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Abstract

We address the problem of blind source separation in the underdetermined mixture case. Two statistical tests are
proposed to reduce the number of empirical parameters involved in standard sparseness-based underdetermined
blind source separation (UBSS) methods. The first test performs multisource selection of the suitable time–frequency
points for source recovery and is full automatic. The second one is dedicated to autosource selection for mixing matrix
estimation and requires fixing two parameters only, regardless of the instrumented SNRs. We experimentally show
that the use of these tests incurs no performance loss and even improves the performance of standard
weak-sparseness UBSS approaches.
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Introduction
Source separation is aimed at reconstructing multiple
sources from multiple observations (mixtures) captured
by an array of sensors. In what follows, we assume these
sensors to be linear, which is acceptable in many applica-
tions. The problem is said to be blind when the observa-
tions are linearly mixed by the transfer medium and no
prior knowledge on the transfer medium or the sources
is available. Blind source separation (BSS) is an impor-
tant research topic in a variety of fields, including radar
processing [1], medical imaging [2], communication [3,4],
speech and audio processing [5]. BSS problems can be
classified according to the nature of the mixing process
(instantaneous, convolutive) and the ratio between the
number of sources and the number of sensors of the
problem (underdetermined, overdetermined).
If the sources are assumed to be statistically indepen-

dent, solutions to the BSS problem are calculated so as to
optimize separation criteria based on higher order statis-
tics [6,7]. Otherwise, when the sources have temporal
coherency [8], are nonstationary [9], or possibly cyclosta-
tionary [10], the separation criteria to optimize are based
on second-order statistics.
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Although BSS algorithms exist in great profusion, the
underdetermined case (UBSS for underdetermined blind
source separation), where the number of sensors is smaller
than the number of sources, is less addressed than the
overdetermined case, where the number of sensors is
greater than or equal to the number of sources. Therefore,
the UBSS problem is still challenging.
In the UBSS case, one way to deal with the lack of

information is to use an expectation-maximization-based
method [11] to obtain a maximum likelihood estima-
tion of the mixing matrix and sources. However, such
an approach requires prior knowledge of the source dis-
tributions. In contrast, sparseness-based methods solve
the UBSS problem [12-20] without prior knowledge
on the source distribution, by exploiting the sparse-
ness of the non-stationary sources in the time–frequency
domain. Roughly speaking, sparseness-based approaches
[21] involve transforming the mixtures into an appropri-
ate representation domain. The transformed sources are
then estimated thanks to their sparseness and, finally, the
sources are reconstructed by inverse transform. A source
is said to be sparse in a given signal representation domain
if most of its coefficients, in this domain, are (almost) zero
and only a few of them are big.
In the instantaneous mixture case, where each obser-

vation consists of a sum of sources with different signal
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intensity in presence of noise, the sparseness-based meth-
ods introduced in [12-17], among others, rely on param-
eters that are chosen empirically. The general question
addressed in this article is then to what extent this empiri-
cal parameter choice can be by-passed thanks to statistical
methods, specifically designed to cope with sparse repre-
sentations. This question is particularly relevant because a
whole family of sparseness-based UBSS algorithms relies
on assumptions very similar to those employed in theoret-
ical frameworks dedicated to the detection and estimation
of sparse signals. Our contribution to this question is then
the following.
The UBSS algorithms proposed in [12-17] estimate the

unknown mixing matrix by assuming the presence of only
one single source at each time–frequency point. In prac-
tice, a selection of time–frequency points that probably
pertain to one single source is expected to improve per-
formance of the mixing matrix estimation. The mixing
matrix estimate is then used to recover the source signals.
Rejecting time–frequency points of noise alone and, thus,
selecting and processing the time–frequency points where
the possibly multiple sources are present only, should also
improve the overall performance of the methods. Our
contribution is then to perform the selection processes
mentioned in the foregoing, by considering them as sta-
tistical decision problems and reducing the number of
empirical parameters for better robustness. Sparseness
hypotheses are then particularly suitable for detecting the
time–frequency points needed by the separation proce-
dure, whereas such hypotheses are useless for selecting
the time–frequency points used by the mixing matrix
estimation.
More specifically, Section “Main steps of standard UBSS

methods” recalls the source recovery and mixing matrix
estimation steps in classical UBSS methods based on
sparseness assumptions. By so proceeding, we highlight
the empirical parameters required by these steps. Then,
Section “Statistical tests for sparseness-based UBSS” is
the main core of the article because it introduces the
statistical tests for the selection of the time–frequency
points needed by source recovery and mixing matrix
estimation. For source recovery, the selection of the time–
frequency points relies on a weak notion of sparseness,
exploited through an estimate-and-plug-in detector: We
begin by estimating the noise standard deviation via
the d-dimensional amplitude trimmed estimator (DATE),
recently introduced in [22], especially designed for cop-
ing with noisy representations of weakly-sparse signals;
then, the noise standard deviation estimate is used instead
of the unknown true value in the expression of a statis-
tical test, specifically designed for noisy representations
of weakly-sparse signals as well. For the mixing matrix
estimation, the physics of the signal suggest introducing
a novel strategy. Indeed, the problem is to select time–

frequency points whose energy is big enough in noise to
consider that they pertain to one single source. We thus
introduce a tolerance above which the energy of these rel-
evant points must be regardless of noise. A statistical test
involving this tolerance and based on signal norm testing
(SNT) recently introduced in [23] is then used to select
these points in presence of noise.
Summarizing, we thus extend significantly [24], by

introducing three new features of importance. First, we
replace the modified complex essential supremum esti-
mate (MC-ESE) of the noise standard deviation by the
DATE, which is as accurate, relies on an even stronger the-
oretical background and has a computational cost signifi-
cantly lower. Second, the selection of the time–frequency
points of interest for source recovery is performed by
using a thresholding test, as in [24], but the value of the
detection threshold is determined automatically on the
basis of the results provided in [25] for the detection of sig-
nals satisfying the weak-sparseness model in noise. Third,
the mixing matrix estimation is carried out by taking the
physical nature of the signals into account.
In Section “Simulation results”, we apply the statisti-

cal tests of Section “Statistical tests for sparseness-based
UBSS” to several standard UBSSmethods [15,16,18,26,27]
in the instantaneous mixture case. We thus show that
our statistical algorithms reduce the number of empiri-
cal parameters and improve the overall performance of
the UBSS methods under consideration. For instance,
by using these statistical algorithms, the subspace-based
method presented in [15] can be significantly automatized
so as to involve two parameters only. These two parame-
ters are adjusted once for all possible SNRs, in contrast to
standard UBSS methods.
In Section “Discussion”, these results are discussed. In

particular, the convolutive mixture case is addressed for
its importance in practice. Some perspectives of this work
are then presented in the concluding Section “Conclusion
and perspectives”.

Main steps of standard UBSSmethods
Principles
We consider the instantaneous mixing system:

x(t) = As(t) + n(t), (1)

where t ranges in some finite set of sampling times such
that, for every t in this set of sampling times, s(t) =
[ s1(t), s2(t), . . . , sN (t)]T is the vector of the N sources,
x(t) =[ x1(t), x2(t), . . . , xM(t)]T is the M-dimensional
mixture vector, A =[a1,a2, . . . ,aN ] is the complex M ×
N mixing matrix and n(t) =[ n1(t), n2(t), . . . , nM(t)]T
is additive noise. It is assumed that (nk(t))1≤k≤M are
random Gaussian processes, mutually decorrelated and
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independent of the sources. In the sequel, we address the
underdetermined case where N > M. Without loss of
generality, we assume that the column vectors of A have
all unit norm, i.e., ‖ai‖ = 1 for all i ∈ {1, 2, . . . ,N}.
Time–frequency signal processing provides effective

tools for analyzing nonstationary signals, whose fre-
quency contents vary in time. It involves representing
signals in a 2D space, that is, the joint time–frequency
domain, hence providing a distribution of the signal
energy versus time and frequency simultaneously. The
sparseness of the time–frequency coefficients of the
source signals is one of the main keys to solve the UBSS
problem.
One well-known time–frequency representation and

most used in practice is the short-time discrete Fourier
transform (STFT). The mixing process can be modeled in
the time–frequency domain via the STFT as:

Sx(t, f ) = ASs(t, f ) + Sn(t, f ) , (2)

where Sx(t, f ), Ss(t, f ) and Sn(t, f )) are the vectors of
the STFT coefficients at time–frequency bin (t, f ) of the
mixtures, the sources and noise, respectively.
Given x(t), our purpose is to recover s(t) or equiva-

lently Ss(t, f ). As formalized in [28], the UBSS problem
is generally decomposed in two separate subproblems.
First, in the so called mixing matrix estimation, the nor-
malized columns (ai)1≤i≤N are estimated so as to obtain
an estimate of A. Then, on the basis of this estimate, the
second step called signal recovery, provides a solution to
Equation (2). Figure 1 presents the flowchart of such a
two-step approach.
We now detail the mixing matrix estimation and the

source recovery based on sparseness assumptions.

Mixing matrix estimation
TheUBSSmethods based on sparse signal representations
in the time–frequency domain share the following main
assumption:
Assumption 1. For each source, there exists a set of time–
frequency points where this source exists alone.
The elements of this set can be assumed to be iso-

lated time–frequency points as in degenerate unmix-
ing estimation technique (DUET) [15,26] or to form a
time–frequency box as in time–frequency ratio of mix-
tures (TIFROM) [16] and time–frequency CORRelation
(TIFCORR) [27]. Assumption 1 is often reasonable thanks
to the sparseness of the time–frequency representation
of the sources, especially when this number of sources is
moderate.
As mentioned above, the first step in UBSS methods

is to estimate the mixing matrix A to achieve source
recovery. In most two-step source separation algorithms

Figure 1 Flowchart of standard two-step BSS algorithms.

[12,13,15-18] an autosource selection is performed. By
autosource selection, it is meant the detection of regions
where only one source occurs. Themethods for estimating
A on the basis of Assumption 1 can then be summarized
as follows.
Jourjine et al. [26] present the DUET method, which

is restricted to two mixtures (M = 2). They address
the anechoic case, where source transmission attenuations
and delays between sensors are taken into account. The
columns of the mixing matrix are estimated by finding
picks in a 2D histogram of amplitude-delay estimates.
In [16], the mixing matrix estimation of the TIFROM

method is based on the complex ratios
Sxj (t,f )
Sxk (t,f ) , where,

given m ∈ {1, 2, . . . ,M}, Sxm(t, f ) stands for the mth
coordinate of Sx(t, f ). These ratios are computed for
each time–frequency point and for two arbitrarily chosen
indices j and k in {1, 2, . . . ,M}. A first limitation of this
method is to assume non-null matrix coefficients. A sec-
ond limitation is the use of an empirical threshold to select
the smallest empirical variances of these ratios.
In TIFCORR [27], the mixing matrix estimation is simi-

lar by selecting the empirical covariance coefficients above
a certain threshold chosen manually.
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The subspace-based UBSS (SUBSS) method [15] relies
on another type of mixing matrix estimation. Let�k stand
for the set of all the time–frequency points (t, f )where the
kth source is present and� stand for the union of all these
sets �k for k = 1, 2, . . . ,N . According to Assumption 1,
the sets �k are non-empty and so is �. For (t, f ) ∈ �k , (2)
reduces to

Sx(t, f ) = Ssk (t, f )ak + Sn(t, f ). (3)

According to this result, the mixing matrix can be esti-
mated as follows. First, all the spatial direction vectors
d(t, f ) = Sx(t,f )‖Sx(t,f )‖ , with (t, f ) ∈ �, are clustered by
using an unsupervised clustering algorithm and taking
into account that the number of sources is supposed to
be known. Since (3) shows that for all the time–frequency
points (t, f ) of �k , the STFT vectors Sx(t, f ) have same
spatial direction ak , the column vectors of the mixing
matrix A are then estimated as the centroids of the
N classes returned by the clustering algorithm. In [15],
Aı̈ssa-El-Bey et al. propose the use of the k-means algo-
rithm but other techniques could be employed. The set
� required for the clustering procedure is determined by
comparing the ratio

∥∥Sx(t, f )
∥∥/max

ξ
‖Sx(t, ξ)‖ to a thresh-

old height, whose value is chosen empirically.

Source recovery
This section presents a number of techniques used in the
source recovery stage of two-step UBSS algorithms. In the
underdetermined case, the system (2) has less equations
than unknowns, and thus it has (in general) infinitely
many solutions. In order to recover the original sources,
additional assumptions are needed.
The DUET method [26] assumes the sources to be

(approximately) W -disjoint orthogonal in the time–
frequency domain, that is, the supports of the STFTs
of any two sources present in the observations are dis-
joints. The source recovery is performed by partitioning
the time–frequency plane using the mixing parameter
estimates. This procedure assigns a source to each time–
frequency point, even if this point is due to noise alone,
which is detrimental to the method overall performance.
Although TIFROM and TIFCORR do not require the

sources to be W -disjoint orthogonal for source recovery,
they however suffer from the same limitation as DUET in
that they also assign time–frequency points of noise alone
to sources.
Bofill and Zibulevsky [18] use the �1-norm minimiza-

tion to recover the sources. In the noiseless case, this can
be accomplished by solving the convex optimization

min
Ss(t,f )

∥∥Ss(t, f )
∥∥
1 subject to Sx(t, f ) = ASs(t, f ), (4)

where ‖·‖1 is the �1 norm. In presence of noise, the fore-
going constraint must be modified so as to take the noise
standard deviation into account. In practice, this noise
standard deviation is unknown and must be estimated.
For the SUBSS approach in [15], the source recovery is

based on the following assumptions:
Assumption 2. The number of active sources at any (t, f )
is strictly less than the number M of sensors.
Assumption 3. Any M × M sub-matrix of the mixing
matrix has full rank, that is, for all J ⊂ {1, 2, . . . ,N} with
cardinality less than M, (aj)j∈J are linearly independent.
The subspace approach then performs multisource

selection, that is, the selection of time–frequency points
pertaining to a mixture and then, identifies the sources
present at a multisource time–frequency points. Thanks
to Assumption 2, the method then involves solving the
resulting locally overdetermined linear problem. By con-
struction, the methods requires rejecting time–frequency
points of noise alone. In [15], the time–frequency points
with energy below some empirically chosen threshold are
rejected.

Statistical tests for sparseness-based UBSS
This section is the main core of the article since it is
dedicated to a series of improvements brought to the clas-
sical UBSS methods presented in Section “Main steps of
standard UBSS methods”. These improvements concern
the selection of the time–frequency points of interest for
source separation (multisource selection) and the selec-
tion of the time–frequency points suitable for mixing
matrix estimation (autosource selection). The crux of the
approach followed bellow is to consider the aforemen-
tioned selections of time–frequency points as statistical
testing problems of accepting or rejecting the presence of
sources in noise. These two hypothesis testing problems
are different in that mixing matrix estimation requires
selecting points where only one single source is present,
whereas this constraint is useless for denoising and source
recovery.
The issue in these binary hypothesis testing prob-

lems is twofold. On the one hand, the observation in
each problem has unknown distribution because basi-
cally the possible source signal distributions are them-
selves unknown. On the other hand, the noise standard
deviation is unknown as well. Because of this lack of
prior knowledge, standard likelihood theory or extensions
such as generalized likelihood ratios or invariance-based
approaches do not apply.
For source recovery, our solution is an estimate-and-

plug-in detector. Based on a weak-sparseness model for
the signal sources in noise, it begins by estimating the
noise standard deviation via the DATE introduced in
[22]. Then, the noise standard deviation estimate is used
instead of the unknown true value in the expression of
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a statistical test, also designed for noisy sparse signal
representations.
For mixing matrix estimation, we exploit the physical

nature of the signals to detect the time–frequency points
where one single source is present. For signals with high
overlapping rate, SNT is appropriate to select such time–
frequency points. When the signals have low overlapping
rate, we directly use the time–frequency points provided
by the source recovery procedure.
Figure 2 presents the flowchart of the proposed

approach based on the DATE and SNT.

Weak-sparseness-based time–frequency detection for
source recovery (multisource selection)
Recovering sources involves detecting the time–
frequency points that pertain to signals. Therefore,
time–frequency points due to noise alone are useless to
recover sources. Detecting the time–frequency points
appropriate for source recovery thus amounts to deciding
whether any given time–frequency point (t, f ) pertains to
some signal of interest or not. It is thus natural to state
this problem as the binary hypothesis testing, where the
null hypothesis H0 is that Sx(t, f ) ∼ Nc(0, σ 2IM) is com-
plex Gaussian noise and the alternative hypothesis H1 is
that Sx(t, f ) = �(t, f ) + Sn(t, f ) is a source mixture in
independent and additive complex Gaussian noise, where

Figure 2 Flowchart of the proposed two-step BSS algorithms.

Sn(t, f ) ∼ Nc(0, σ 2) and �(t, f ) stands for the mixture of
signals possibly present at time–frequency point (t, f ).
The issue is then the following. Although Sx(t, f ) can

reasonably be modeled as a random complex variable, the
distribution of Sx(t, f ) can hardly be known and standard
likelihood theory thus becomes useless. This difficulty can
however be overcome by resorting to a weak-sparseness
model that can be introduced as follows.
Figure 3a displays the spectrogram obtained by STFT

of a mixture of audio signals. This spectrogram exhibits
many time–frequency components with small or even null
amplitudes. When this mixture is corrupted by additive
and independent noise as in Figure 3b, small components
are masked and only big ones are still visible.Wemust also
note that the proportion of these big components remains
seemingly less than or equal to one half. In other words,
it is reasonable to assume that (1) the signal components
are either present or absent in the time–frequency domain
with a probability of presence less than or equal to one
half and (2) when present, the signal components are rela-
tively big in that their amplitude is above some minimum
value. These two assumptions specify the weak sparse-
ness model by bounding our lack of prior knowledge
on the signal distribution. The weak-sparseness model
slightly differs from the “strong” sparsity model encoun-
tered in compressive sensing, where it is assumed that
the non-null significant signal components are very few.
In the weak sparseness model, we do not restrict our
attention to very small proportions of big time–frequency
components.
To take the weak-sparseness model into account in our

binary hypothesis problem statement, we assume that (1)
the probability of occurrence of hypothesisH1 is less than
or equal to one half and (2) there exists some positive
real value α such that |�(t, f )| > α. The value α can be
regarded as the minimum signal amplitude. We thus write
that

{
H0 : Sx(t, f ) ∼ Nc(0, σ 2IM)

H1 : Sx(t, f ) = �(t, f ) + Sn(t, f ),
(5)

with Sn(t, f ) ∼ Nc(0, σ 2), |�(t, f )| > α and P(H1) �
1/2. Furthermore, we do not assume that the proba-
bility distribution of �(t, f ) is known. In what follows,
we prefer summarizing this testing problem by intro-
ducing a Bernoulli distributed random variable ε(t, f ),
valued in {0, 1}, independent of �(t, f ) and Sn(t, f ), but
defined on the same probability space, so as to write
that Sx(t, f ) = ε(t, f )�(t, f ) + Sn(t, f ). We thus have
P(H1) = P[ ε(t, f ) = 1]. Given any test T , that is,
any measurable map of C

M into {0, 1}, we then say
that T accepts (resp. rejects) the null hypothesis H0
if T (Sx(t, f )) = 0 (resp. T (Sx(t, f )) = 1). In other
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Figure 3 Effect of noise on sparse signals. (a) Noiseless audio signal mixture in the time–frequency domain. Many time–frequency coefficients
are close to 0. (b) Noisy audio signal mixture in the time–frequency domain. The time–frequency coefficients with small amplitudes are masked by
noise. Only big time–frequency coefficients remain visible. They are not really affected by noise as long as the signal to noise ratio is large enough.
The proportion of these significant coefficients is less than one half.

words, T is said to return the expected value of the
true hypothesis. The error probability of T is then
defined as the probability Pe{T } = P[ T (Sx(t, f )) �=
ε(t, f )].
According to ([25], Theorem VII.1), the decision should

then be performed by using the thresholding test with
threshold height λD(α, σ) = (σ/

√
2)ξ(α

√
2/σ) where, for

any positive ρ, ξ(ρ) = I−1
0 (eρ2/2)/ρ and I0 is the zeroth

order modified Bessel function of the first kind. By thresh-
olding test with threshold height h ∈[ 0,∞), we mean the
test Th such that

Th(u) =
{
1 if |u| � h
0 if |u| < h. (6)

The reasons for which this test is recommended are the
following ones. Let LMPE be the minimum-probability-
of-error (MPE) test, that is, the likelihood ratio test that
guarantees the least possible probability of error among
all possible tests and that could be computed if the prob-
ability distribution of �(t, f ) and the prior probability of
presence P(H1) were known. Two facts follow from ([25],
Theorem VII.1). First, the error probability of TλD(α,σ) is
above the error probability of the MPE test and less than
or equal to the error probability of an explicit function
V (α

√
2/σ), whose expression is useless in the sequel. Sec-

ond,V (α
√
2/σ) is a sharp upper-bound since it is attained

by the error probabilities of tests LMPE and TλD(α,σ) in the
least favorable case where P[ ε = 1]= 1/2 and �(t, f ) =
αei�(t,f ) with �(t, f ) uniformly distributed in [ 0, 2π) and
i is the imaginary unit (i2 = −1). To carry out this test, we
must choose an appropriate value for α and perform an
estimate of σ .
The value of α is fixed by following the same reasoning

as in [29] and considering that the minimum amplitude

of the signal to detect is the noise maximum value. More
specifically, given m random variables X1,X2, . . . ,Xm that
are independent and identically distributed with Xk

iid
∼

N (0, σ 2) for 1 � k � m, it is known ([30], Eqs. (9.2.1),
(9.2.2), Section 9.2, p. 187) ([31], p. 454) ([32], Section
2.4.4, p. 91) that

lim
m→+∞P

[
λu − σ ln lnm

lnm
� max {|Xk |, 1 � k � m} � λu

]
= 1,

where λu = σ
√
2 lnm is often called the universal thresh-

old [33]. The maximum amplitude of (Xk)1�k�m has thus
a strong probability of being close to λu when m is large
and the universal threshold can be regarded as the noise
maximum amplitude of m noise samples. In our case, we
have M sensors so that each observation Sx(t, f ) is an M-
dimensional complex vector. Let L stand for the number of
time–frequency points (t, f ) obtained for each sensor. We
thus have M × L time–frequency points (t, f ) and, there-
fore, 2ML random variables—the real and imaginary parts
of Sn(t, f )—that areN (0, σ 2/2). Themaximum amplitude
of these 2ML Gaussian independent and identically dis-
tributed random variables with standard deviation σ/

√
2

will then be considered as the minimum signal amplitude
so that we set α = σ

√
log(2ML). The threshold height

used to detect the relevant time–frequency points is then
λD(σ ) = σ√

2
ξ
(√

2 log(2ML)
)
, which is henceforth called

the detection threshold.
As far as the estimation of the noise standard deviation

is concerned, usual solutions based on standard robust
estimators such as the median absolute deviation (MAD)
[34], the trimmed or the winsorized estimators [35] do not
apply. Indeed, by considering the spectrogram of Figure
3b, it can easily be guessed that such standard estima-
tors would fail because the proportion of significant noisy
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time–frequency points pertaining to the signals is large.
Therefore, the noisy time–frequency points are not very
few and cannot play the role of outliers with respect
to the main core data distribution. In a recent article
[22], a new noise standard deviation estimator called the
DATE has been proposed. This estimator relies on the
weak-sparseness model presented before. An exhaustive
presentation of the theoretical background on which this
estimator is based is beyond the scope of the present arti-
cle and the reader is asked to refer to [22] for an heuristic
presentation and a complete mathematical description of
the DATE. In the context addressed in the present article,
this algorithm applies as follows.
With the notation used so far, each Sx(t, f ) is an M-

dimensional complex vector. Let Sxj(t, f ), j = 1, 2, . . . ,M,
be the components of Sx(t, f ). For any given j =
1, 2, . . . ,M, we assume that the L time–frequency com-
ponents Sxj(t, f ) for the jth sensor are independent and
that each time–frequency component obeys the binary
hypothesis model of (5) with α = σ

√
log(2ML). Accord-

ing to [22] and setting κ = 2�(3/2) where � is the stan-
dard Gamma function, there exists a specific convergence
criterion, for which we have:∑

(t,f )
|Sxj(t, f )|1(|Sxj(t, f )| � λD(σ ))∑
(t,f )

1(|Sxj(t, f )| � λD(σ ))
≈ κσ (7)

when the number L of time–frequency bins (t, f ) is large
enough. In the previous equation, 1(|Sxj(t, f )| � λD(σ ))

stands for the indicator function of event |Sxj(t, f )| �
λD(σ ), The specific convergence criterion involved in (7)
is specified in [22] and is not given here because of its
intricateness. It also turns out that the noise standard
deviation σ is the unique solution of (9) with respect to
the convergence criterion involved. Therefore, the DATE
basically performs an estimate of the noise standard devi-
ation by solving (7) with regard to this convergence cri-
terion. The several steps involved in the computation are
then the following ones.
The DATE:
Given j ∈ {1, 2, . . . ,M}, let Y j

(1),Y
j
(2), . . . ,Y

j
(L) be the L

values |Sxj(t, f )| sorted by ascending order.

(1) [Search interval]:

(a) Choose some positive real value Q less than
or equal 1 − L

4(L/2−1)2 .
(b) Set h = 1/

√
4L(1 − Q)

(c) Compute kmin = L/2 − hL. According to
Bienaymé–Chebyshev’s inequality and since
the probabilities of presence of the signals are
assumed to be less than or equal to one half,
the probability that the number of

observations due to noise alone is above kmin
is larger than or equal to Q. In the
experimental results presented below, Q was
set to 0.95 for the computation of kmin.

(2) [Existence]:

IF there exists a smallest integer k in
{kmin, . . . , L} such that

|Y j
(k)| �

(
μj(k)/κ

)
ξ
(√

2 log(2ML)
)
< |Y j

(k+1)|
(8)

with

μj(k) =
⎧⎨⎩ 1

k

k∑
r=1

|Y j
(r)| if k �= 0

0 if k = 0,
(9)

set k∗ = k.
ELSE, set k∗ = kmin.

(3) [Value]: The estimate σ ∗
j of the noise standard

deviation on the jth sensor is then

σ̂j = μj(k∗)/κ , (10)

The final estimate σ̂ of the noise standard deviation is
then obtained by averaging the values σ̂j so that σ̂ =
(1/M)

∑M
j=1 σ̂j.

Signal source detection for mixing matrix estimation
(autosource selection)
In this section, we propose a test for selecting the time–
frequency points where one signal source is probably
present alone. To perform this selection, we make the
distinction between signals with either low or high over-
lapping rate in the time–frequency domain. Chirp signals
(resp. audio signals) are typical examples of signals with
low (resp. high) overlapping rate. It is worth noticing that
the estimation procedures proposed below for each class
have reasonable computational costs.

The case of signals with low overlapping rate
Since the sources have low overlapping rate, we suppose
that the observations detected by the thresholding test of
Section “Weak-sparseness-based time–frequency detec-
tion for source recovery (multisource selection)” mostly
pertain to one signal source. In other words, we neglect
the effect on thematrix estimation performance of the few
points where sourcesmay overlap, inasmuch as the impact
of such time–frequency points is further reduced by the
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averaging effect inherent to any mixing matrix estimation
method.

The case of signals with high overlapping rate
When signals overlap significantly in the time–frequency
domain, the time–frequency detection of Section
“Weak-sparseness-based time–frequency detection for
source recovery (multisource selection)” is now inap-
propriate. Indeed, the statistical procedure of Section
“Weak-sparseness-based time–frequency detection for
source recovery (multisource selection)” is aimed at
detecting time–frequency points where signal sources are
present, whatever the number of these sources, whereas
it is now required to discriminate points where one single
source is present from points where multiple sources
occur. We assume that in case of different sources present
at time–frequency point (t, f ), they are uncorrelated and
incoherently combined. The resulting energy at (t, f ) is
thus supposed to be smaller than the energy attained at
the time–frequency points where one single source is
present only.
Our purpose is thus to detect the time–frequency

points where the signal energy is big enough in pres-
ence of noise. Basically, this problem amounts to deciding
whether |ASs(t, f )| is above some value τ or not. The value
τ 2 thus represents the minimum energy level above which
we consider that the signal energy is big enough to assume
that one single source is actually present at (t, f ). For any
λ ∈ (0,∞), it follows from ([23], Lemma 4, statement (iii))
that

P
[ |Sx(t, f )| > λ

∣∣ |ASs(t, f )| < τ
]
� 1−Fχ2

2M(2τ 2/σ 2)

(
2λ2/σ 2) ,

(11)

where Fχ2
d (δ) (·) stands for the cumulative distribution

function of the non-centered chi-2 distribution with d
degrees of freedom and non-centrality parameter δ. The
degree of freedom in (11) is 2M since each Sx(t, f ) is an
M-dimensional complex random vector and, thus, a 2M-
dimensional real random vector. Given some level γ ∈
(0, 1), it then suffices to choose

λ = λ(τ , γ ) = σ

√
1
2
F−1

χ2
2M(2τ 2/σ 2)

(1 − γ ). (12)

to guarantee a “false alarm probability” P
[ |Sx(t, f )| >

λ
∣∣ |ASs(t, f )| < τ

]
less than or equal to γ .

Therefore, for a given time–frequency point (t, f ), the
decision is that |ASs(t, f )| < τ if |Sx(t, f )| < λ(τ , γ )

and that |ASs(t, f )| � τ if |Sx(t, f )| � λ(τ , γ ). For mix-
ing matrix estimation, we then keep the time–frequency
points (t, f ) such that |Sx(t, f )| � λ(τ , γ ), which are con-
sidered as to time–frequency points pertaining to one
single source. In practice, since the actual value of σ is

unknown, we replace this true value by its estimate σ̂

provided by the DATE.
Although the two parameters γ and τ must be fixed,

there is no need to choose them for each signal to noise
ratio. Parameter τ , which is independent of the noise level,
can be fixed via a small noiseless database. Similarly, level
γ can be determined via a few preliminary test on a small
representative database.

Simulation results
In most of the following simulations, the mixing matrix
is chosen according to ([14], Eq. (38)) so as to model N
sources arriving at the sensor array at different angles
θ1, θ2, . . . , θM. The entries of matrix A are therefore aj,k =
eiπ(j−1) sin(θk) for j ∈ {1, . . . ,M} and k ∈ {1, . . . ,N}. In
the sequel, we proceed by choosing four sources (N = 4),
three sensors (M = 3), θ1 = 15◦, θ2 = 30◦, θ3 = 45◦ and
θ4 = 75◦.
Unless specified otherwise, the source signals are speech

signals randomly chosen in the TI-digits database [36].
This large speech database collected in a quiet environ-
ment is commonly used in speech processing. In this
article, the chosen speech signals were downsampled to
8 kHz. All signals involve 8, 192 samples. Figure 4a–d
shows the time-domain representations of the original
source signals and Figure 4e–h represents their corre-
sponding spectrograms. Figure 5 displays a spectrogram
of a mixture of these speech signals when the mixing
matrix A is applied to them at SNR = 10 dB. The spec-
trograms of the other mixtures are not presented because
the differences between any two of them are not visu-
ally noticeable since the mixing matrix A involves no null
entry.
The two parameters required for the mixing matrix esti-

mation are then fixed to τ = 4 and γ = 10−3. The source
separation performance is measured by the normalized
mean square error (NMSE):

NMSE = min
i,j

⎧⎨⎩10 log10

⎛⎝1 −
( 〈

ŝi, sj
〉∥∥ŝi∥∥ · ∥∥sj∥∥

)2
⎞⎠⎫⎬⎭ .

(13)

Throughout this section, NMSEs are calculated over 100
Monte-Carlo runs.

SUBSSmethod
The modified SUBSS algorithm is obtained by using both
the DATE and SNT for source recovery andmixingmatrix
estimation by SNT, respectively, as explained in Section
“Statistical tests for sparseness-based UBSS”. It is used
to separate the four source signals from the noisy mixed
signals observed by the three sensors.
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Figure 4 Time and time-frequency representation of speech signal. (a)–(d) show the waveforms of the original source signals in the time
domain, (e)–(h) display the spectrograms of these source signals in the time–frequency domain.

The waveforms of the recovered source signals by the
modified SUBSS algorithm are represented in Figure 6.
Figure 6a–d shows the time-domain representations of the
recovered source signals in the noiseless case (input SNR
= 45 dB), and Figure 6e–h represent time-domain repre-
sentations of the recovered source signals with input SNR
= 10 dB.
In Figure 7, the performance of the modified SUBSS

algorithm, with and without denoising, is compared to
that obtained by the originally SUBSS algorithm of [15].

Mixture spectrogram

Time

F
re

qu
en

cy

Figure 5 Speechmixture spectrogramwhenmixing matrixA is
applied to the four sources of Figure 4 (SNR = 10dB).

The denoising mentioned above is described in Appendix
as a standard linear estimation.
The modified SUBSS algorithm outperforms the orig-

inal SUBSS algorithm [15], which relies on thresholds
that are manually chosen for each input SNR. Moreover,
modified SUBSS without denoising yields performance
measurements that do not significantly depart from those
attained by the original subspace-based UBSS algorithm.
In addition, Figure 7 displays the NMSEs obtained by
using theMAD estimator instead of the DATE in themod-
ified SUBSS algorithm without denoising. The use of the
MAD instead of the DATE induces a significant perfor-
mance loss, which illustrates the relevance of the DATE
and the weak-sparseness model. In Figures 8 and 9, we
present the NMSEs obtained by the modified SUBSS and
the original SUBSS when the number of sources increases
and for SNR = 10dB and SNR = 20dB. In both figures,
the NMSEs degrade, because an increase of the source
interference invalidates Assumption 1.
We now consider the case of complex chirp signals.

These ones were generated by slightly modifying the MAT-
LAB routine MakeSignal.m of the WAVELAB toolbox, so
as to obtain complex chirp signals. The 4 chirp signals
we use as sources are s1(t) = √

t(1 − t)ei
πT
2 t2 , s2(t) =√

t(1 − t)e−i πT4 t2 , s3(t) = e−iπTt2 and s4(t) = ei
2
3πTt ,

where t ∈[ 0, 1] and T = 8192 is the number of samples
for each signal. Two of these chirp signals are LFM ones
and one is a pure sine. Figure 10 then displays the spec-
trograms of the four chirp signals under consideration,
whereas Figure 11 presents the spectrogram of a mixture
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Figure 6 Simulation results: (a)–(d) show the waveforms of the source signals recovered by modified SUBSS with input SNR = 45dB,
(e)–(h) show the waveforms of the source signals recovered by modified SUBSS with input SNR = 10dB.

of these sources when matrix A is applied and SNR =
10 dB. The spectrograms of the othermixtures are not dis-
played for the same reasons as those given previously for
the speech signal mixtures.
The experimental procedure for assessing the modi-

fied SUBSS in comparison to the original SUBSS method
is then the same as above. As specified in Section “The
case of signals with low overlapping rate”, the thresholds
used for the mixing matrix estimation are the detec-
tion ones. Therefore, no additional parameter is needed.
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Figure 7 Comparison between SUBSS, modified SUBSS with and
without denoising, modified SUBSS with MAD estimate instead
of DATE and without denoising: NMSE versus SNR.

The results obtained in Figure 12 show the relevance
of this choice for the thresholds, explained by the fact
that chirp signals present very few overlapping time–
frequency components.

Other methods
As described in Sections “Weak-sparseness-based
time–frequency detection for source recovery (multi-
source selection)” and “Signal source detection for mixing
matrix estimation (autosource selection)”, The DATE and
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Figure 8 Comparison between SUBSS andmodified SUBSS
without denoising when input SNR = 10dB: NMSE versus
number of sources.
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Figure 9 Comparison between SUBSS andmodified SUBSS
without denoising when input SNR = 20dB: NMSE versus
number of sources.

SNT can be used to perform multisource and autosource
selections, respectively. Said otherwise, the statistical
tests of the aforementioned sections make it possible to
obtain the time–frequency points where noisy mixtures
are present and the set of time–frequency points where
only one single source exists. In this section, we comment
the results we obtain by so proceeding with respect to the
several UBSS methods addressed in Section “Main steps
of standard UBSS methods” and other than SUBSS.

(a)

Time
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qu
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cy

Figure 11 Chirp signal mixture spectrogramwhenmixing matrix
A is applied to the chirp signals of Figure 10 (SNR = 10dB).

In the underdetermined case, TIFROM achieves partial
source separation only. Therefore, to better assess the con-
tribution of our statistical tests to TIFROM, we consider
the determined case where four source signals from four
speakers are mixed. The mixing matrix is now 4 × 4 with
independent Gaussian entries. In Figure 13, we present
the NMSEs obtained by the TIFROM, SNT-TIFROM and
Modified SNT-TIFROM. Specifically, SNT-TIFROM uses
SNT to select times frequency points where a source

(a)

Time

F
re

qu
en

cy

(b)

Time

F
re

qu
en

cy

(c)

Time

F
re

qu
en

cy

(d)

Time

F
re

qu
en

cy

Figure 10 Spectra of four chirp signals used as sources.
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Figure 12 Comparison of performance between SUBSS and
modified SUBSS without denoising for chirp signals: NMSE
versus SNR.

exists alone. SNT-TIFROM, as TIFROM, performs no
multisource selection for source recovery. In contrast, the
modified SNT-TIFROM performs multisource selection
and forces to zero the unselected time–frequency points.
These results show that SNT makes it possible to actu-
ally select the autosource time–frequency points, with no
performance loss and without resorting to the empirical
threshold required by the original TIFROM. The per-
formance yielded by the modified SNT-TIFROM further
emphasizes that the detection threshold adjusted with the
DATE selects appropriate multisource time–frequency
points for source recovery. The gain for low SNRs is
explained by the fact that this selection can be regarded as
a non-linear denoising. The gain brought by this denoising
effect decays when the SNR increases.

Figure 13 Comparison of performance between TIFROM,
SNT-TIFROM andModified TIFROM: NMSE versus SNR.

Another contribution of our statistical approach to
sparseness-based methods is the estimation of the noise
standard deviation. Indeed, some methods need an esti-
mate or the true value of the noise standard deviation. For
instance, Bofill and Zibulevsky [18], use the �1-normmin-
imization to recover the sources. In the noisy case, they
propose to solve the optimization problem:

min
Ss(t,f )

1
2σ 2

∥∥Sx(t, f ) − ASs(t, f )
∥∥2
2 + ∥∥Ss(t, f )

∥∥
1 .

Because of the weakly sparseness of the sources in noise,
we hereafter prefer following [37] dedicated to stable
recovery of not exactly sparse signals. We therefore solve
the optimization problem

min
Ss(t,f )

∥∥Ss(t, f )
∥∥
1 subject to

∥∥Sx(t, f ) − ASs(t, f )
∥∥
2

≤ σ 2(M + 2
√
2M). (14)

This approach can then be improved in two ways.
First, by solving this optimization problem on only the
time–frequency points selected by the multisource pro-
cedure propounded in Section “Weak-sparseness-based
time–frequency detection for source recovery (multi-
source selection)”. Second, by replacing the unknown true
value of the noise standard deviation by its estimate pro-
vided by the DATE. In this respect, Figure 14 displays
the performance measurements obtained by the original
method based on the �1-criterion of Equation (4) (L1Min-
imization) in comparison to the modified �1-criterion of
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Figure 14 Comparison of performance (NMSE versus SNR)
between the original Bofill and Zibulevsky’s method based on
the �1-criterion of Equation (4) (L1 Minimization), the modified
�1-criterion of Equation (14) after multisource selection when:
the noise standard deviation is known (Oracle Modified L1
Minimization) or estimated via either the DATE (Modified L1
Minimization) or the MAD (MADModified L1 Minimization).
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Equation (14) applied to the outcome of the the mul-
tisource selection when the noise standard deviation is
estimated by the DATE (Modified L1 minimization). As
expected, the gain brought by multisource selection and
Equation (14), both adjusted by the noise standard devi-
ation estimate provided by the DATE, is significant. It is
also worth noticing that the DATE estimation error does
not impact significantly the separation performance in
comparison to the case where the noise standard devia-
tion is perfectly known. This can also be seen in Figure 14,
where the performance measurements are given when the
multisoure selection and �1-criterion of Equation (14) are
both adjusted with the actual value of the noise standard
deviation (OracleModified L1Minimization). In contrast,
there is significant performance loss when themultisource
selection and Equation (4) are calculated by using the
MAD instead of the DATE (MADModified L1Minimiza-
tion). The reason still relates to the fact that the DATE is
more robust to weak-sparseness than the MAD.
The multisource selection based on the detection

threshold adjusted by the estimate provided by the DATE
can be further exploited by the DUET reconstruction, as
illustrated in Figure 15. In this simulation, the input sig-
nals are the chirp signals considered above, so that the
W -disjoint orthogonality assumption is satisfied. More-
over, the mixing matrix A is now assumed to be known.
On the one hand, we perform the DUET source recov-
ery by considering the whole time–frequency plane. On
the other hand, we consider the modified DUET, that is,
the DUET source recovery applied to the selected multi-
source time–frequency points only. The results are similar
to those obtained above by TIFROM and its modified
versions. Here, the gain brought by the multisource selec-
tion, which acts as a denoising, is bigger on a wider SNR

Figure 15 Comparison of performance between DUET
reconstruction andmodified DUET reconstruction on chirp
signals.

range because the time–frequency representation of chirp
signals is sparser than that of audio signals.

Discussion
Assessment
The algorithms we propose are very general. They are not
dedicated to a given sparseness-based BSS method. They
are simple to apply without any adjustment. From the
results of Section “Simulation results”, our procedures can
therefore be used to improve, simplify or bring robustness
to the standard sparseness-based BSSmethods considered
in the article.
More specifically, the weak-sparseness-based time–

frequency detection procedure of Section “Weak-sparse-
ness-based time–frequency detection for source recovery
(multisource selection)” can be used as an automatized
pre-processing for multisource selection. For example, the
time–frequency detection in [15] requires one threshold
value for each instrumented SNR. The detection proce-
dure of Section “Weak-sparseness-based time–frequency
detection for source recovery (multisource selection)”
then makes it possible to avoid this empirical parameter
choice, which brings robustness and significant simplifi-
cation. Used as a pre-processing for TIFROM [16], which
basically involves no selection of time–frequency points,
the multisource selection we propound can improve the
separation performance.
For mixing matrix estimation, our approach described

in Section “Signal source detection for mixing matrix
estimation (autosource selection)” relies on no weak-
sparseness assumption and involves two parameters only,
that is, the tolerance and the false-alarm probability. These
parameters are valid over the signal-to-noise ratio (SNR)
range, in contrast to [15] for instance. Furthermore, the
assumptions made by TIFROM can be relaxed by using
the autosource selection of Section “Signal source detec-
tion for mixing matrix estimation (autosource selection)”.
It is also worth noticing that the two parameters we need
for mixing matrix estimation have a physical meaning,
which is not the case for some standard sparseness-based
BSS methods.

Convolutive mixture case
There exists a great variety of possible strategies for deal-
ing with the convolutive mixture case, which is more
realistic than the instantaneous one. In the convolutive
mixture case, exhibiting a well-established family of meth-
ods such as that considered above in the instantaneous
mixture one is hardly feasible. However, despite this vari-
ety, the statistical framework proposed in this article can
be expected to be used in the convolutive mixture case,
at least, for methods based on time–frequency represen-
tations for which, separating time–frequency points of
noise alone from those of noisy signals can be helpful. For
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instance, this detection procedure for multisource selec-
tion can be used straightforwardly to detect the time–
frequency points required by the convolutive SUBSS pre-
sented in [38]. The modified convolutive SUBSS thus
obtained discards the empirical threshold required in [38]
for multisource selection. This entails no significant per-
formance loss, as illustrated by Figure 16. Studying the
added-value brought by SNT in the convolutive mixture
case requires further analysis that could be achieved in
some forthcoming work.

Conclusion and perspectives
The algorithms presented in this article contribute to BSS
in the underdetermined mixture case, by avoiding empir-
ical choices of parameters present for the so-called family
of weak-sparseness based methods. Our first algorithm
aimed at selecting the suitable time–frequency points
for source recovery is full automatic. The second, ded-
icated to mixing matrix estimation, requires fixing two
parameters only, regardless of the instrumented SNRs.
The question is now to what extent the statistical tests

used above in the instantaneous mixture case can possibly
be exploited in the convolutive mixture case, especially in
complement to the results discussed in Section “Convolu-
tive mixture case”. It can also be wondered whether these
tests can be extended so as to deal with colored noise.
Work on this topic is under progress.
The theoretical and experimental results of this article

pinpoint that the subfunctions of the source separation
methods considered above, completed with the statistical
tests we have proposed, can be regarded as elementary
components that can be interchanged and associated to
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Figure 16 Comparison of performance between standard
convolutive SUBSS andmodified convolutive SUBSS: the signals
used are same audio one as those considered in simulation
section. Each mixture is a sum of filtered source signal where each
filter is randomly chosen RIF with order 4.

provide new algorithms for source separation in different
applicative contexts. This opens new practical prospects.
For instance, it would be desirable to construct a tool-
box involving all these elementary components for further
developments and studies. Such a toolbox would also
make it possible to carry out exhaustive experimental
assessments on large databases of signals via the BSSEval
toolbox, downloadable from [39].

Appendix
Denoising-based source recovery
The SUBSS method presented in [15] estimates the index
set of the sources present at a given time–frequency point
(t, f ). Let us denote by J this set of indexes. Then, Equation
(2) reduces to:

Sx(t, f ) = AJSsJ (t, f ) + Sn(t, f ) (15)

and the STFT coefficients of these active sources can be
recovered using:

SsJ (t, f ) ≈ A#
J Sx(t, f ), (16)

where A#
J = (AH

J AJ )−1AH
J is the Moore-Penrose pseu-

doinverse of AJ .
We propose to use the noise standard deviation estimate

provided by the DATE to jointly denoise and separate
the sources on the basis of the time–frequency points
selected by the statistical test of Section “Weak-sparse-
ness-based time–frequency detection for source recovery
(multisource selection)”. So, instead of performing the
source separation as specified by Equation (16), the source
separation is now carried out by computing

ŜsJ (t, f ) = RsJAH
J (AJRsJAH

J + σ̂ 2IM)−1Sx(t, f ) (17)

where σ̂ is the noise standard estimate returned by the
DATE and RsJ = E[SsJ (t, f )SH

sJ (t, f )]. The derivation of
the optimal linear estimator of (17) is standard. It involves
minimizing the risk E

[∥∥SsJ (t, f ) − DSx(t, f )
∥∥2] when D

ranges over the space of the card(J) × M matrices and
under the assumption that the sources are spatially decor-
related. In practice, matrix RsJ is unknown and must be
estimated. We then proceeded as follows. On the one
hand, we have Rx = ARsAH + σ 2IM. On the other hand,
Rx can be estimated by R̂x = 1

#t
∑

t Sx(t, f )Sx(t, f )H ,
where #t stands for the number of time windows on which
the STFT is calculated. Since estimates of A and σ are
known, we derive from the expressions of Rx and R̂x an
estimate R̂s of Rs. An estimate of RsJ follows by picking the
appropriate columns in R̂s.
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