating two or more individual classifiers. A new
dynamic selection-based method is developed for integrating the decisions of the individual classifiers. It is based
on competition distance arranged in a table named class-distance map (CDM) associated to each individual
classifier. These maps are derived from the class-to-class-distance measures which represent the distances between
each class and the remaining classes for each individual classifier. Three individual classifiers are used for the
development of the system, K-means and K-medians clustering of the classical approach and Kohonen network of
the artificial neural network approach. The system is applied to ETM + images of an area North to Mosul dam in
northern part of Irag. To show the significance of increasing the number of individual classifiers, the application
covered three modes, UMCS@, UMCS#, and UMCS*. In UMCS@, K-means and Kohonen are used as individual
classifiers. In UMCS#, K-medians and Kohonen are used as individual classifiers. In UMCS*, K-means, K-medians and
Kohonen are used as individual classifiers. The performance of the system for the three modes is evaluated by
comparing the outputs of individual classifiers to the outputs of UMCSs using test data extracted by visual
interpretation of color composite images. The evaluation has shown that the performance of the system with all
three modes outrages the performance of the individual classifiers. However, the improvement in the class and
average accuracy for UMCS* was significant compared to the improvements made by UMCS@, and UMCS#. For
UMCS*, the accuracy of all classes were improved over the accuracy achieved by each of the individual classifiers
and the average improvements reached (4.27, 3.70, and 6.41%) over the average accuracy achieved by K-means,
K-medians and Kohonen respectively. These improvements correspond to areas of 3.37, 2.92 and 5.1 km?
respectively. While the average improvements achieved by UMCS@ and UMCS#, respectively, compared to their
individual classifiers were (0.77 and 2.79%) and (0.829 and 2.92%) which correspond to (0.61 and 2.2 km?) and (0.65

Introduction

Unsupervised classification of remotely sensed data is a
technique of classifying image pixels into classes based on
statistics without pre-defined training data. This means
that the technique is of potential importance when train-
ing data representing the available classes is not available.
Unsupervised classification is also important for providing
a preliminary overview of image classes and more often it
is used in the hybrid approach of image classification [1,2].
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Several methods of unsupervised classification using clas-
sical or neural network approaches have been developed
and used consistently in the field of remote sensing. The
most commonly used of the classical approach is K-means
clustering algorithm [3] while Kohonen network is the
most commonly used one of the artificial neural network
approach [4]. So far many research works have conducted
to improve the accuracy of the unsupervised classifiers.
Examples of these works are the use of Kohonen classifier
as a pre-stage to improve the results of clustering
algorithms such as agglomerative hierarchical clustering,
K-means and threshold-based clustering algorithms [5-7].
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In those works one algorithm was used as a pre-stage to
improve the classification results of another algorithm.
That is, the final decision is made according to only one
classifier’s decision. Methods involving a simultaneous use
of more than one classifier in the so-called multiple classi-
fier system (MCS) which is very common in the approach
of supervised classification have not been conducted in
the unsupervised classification of optical remote sensing
data. See for example [8-10] for some of the MCS schemes
form supervised classification of remote sensing data. The
idea of MCS is based on performing more than two classi-
fiers and integrating their decisions according to some
prior or posterior knowledge concerning the output
classes to reach the final decision. Prior knowledge is esti-
mated from training data concerning the output classes
while posterior knowledge, in general, represents the out-
puts of the individual classifiers. The operation of integra-
tion is done in one of two strategies, either by combining
the outputs of the individual classifiers or by selecting one
of the individual classifiers outputs. Many methods of in-
tegration have been developed for the implementation of
MCS in the supervised approach of classification. Exam-
ples of combined-based methods of integration are the
majority voting rule, which assigns the label scored by ma-
jority of the classifiers to the test sample [9] and Belief
function, which is knowledge-based method. It is based on
the probability estimation provided by the confusion
matrix derived from training data set [11]. Examples of
the dynamic classifier selection-based method of integra-
tion are classifier rank (CR) approach, which takes the de-
cision of the classifier that correctly classifies most of the
training samples neighboring the test sample [12] and the
local ranking (LR) which is based on ranking the individ-
ual classifiers for each class according to the mapping
accuracy (MA) of the classes [8].

In this article, an integrated system of unsupervised
classification named unsupervised multiple classifier sys-
tem (UMCS) is developed using individual classifiers
from two different approaches, traditional (classical) and
artificial neural network. The system is based on new in-
tegration method of the dynamic classifier selection-
based type. This method is based on class-distance maps
(CDM) for the individual classifiers as the measure upon
which the final decision is selected. The CDM of each
individual classifier is generated from the measure of Eu-
clidean distances between each class and the remaining
classes of that individual classifier, named here as the
class-to-class distance measurement (CCDM).

The remaining parts of the article are organized as fol-
lows: In the following section, the proposed system is
described and detailed explanations of its major modules
are given. In section “Results”, the results of applying the
system to ETM + images are shown and discussed. In
section “Posterior interpretation of output classes”,
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posterior interpretation of the classification outputs is
done. In section “Individuals and multiple classifiers
comparison”, comparisons between the output results
are made. In section “Evaluation of system performance”,
the performance of the system is evaluated and finally
some concluding remarks are given in the last section.

(UMCS); the proposed system

In this article, the proposed system of classification is
called UMCS to be differentiated from the multiple clas-
sifier system (MCS) which is common in supervised
classification. It is designed to host three individual un-
supervised classifiers and can be adapted to any number
on individual classifiers. The scheme of the system for
three individual classifiers is shown in Figure 1. Each of
the three classifiers, K-means, K-medians and Kohonen is
implemented using multi-spectral images yielding three
output images. These three output images are then
entered to a color unification algorithm (CUA) in order to
achieve class-to-class correspondence in the three output
images. Finally, the three output images of the (CUA) are
integrated using CDM generated from the Euclidean dis-
tance measurements between each class and the
remaining classes within the classifier, named as (CCDM).
The algorithms of color unification and classifier integra-
tion method are given in the following sections.

CUA

In most cases the order of classes resulting from differ-
ent approaches of unsupervised classification are
affected by the way of performing the operation of clus-
tering and the order of data presented to the process of
clustering. For instance, in the Kohonen network, the
training phase usually starts by giving the initial weights
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Figure 1 The Scheme of the proposed UMCS.
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which control the order of the outcome classes. There-
fore in order to implement the proposed system, the
corresponding classes in the individual classifiers must
have the same order. To achieve this step, an algorithm
named CUA is developed. The aim of this algorithm is
to reorder the classes an all classifiers in order to assign
same color to the three nearest classes of the three clas-
sifiers. This is done by fixing the order of classes in one
classifier as a reference and reordering the classes of the
other two classifiers. This algorithm requires the deter-
mination of the Euclidean distance between the center
of each class in the referenced classifier and the centers
of all classes in each of the other two classifiers. The
nearest two classes each from one classifier are given the
same order (color) of the current class in the reference
classifier. Then the operation is repeated until the order-
ing of all classes in the three classifiers is reached. The
algorithm does not require re-calculation of the class cen-
ters since these centers are calculated during the imple-
mentation of the classifiers. In K-means and K-medians
classifiers, the last mean vectors and median vectors
upon which the classifier have reached the convergence
state represent the centers of the classes. In Kohonen
classifier, the weight vectors to the output neurons are
taken to be the centers of the classes. The procedures of
the algorithm are:

1- Read the centers of the classes for the three
classifiers and set the class number i = 0.

2- Increase class number i =i + 1.

3- Calculate the Euclidean distance between the mean
vector of C; from the reference classifier and the
mean vectors of all output classes in the other two
classifiers.

Dimn = ||Ci—=Pn||forallm = i,,,k
Din = |G —Qll/foralln = i,,,k

Where;
D;,, is the Euclidean distance between class C; from
the reference classifier and class P, from the second
classifier.
D;, is the Euclidean distance between class C; from
the reference classifier and class Q,, from the third
classifier.
||-|| represents the norm operator.
4- Exchange class order.
Exchange the class order of the second classifier:
if (Dyj < Dy ) for all m=i,,.k and jzm
Temp = P;
P =P
P; = Temp
Exchange the class order of the third classifier:
if (Dy < Dy ) for all n=1i,,,k and l=zn
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Temp = Q
Q=Q;
Q; = Temp
5- Check the convergence of the algorithm.
if (i<k)
Go to step 2
else
Go to step 6
6- Stop.

Integration method by CCDM

As it was mentioned in the introduction, several meth-
ods of integrating the outputs of different classifiers are
available. These methods were designed for MCS of the
supervised type and they require a priori knowledge
which most often can be estimated from the training
data. For UMCS, the training data are not available and
therefore this a priori knowledge cannot be obtained.
The method of majority voting may be the only one
which can be used to integrate the outputs of unsuper-
vised classifiers since it only requires the final decisions
of the three classifiers. However, this rule is influenced
by the degree of correlation among the errors made by
individual classifiers. When these errors are correlated
(all classifiers produce incorrect but similar outputs) it
leads to incorrect decision and when these errors are
uncorrelated (each classifier produces a unique output)
it leads to failure, [9].

In this article, a new method of integration is intro-
duced. It is categorized as a selection-based approach
and does not need prior knowledge. It requires a poster-
ior knowledge which can be obtained from the outputs
of the three classifiers. This posterior knowledge is the
within classifier CCDM which is the measure of Euclid-
ean distance between each class and all of the remaining
classes within each individual classifier. This CCDM is
then used to generate a table having N columns and N-1
rows, where N is the number of classes. The elements
under each column represent the distances, stored in
ascending way, from the class of that column to all of
the remaining classes. For each individual classifier one
CDM is generated.

The procedures of implementing the algorithm are
given below for UMCS made from three classifiers. It
consists of two parts. In the first part, the CDM is gener-
ated. In the second part, the process of selecting the
final decision is performed. The algorithm can easily be
adapted to any number of classifiers. The flowchart of
the algorithm is given in Figure 2.

Generation of CDM

1- Calculate CCDM from all the classes in each
classifier using the following equation:
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Figure 2 Flowchart of integration method (CCDM).

ceoMy = |Ici— G| (1)

Where;

i=1,,N,j=1,,N,i=jand N is the number of
classes in each classifier.

[|-|| represents the norm operator.

C; is the mean vector of i class and C; is the mean
vector of j"™ class, both from the same classifier.
For N classes there will be N-1 distances associated
with each class.

2- Generate CDM by sorting the values of CCDM in an
ascending way to be used for competition between
the individual classifiers. Let these competition
distances be represented as D, where;

iis a subscript refers to the individual classifier,
i=1,,M and M is the total number of individual
classifiers involved in the UMCS.

j refers to the current class, j = 1,,N and N is the
number of classes which is the same for all
individual classifiers.

k refers to the position of the distances after being
sorted in an ascending way. That is, the minimum of
all will be at the top of column with position k = 1
and the maximum of all will be at the bottom of
column with position k = N-1. During the process of
decision selection, these distances at position k = 1
will be compared and at tie cases the distances at the
next position k = 2 will be compared and so on until
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tie break is achieved. If the tie case continued to
appear until the last position, which is a rarely
occurred case, then it is broken by assigning the
class produced by one of the individual classifier
arbitrarily. This way of comparison makes the
algorithm effective for tie cases as there will almost a
zero chance for the occurrence of tie while
comparing all the competitive distances. Table 1
shows a model of CDM for classifier i. In this table,
each column holds the competition distances
associated to each class, starting from class 1 to class
N. UMCS of three individual classifiers requires
three of these CDM and during the operation of
decision selection there will be a competition
between these distances in three column each of one
CDM.

3- Read the three output images produced by the three
individual classifiers pixel by pixel. The values of
these pixels represent the class numbers produced
by the three classifiers. Let these class numbers are:
O, P and Q. Then perform the following statements:
if (O =Pand O = Q) then

Assign class O to the pixel of the final output image
Else

Perform the operation of integrating the decisions
made by the three classifiers.

Performing the process of final decision selection

1- Set record number k to a value of one (the position
of the first distance in each of the columns under
the output classes) and set three flags (f1, {2, f3) each
to a value of one.

2- Read the distances associated to these classes at

pOSitiOl’l 1( (DI,O,k’ DZ,P,k7 DB,Q,k)'
3- Compute competitive distances (d1, d2, d3) as
follows:

dl = fl* Dl,O,k
d2 = f2""” Dz,p‘k
d3 = £3* Dy g

Table 1 A model of CDM for classifier i

Class i1 Classi2 ... Class iN
Min (k =1) D; 11 Dizi . Dins

D1 Doz e Din2
Max(k = N-1) Dyin-1 Dioner e Dinn-r
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4- Check the values of these competitive distances to
perform one of the following cases for final decision:

Case 1: If these competitive distances are
alternatively different, then
assign the class with maximum
competitive distance to the pixel
of the final output image.

Case 2: If any two of these competitive
distances have the same value
and this value is lower than the
competitive distance of the other
class, then assign the other class
to the pixel of the final output
image.

Case 3 (Tie-Break): If the competitive distances for
the three classes are all the same,
then increase k by one and go to
step 2 to read the next associated
distances. If the tie case
remained unbroken, then assign
one of the classes arbitrarily to
the pixel of the final output
image.

Case 4 (Tie-Break): If the competitive distances of
any two classes have same value
and this value is greater than the
competitive distance of the other
class, then discard the other class
from competition by resetting its
flag (f) to zero and increase k by
one then go to step 2. Here, the
competition will remain between
two output classes as far as the
tie is not broken and if k value
reached the last record at a
position number equals (m - 1)
where m is the total number of
classes without achieving tie-
break, then assign one of the
classes arbitrarily to the pixel of
the final output image, otherwise
assign the class with maximum
competitive distance to the pixel
of the final output image.

Results

The system is applied to ETM + image of an area north
to Mosul dam in the northern part of Iraq. The image
size is 296 x 296 square pixels which is equivalent to an
area of 78.85 km? Standard Kohonen network with R = 0
was used (the weights of only the winner neuron are
updated). The number of neurons in the input layer was
chosen to be 6 which is the number of the available bands
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of ETM + (bandl, band2, band3, band4, band5 and
band7). The number of neurons in the output layer was
chosen to be 8 which are the same as the output classes
in K-means and K-medians. However in practice, train-
ing Kohonen network usually needs wise determination
of the learning rate and the number of cycles. In this
article, different values of learning rate and cycle num-
bers were tried. Consistent results were reached by
using initial learning rate of 0.7 with a decrement of
(0.7/500) at each next cycle where the number of cycles
is taken to be 500. Kohonen neural network with this
structure is supposed to be closest to K-means than
any of the other structures of Kohonen neural network.
K-medians clustering is a variation of K-means, how-
ever mathematically medians are calculated instead of
means, [13].

The selection of standard Kohonen neural network and
the K-medians as being closely related to K-means cluster-
ing was done in order to show that, to what extend these
classifiers can produce different results and to what ex-
tend the application of UMCS can be appreciable when
individual classifiers of divers differences are chosen.

The system is applied in three modes using different
number and combinations of individual classifiers in
order to show the influence of increasing the number
of individual classifiers on the system accuracy. In the
first mode (UMCS@), K-means and Kohonen were used
as two individual classifiers. In the second mode
(UMCS#), K-medians and Kohonen were used as two

Page 6 of 12

individual classifiers. In the third mode (UMCS¥),
K-means, K-means and Kohonen were used as three in-
dividual classifiers. Figure 3, shows the classification
results of K-means, K-means, Kohonen and the three
multiple classifiers UMCS@, UMCS#, and UMCS*. In
unsupervised classification wusually the number of
classes is chosen either arbitrarily or according to the
available knowledge of the study area. Here, this num-
ber was chosen to be 8 after visual inspection of the
color composite images made from different combina-
tions of the available bands.

To show as to what extend the individual classifiers in
each MCS agreed or disagreed in their decisions are
given in Table 2. In this table, the percentages of pixels
and their equivalent areas for which all the individual
classifiers produced the same and different decisions for
the three MCS (UMCS@, UMCS#, and UMCS*) are
shown. According to this table the number of pixels for
which the individual classifiers have given different
results in the case of UMCS* is greater than those in
UMCS@ and UMCS#. This is an expected result given
the fact that increasing the number of individual classi-
fiers will makes more chances of these classifiers first to
give different results and second to produce uncorre-
lated errors, [14].

Posterior interpretation of output classes
In unsupervised classification the cover types that repre-
sent the output classes must be identified after the

asee s)

Figure 3 Outputs of six classifiers (K-Means, K-medians, Kohonen, UMCS@, UMCS# and UMCD¥).
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Table 2 Image size percentages and their equivalent
areas for which the individual classifier in each of UMCSs
produce the same and different decisions

UMCS Same decision Different decision
UMCS@ percentage 69.73% 30.27%
Equivalent area 5498 km? 2387 km?
UMCS# percentage 71.60% 2840%
Equivalent area 56.46 km? 2239 km?
UMCS* percentage 60.29% 39.71%
Equivalent area 4754 km? 3131 km?

classification. Here, this interpretation was done by com-
paring the results of the individual classifiers and the
multiple classifiers visually to the color composite
images of the available bands. Two color composite
images were generated using the combinations (band4,
band3, band2 as RGB) and (band7, band4, bandl as
RGB), Figure 4. First, the interpretation of these color
composite images was implemented by comparing the
colors in these two color composite images to the spec-
tral properties of the cover types. This is one of the most
commonly used methods for remote sensing data inter-
pretation, [4]. Table 3 shows the identities of the output
classes after interpretation.

Individuals and multiple classifiers comparison

To visualize the differences between the outputs of the
six classifiers, five areas were localized in rectangles of
different colors. These differences can be illustrated for
the area in black rectangle. Figure 5 is the zoomed image
of the black rectangles for the six classifiers. In the prod-
uct of K-means the area of this rectangle is dominated
by blue and yellow colors, which correspond to (Dry

Page 7 of 12

Table 3 Identities of output classes

Class No. Color Class type
1 Red Less Wet Red Soil
2 Green Dry Red Soil
3 Blue Dry Gray Soil
4 Yellow Wet Red Soil
5 Cyan Water (Dam)
6 Magenta Sparse Veg.
7 Dark Red Dense Veg.
8 Dark Green Less Dense Veg.

Gray Soil) and (Wet Red Soil) cover types respectively.
However, the area of blue color within this rectangle for
K-means and K-medians are almost the same. In the
product of Kohonen, two more colors appeared in this
rectangle, the green and some patches of red colors
which correspond to (Dry Red Soil) and (Less Wet Red
Soil). These variations in the colors within this rectangle
indicate that the three individual classifiers can produce
different results for the same area. Looking at this rect-
angle in the UMCS products shows that these colors
have been distributed differently for the three UMCS
products. For instance in UMCS@ and UMCS* pro-
ducts, the colors and their distributions are almost the
same as in K-means. This indicates that the competition
between the blue and yellow colors of K-means product
on one side and the green, magenta and red colors of
the K-medians and Kohonen products on the other side
was in favor of K-means classifier. This can be checked
by looking at the CDM of the three individual classifiers,
Table 4. This table shows that the competitive distance
of blue in K-means is higher than the competitive

False color composite
bands 4,3,2 as RGB

Figure 4 Two color composite images band4, band3, and band2 as RGB and band7, band4, and band1as RGB.

i .' . ')3‘-)..\5' L
False color composite
bands 7,4,1 as RGB
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Figure 5 Zoomed details within black rectangles for the individual and multiple classifiers.

distance of green color in Kohonen, therefore blue color  yellow colors of the K-means map is greater than the
will be the winner and will appear in the output of the competitive distance of magenta and red colors in the
MCS. On the other hand, the competition distance of maps of K-medians and Kohonen therefore, in the

Table 4 CDM

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
Red Green Blue Yellow Cyan Magenta Dark Red Dark Green
K-means

2548 28.25 26.54 24.50 116.35 25.88 2761 24.50
26.54 2846 2747 26.72 13947 27.61 4842 2548
26.72 4862 28.25 2747 161.32 31.23 5826 25.88
2846 5391 4447 31.23 168.29 48.34 73.33 4447
4834 7565 58.25 48.62 185.55 58.25 8545 4842
73.33 10142 85.45 58.26 194.07 75.65 10142 5391
185.55 21272 194.07 168.29 21272 139.48 116.35 161.31
K-medians

23.74 26.98 2415 23.74 117.96 22.12 32.23 2212
26.52 27.63 26.98 2415 146.05 2598 39.51 26.52
2763 4143 29.65 2598 155.17 32.23 5748 29.03
29.65 54.10 49.08 29.03 171.08 39.57 65.33 39.51
39.57 64.36 4948 4143 180.65 4948 81.16 49.08
65.33 9248 81.16 5748 193.37 64.36 9248 54.10
180.64 207.22 193.37 171.08 207.22 146.05 117.96 155.17
Kohonen

24.20 26.07 2146 2146 126.57 21.30 33.09 21.30
25.78 30.90 25.78 2191 155.90 2191 33.54 3220
30.90 43.67 26.07 24.20 156.71 33.09 54.82 33.54
32.90 61.92 4278 35.13 175.53 34.29 63.20 35.13
34.29 63.37 5194 43.67 186.84 4278 7576 51.94
63.20 93.15 75.76 54.82 195.88 6192 93.15 63.37
186.84 21545 195.88 175.53 21545 155.90 126.57 156.71

A: Class-distance map for K- means. B: Class-distance map for K-medians. C: Class-distance map for Kohonen.
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Table 5 Confusion matrices of the individual and multiple classifiers
Actual classes Produced classes

Red Green Blue Yellow Cyan Magenta Dark Red Dark Green
K-means
Red 290 10 0 7 0 6 5 2
Green 12 367 12 3 0 2 2 2
Blue 0 7 358 13 1 6 14 1
Yellow 8 5 15 355 0 9 7 1
Cyan 0 0 1 1 197 1 0 0
Magenta 10 2 12 5 1 189 1 0
Dark Red 3 2 10 8 1 1 363 22
Dark Green 2 0 2 3 0 14 10 229
K-medians
Red 287 10 0 0 4 8 5
Green 5 369 16 5 0 2 2 1
Blue 0 15 338 18 1 10 13 5
Yellow 8 4 13 353 1 11 6 4
Cyan 0 0 1 1 196 1 1 0
Magenta 7 2 12 6 1 186 [§ 0
Dark Red 6 2 1 8 1 1 382 19
Dark Green 4 1 2 1 0 1 15 236
Kohonen
Red 286 10 4 2 0 2 8 8
Green 9 367 11 5 0 2 4 2
Blue 2 36 322 27 0 10 3 0
Yellow 13 5 9 334 1 22 8 8
Cyan 0 0 1 0 198 1 0 0
Magenta 9 3 12 9 0 186 0 1
Dark Red 3 5 0 10 2 3 383 14
Dark Green 8 5 0 1 0 2 10 234
UMCS@ (K-means + Kohonen)
Red 288 9 2 4 0 4 7 6
Green 8 371 11 3 0 2 3
Blue 1 11 359 14 0 8 [§ 1
Yellow 10 5 13 343 1 16 7 5
Cyan 0 0 1 0 198 1 0 0
Magenta 8 2 8 1 0 189 1 1
Dark Red 3 2 3 8 1 5 388 10
Dark Green 7 4 2 2 0 8 9 228
UMCS# (K-medians + Kohonen)
Red 290 9 0 4 0 4 7 6
Green 7 368 15 3 0 2 3 2
Blue 0 26 333 23 0 9 7 2
Yellow 7 4 13 352 1 14 4 5
Cyan 0 0 1 0 198 1 0 0
Magenta 8 3 10 5 0 191 3 0
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Table 5 Confusion matrices of the individual and multiple classifiers (Continued)

Dark Red 5 3 1 4
Dark Green 6 2 1 1

UMCS* (K-means + K-medians + Kohonen)

Red 296 8 0 2
Green 7 375 10 3
Blue 0 9 366 12
Yellow 7 3 12 363
Cyan 0 0 0 0
Magenta 6 3 11 5
Dark Red 4 2 2 8
Dark Green 7 4 2 2

1 2 391 13
0 3 1 236
0 2 5 7

0 2 1 2

0 5 6 2

0 7 5 3
200 0 0 0

0 193 1 1

0 5 390 9

0 4 8 233

A: Confusion matrix of K-means. B: Confusion matrix of K-medians. C: Confusion matrix of Kohonen. D: Confusion matrix of UMCS@. E: confusion matrix of UMCS#.

F: Confusion matrix of UMCS*.

output of MCS UMCS* yellow color will be the winner.
The same rule can be applied to areas within the other
rectangles with the aid of CDM of the individual
classifiers.

Evaluation of system performance
The performance of the system was evaluated by select-
ing test data from the two color composite images repre-
senting the eight classes. The locations of these test data
samples were shown as rectangles in the color compos-
ite of (Band4, band3, band2 as RGB) of Figure 4. For
each class the rectangle is shown in the same color of
that class. The numbers of the selected pixels for the
classes 1 to 8 respectively were 320, 400, 400, 400, 200,
220, 420 and 260). This data is then entered to each of the
individual classifier (K-means, K-medians and Kohonen)
as well as to each of the multiple classifiers (UMCS@,
UMCS# and UMCS?¥).

The MA was measured since this measurement takes
into account the pixels that are falsely classified. The

confusion matrices of the six classifiers are given in
Table 5. In this table, the diagonal elements represent
the number of pixels that are correctly classified (P,,,,),
the off-diagonal elements in the row of the class repre-
sent the number of pixels that are incorrectly classified
to other classes, known as omission error (P,,,)and the
off-diagonal elements in the column of the class repre-
sent pixels that are falsely classified to the current class,
known as commission error (P,,,). The MA of the eight
classes for each classifier is calculated using the follow-
ing equation:

PCOV}"

MA =
Pcarr+Pom +Pcam

(2)

Table 6 shows these mapping accuracies for the six
classifiers. It can be seen that the MA of all classes are
improved by UMCS*, while the MA for some classes
were improved and for others were decreased by
UMCS@ and UMCS# classifiers. Table 7 shows the

Table 6 The accuracy mapping of the individual and multiple classifiers

Class number K-means (%) K-medians (%)

Kohonen (%)

UMCS@ (%) UMCS# (%) UMCS* (%)

1 81.69 82.00 78.14
2 86.15 85.02 79.09
3 79.20 75.95 73.69
4 80.68 79.32 73.56
5 97.04 96.07 97.53
6 70.26 74.40 71.00
7 79.08 81.10 84.54
8 79.51 80.27 79.86
Average 81.70 81.76 79.67

80.67 82.15 84.33
85.68 8232 8741
81.59 7551 83.75
77.60 80.00 84.02
98.01 98.01 100.0
71.59 74.90 78.77
85.65 85.93 8744
80.00 81.94 82.04
82.59 82.595 85.70

UMCS@ is multiple of K-means + K-medians. UMCS# is multiple of K-medians + Kohonen. UMCS* is multiple of K-means + K-medians + Kohonen.
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Table 7 Amount of improvements in the MA
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Class number UMCS@-K-means (%)

UMCS@-Kohonen (%)

Improvement of UMCS@ over each of K-means and Kohonen
1 -0.98
-1.53
+2.39
-3.08
+0.97
+1.33
+6.57
+0.49
+0.77

0 N O L MAWwWwN

Average
Improvement of UMCS# over each of K-medians and Kohonen
1 +0.15
-2.70
044
+068
+1.94
+0.50
+4.83
+167

o N O L MAWwWwN

Average +0.829

+2.53
+6.59
+7.90
+3.04
+0.48
+0.59
+1.11
+0.14
+2.79

+4.01
+3.23
+1.82
+6.44
+0.48
+3.90
+1.39
+2.08
+2.92

Improvement of UMCS* over each of K-means, K-medians and Kohonen

Class number UMCS*-K-means (%)

UMCS*-K-medians (%) UMCS*-Kohonen (%)

1 +2.64
+1.26
+4.55
+3.34
+2.96
+8.51
+8.36
+2.53

0w N Y L~ W N

Average +4.27

+2.33 +6.19
+2.39 +8.32
+7.80 +10.06
+4.70 +10.46
+3.93 +2.47
+4.37 +8.77
+6.34 +2.90
+1.77 +2.18
+3.70 +6.41

A: Improvement of UMCS@ over each of K-means and Kohonen. B: Improvement of UMCS# over each of K-medians and Kohonen. C: Improvement of UMCS* over

each of K-means, K-medians and Kohonen.

improvements in the class and average MA made by
each of the multiple classifiers over their belonging indi-
vidual classifiers. The best improvements were achieved
by UMCS* over each of the individual classifiers. The
amounts of these improvements are 4.27, 3.70 and
6.41% over each of K-means, K-medians and Kohonen
classifiers respectively. These improvements are equiva-
lent to areas of 3.37, 2.92 and 5.1 km? Whereas the
average improvements made by UMCS@ and UMCS#,
over each of the individual classifiers were much less. For
UMCS@ the improvement over K-means and Kohonen
were 0.77 and 2.79% (equivalent to areas of 0.61 and 2.2
km?) and for UMCS# the improvement over K-medians

and Kohonen were 0.829 and 2.92% (equivalent to areas of
0.65 and 2.3 km?). However, for individual classes the
maximum improvement achieved by UMCS* reached
8.51, 7.80 and 10.46% over each of K-means, K-medians
and Kohonen classifiers respectively. While the improve-
ments made by UMCS@ over K-means and Kohonen
were 6.57 and 6.59% respectively and by UMCS# over
K-medians and Kohonen were 4.83 and 6.44% respect-
ively. These improvements indicate that when more
classifiers are used in the multiple classifier system
better improvement can be achieved. This concluded
result has also been approved for the supervised mul-
tiple classifier system, [14].
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Conclusions

Unsupervised classifiers (K-means, K-medians and
Kohonen) representing two different approaches, clas-
sical and artificial neural network, they were integrated
in a MCS the application of the system to satellite
images has shown that the three classifiers may produce
different results despite of being considered as closely
related. The CDM, which is generated from the CCDM,
is shown to be effective measure for competition during
the process of classifier output integration. The way of
using the record of this map makes the chance of tie
cases occurrence as less as possible. For the area used in
this study no tie cases have occurred. The implementa-
tion of the system does not need training data; however,
the test data derived after classification are necessary
only for the evaluation of the system performance. The
application of the system using three individual classi-
fiers achieved better performance than its application
with only two individual classifiers. This indicates that
contributing more individual classifiers will make the
made-off MCS more efficient.

However, this study may represent the beginning but
important step in the direction of multiple classifier ap-
proach for unsupervised classification of remote sensing
data and lots of work may bb required to put the ap-
proach steps further.
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