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Abstract

speed up advantages of our architectures.

In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different
architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step
sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during
the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise
linear function is used instead of the classical exponential function. This decreases the complexity of the
architecture without degrading the results. The second architecture speeds up the resampling step via a parallel,
rather than a serial, architecture. This second architecture targets a balance between hardware resources and the
speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing
elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx
environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and

1. Introduction

The adoption of particle filters (PFs) in real-time sys-
tems is hampered by their computational complexity.
The PF typically involves several complex mathematical
operations, in addition to the large memory required to
store and handle the particles. Parallel processing offers
a possible solution to the real-time requirement. How-
ever, full parallelization is obstructed by the resampling
step, which is serial in nature. Several efforts were
expended to construct distributed resampling algorithms
[1,2]. Implementations of PF applications on hardware
or hardware/software co-design platforms are further
challenging due to the resource constraints on such
platforms. Design and implementation of a generic yet
highly optimized architecture for all PF-based systems is
not easy because of the wide range of applications to
which particle filtering technique are applied [3-5].

In the following, we review the main directions to the
hardware implementation of the PFs, especially for
object tracking.

Boli'c [6] proposed architecture for distributed resam-
pling with proportional allocation. The main idea is to
store the particles to be routed among the processor
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elements into dedicated memories in the control unit,
and to have very fast interface capable of reading parti-
cles from the central unit (CU) and routing them to
PEs. The overall memory requirements for this architec-
ture equal KM, where K is the number of PEs and M is
the total number of particles.

Athalye et al. [7] presented generic architectures for
the implementation of the Sequential Importance
Resampling Filter (SIRF). The proposed architecture is
based on using dual-port memory. The memory stores
the addresses of the particles in its upper half, while the
sampled particles are stored in the lower half of the
memory. The idea is that the resampling unit returns
the set of indexes (pointers) of the replicated particles
instead of the particles themselves. Using index addres-
sing alone does not ensure that the scheme with the sin-
gle memory will work correctly. They used other
memories to store the indexes of the replicated particles
and the discarded particles. The size of overall used
memory is 4M: 2M depth dual-port memory to store
the addresses and particles state vectors, M depth mem-
ory to store the replicated particles indexes and M
depth FIFO to store the discarded particle indexes. They
proposed two architectures to implement the SIRF using
systematic resampling (SR) and using residual systematic
resampling (RSR) algorithms.
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Hong et al. [2] proposed a parallel PF consisting of
multiple processing elements (PEs) up to four PEs. The
PEs are connected with a single CU responsible for
resampling. The CU is designed to support both the dis-
tributed resampling algorithm with proportional alloca-
tion (RPA) and non-proportional allocation (RNA). The
proposed resampling architecture reduces the overall
resampling time by a factor equal to the number of PEs.
The communication between the PEs is via a two-level
interconnect. The first level is used for interactions
between the PEs and the CU and the second level is
exploited for interactions inside the CU. The CU con-
tains buffers RB; (i = 1:4) to store excess particles which
will be transmitted to the different PEs. The size of
these buffers is 2M. Additional memory space is needed
to store the tagged particles in tag buffers (TB). M/5
memory words are needed for each TB; (i = 1:4).

Alarcon and Lopez [8] applied PFs for tracking the
lines of a road in real time. For each image, the pre-
sence of the lane lines is detected and their center of
mass is calculated. Three consecutive images frame®,
frame', and frame” are used for prediction and full
tracking of the lane lines. The architecture is designed
such that each particle is evaluated and appropriately
updated independent of the rest.

Uk Cho et al. [9,10] proposed a PF algorithm specifi-
cally designed for object tracking. The architecture con-
sists of five blocks: the particle initiator (particle
sampler), coordinates comparator, particle normalizer,
data output, and particle selector. The sample of the
new position of the particle is done according to the
resampled particles and Gaussian white noises from the
particle selector and Gaussian distribution Lookup
Table (LUT), respectively. They eliminated the division
operation of the particle resampling by using a variable
resampling range. The particle selector block performs
the resampling step in the PF algorithm. It selects new
particles among the current particles according to the
uniform random distribution obtained from the random
distribution LUT and the cumulative function from the
cumulative LUT in the particle normalizer block.

Velmurugan [11] developed an FPGA implementation
of the bearings-only tracker, similar to that in [7]. He
used the Xilinx System Generator tool to speed up the
development task. The use of this tool reduced the time
spent in developing the system, and provided estimates
of the FPGA resources consumed. The implementation
lacks a higher-level module to recursively propagate the
particles and update the state estimates over time,
because this would involve developing a top-level VHDL
module to control the memory reads and writes. The
System Generator setup is not well suited to design this
control operation, so it is not pursued. The
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implementation introduced performed the computations
for M particles in a single iteration of the PF only.

Medeiros et al. [12] focused on the parallel computa-
tion of the particle weights of the color-based PF. The
architecture is composed of a linear array of PEs, each
consisting of an arithmetic logic unit and a small
amount of memory, a digital input processor, and a digi-
tal output processor. A global control processor is
responsible for controlling the operation of the PEs and
is able to carry out global DSP operations.

Saha et al. [13] introduced a parameterized design fra-
mework for PFs. This general framework allows the sys-
tem features (e.g., number of particles) to be defined as
parameters according to the application considered. The
memory banks are parameterized. The proposed archi-
tecture consists of an array of processor elements and a
resampling unit with a set of parameterized interfaces.
The processor element consists of a weight calculation
unit, a noise generator, and a processor element core.
This approach reduces the re-design effort.

Recently, Hendeby et al. [14] used General-Purpose
Computing on Graphics Processing Unit techniques to
make a parallel recursive Bayesian estimation implemen-
tation using PFs.

The main objective of most of the published studies
on the hardware implementation of PFs is to parallelize
the resampling step, or simplify it via the use of LUTs.
It may be noted, however, that for a moderate number
of particles, resampling itself is not computationally
expensive. The PF hardware implementation has to con-
sider all of the main four steps: the particle sampling,
weighting, resampling as well as the output step. An
efficient implementation should efficiently implement all
these steps from the perspective of execution time,
hardware resources, and robust performance.

Although, the distributed implementation proposed in
[6] reduces the execution time to M/K instead of M
clock cycles, this architecture uses MK memory loca-
tions instead of 2 M in the straightforward implementa-
tion. Similarly, the parallel resampling architecture
proposed in [2] reduces the overall resampling time by
K but this architecture is limited to four PEs. In addi-
tion, this architecture uses 3 M memory to store the
particles: one memory to store M particles to be
resampled, one to store the replicated M particles, and
one to store the M particles which are used as inputs in
the next sampling step. Uk Cho et al. [9,10] simplified
the implementation of PFs by using LUTs; the penalty
came from the increase of the implemented area as well
as the execution time.

In this article, efficient novel hardware architectures of
the SIRF are implemented. Three novel hardware architec-
tures of the SIRF for object tracking are introduced. The
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first architecture is a two-step architecture with sequential
resampling, where particle sample, weight, and output cal-
culations are carried out in parallel during the first step,
followed by sequential resampling in the second step. This
first architecture serves as a core unit for the next two
architectures. The second architecture speeds up the
resampling step (second step) via a parallel, rather than a
serial, architecture. The third architecture implements the
SIRF as a distributed PF composed of several PEs and a
CU. Each PE is in fact the two-step core of the first archi-
tecture. These architectures aim at enhancing the speed of
operation while maintaining, at the same time, efficient
utilization of logic, and memory resources. All the pro-
posed architectures are implemented on a FPGA platform.
A preliminary report covering the first two architectures
was presented at a related conference [15].

2. Particle filters
The PF approximates recursively the sequence of poster-
ior probability measures associated to a state-space
dynamic model using a finite set of weighted samples.
The key idea is to represent the required posterior den-
sity function by a set of random samples with associated
weights and to compute estimates based on these sam-
ples and weights. The PF consists of two phases: predic-
tion and update. The system is represented by state-
space and observation equations. Consider an object that
has a state X, and observation Z, at discrete time ¢. The
previous state sequence at time ¢ - 1, ¢ - 2,...,2, 1 are
denoted as X, 1, X; »,..,.X> and X, respectively. p(X;|X, 1)
describes the transition for state vector X, (dynamic or
motion model). Let all available observations be Z;.,.; =
{Zi 1) Z1}. The prediction uses the probabilistic system
transition model to predict the posterior probability dis-
tribution at time £. So, we require to construct the prob-
ability density function (pdf) p(x;|z,) assuming that p(x|
zo) = p(xo) is the initial pdf of the state vector, which is
known as the prior (z, is the set of no measurements).
The posterior density p(X;./|Z;.;) may be obtained recur-
sively in the two stages: prediction and update.
Supposing that the required pdf p(x, ;|z. ;) at time ¢-1
is available, the prediction stage involves using the sys-
tem model to obtain the prior pdf of the state at time ¢
via the Chapman-Kolmogorov equation [16]

p(x | zr) = / Pl | X )Pt | z)dey (1)

Equation 1 assumes that p(x,|x, 1, Z1..1) = p(xe|xs1, Zs
1). This approximation is particularly useful in the com-
mon case when only a filtered estimate of p(x|Z;.) is
required at each time step [17]. In such scenarios, only
x; need be stored, and so discard the path (X;.,.;) and
the history of the observations (Z;.,.1). All practical
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software or hardware implementations of the PFs adopt
this approximation to avoid intractable computation
complexity. Throughout thisarticle, we also adopt this
assumption.

At time step £, a measurement z, becomes available,
and this may be used to update the prior (update stage)
via Bayes’ rule

_ Pz | x)p(xe | 2e-1)
plxc | z) = o | 21) ()

where the normalization constant

p(z | z-1) = /P(Zt | x)p(x; | 2—1)dx; (3)

The likelihood function p(z|x,) is defined by the mea-
surement model. In the update stage (Equation 2), the
measurement z, is used to modify the prior density to
obtain the required posterior density of the current
state. The recurrence relations (Equations 1 and 2) form
the basis for the optimal Bayesian solution. This recur-
sive propagation of the posterior density is only a con-
ceptual solution in that, in general, it cannot be
determined analytically. Extended Kalman filters (EKFs),
Gaussian Sum Filters (GSFs) [18], and PFs approximate
the optimal Bayesian solution.

At every time instant ¢, a random measure

{x:",w:"}f::l characterizes the posterior pdf p(x,|z,),

where {x:", m=1, ...,M} is a set of support points (par-

ticles) with associated weights {w:", m=1, ....,M}. The
M

weights are normalized such that Zw:” = 1. Then, the

m=1
posterior density function at ¢ can be approximated as

M
plxe 1 2) = ) ws(x — ") @)

m=1

where d(.) is a Dirac delta function. The estimate E(k
(X1.)), where h(.) is a function of x,, can be computed
from

M
E(h(x)) = Y w{"h(x") ©)

m=1

Therefore, we have a discrete weighted approximation
to the true posterior p(x;|z;) by using the discrete ran-
dom measures. In addition, the estimation is calculated
as a weighted mean.

2.1. SIRFs overview
There are many variants of PEs, derived by an appropri-
ate choice of the importance sampling density function
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or modification of the resampling step. SIRF is one of
the most widely used PFs types. The SIRF has the
advantage that the importance weights are easily evalu-
ated and the importance density can be easily sampled.
SIRF assumes that

- The state dynamics and measurement functions are
known.

- The likelihood function is available.

SIRFs choose the importance density to be the transi-
tion prior and perform the resampling step at every
time index [17].

For one input sample, SIRF performs the particle gen-
eration and the weight calculation. After M particles,
the weight normalization, the resample, and finally the
output are carried out as shown in Figure 1. To achieve
minimum execution time it is required to devise a one-
to-one mapping between the particle filtering operations
and the hardware resources that allows for utilizing
operational concurrency.

2.2. PF for tracking

PFs provide robust tracking for moving objects, espe-
cially in the case of nonlinear and non-Gaussian pro-
blems. PFs must be designed in a way to avoid the loss
of tracking. For our image tracking application, the
moving object is expected to remain within a region of
interest (ROI) area of 32*32 pixels between two conse-
cutive frames. So, the number of particles needed to
represent the state space corresponding to this area is of
moderate value.

Bolic et al. [19] provide a performance and complexity
analysis of PF as applied to real-time object tracking.
They address the effect of the number of particles and
the sample rate. They found that the performance of the
particles filters ceases to improve when the number of
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particles is greater than a certain number N. This num-
ber depends on the problem (object’s trajectory; the
dynamics of the object;...).

The previous related study, in the field of object track-
ing [5,20,21], used 64, 50, and 100 particles, respectively.
In our previous study [22,23], we use 100 particles.

For hundreds particles, the ratio between the latency
cycles and the number of particles affects the total
execution time. So, it is important to consider all of the
main four steps: the particle sampling, the weighting,
resampling as well as the output step to efficiently build
a hardware implementation of SIRF. An efficient imple-
mentation should efficiently implement all these steps
from the perspective of execution time, hardware
resources, and robust performance.

2.3. Architectures

This section is devoted to a full and detailed presenta-
tion of our first two SIRF architectures. The main goal
of our implementation is to minimize the execution
time and the used resources without affecting the
performance.

2.3.1. The proposed two-step architecture with sequential
resampling

The proposed architecture is shown in Figure 2[15].
This architecture is composed of a FIFO to store parti-
cles, a sample engine, a weight calculation, and accumu-
lation engine, a resampling engine, and an output
calculation engine. The FIFO is a 2M x p dual-port
FIFO to store the M particles. This FIFO has 2M loca-
tions to allow reading the current frame M particles
while at the same time writing the replicated particles of
the next frame to this same FIFO. The width of the
FIFO word, p, is a five-component state vector, given by
(%, ¥ Vu vy, I) to represent the X-position, Y-position,

» Normalization
»

Observation
X " v
Particle
> - Weight
X n ’Wn Bample "] calculation

Resampling

A 4
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Figure 1 The block diagram of the SIRF [7].
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the velocity in the X and Y directions and the gray level
intensity, respectively. The resampling engine has two
register files in addition to the resample logic. These
two registers are the replication factor memory (RFM)
which consists of M x n register file for storing the
replication factor for each particle (where M = 2"), and
the weights memory (WM) which consists of M x w
register file for storing the particle weights where w
represents the length of weight bits. M is chosen to be
64. This value is suitable for a search area of 32*32 pix-
els for our object-tracking example.

In the following, we describe the function of the dif-
ferent sub blocks of Figure 2. The registers: Particle R
and NR store the current particle vector and its replica-
tion factor, respectively. The contents of these registers
are loaded into the Particle S and NS registers, respec-
tively, if NR is non-zero. The WM register file contains
the weights of the particles and the RFM register file
contains the corresponding replication factors for the
particles.

The operations of the PF are carried out as follow:
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1. The particles are sampled (generated) and stored
in the FIFO at the Sample engine using the Random
generator [24] with the known initial state vector of
the object. As the particle is sampled, it can be used
for weight calculations.
2. During the process of weight calculation, the
accumulation of the total sum of weights is carried
out in the weight calculation engine.
3. As the sampling of the total number of particles
finishes, the resampling engine starts the resampling
process. The replication factor for each particle is
calculated according to its weight as described in
Section 2.3.1.2.
4. When the replication factors of the particles are
calculated, the output engine starts the output calcu-
lation process as follows:
a. Read one particle from the FIFO to Particle R
register and the corresponding replication factor
to NR register; continue reading until a non-zero
value of NR is found. At that time, the particle is
transferred to Particle S register and the content

' \ § WeighlSum
Particle R N |
3 Resampler §
If NR>0 | : |
: wM ‘
and NS =0 | REM Mxw i
§ M=2" Replication Weight |
F ' v § factor memory A~ memory i
Particle S NS - o .
I 1 - Weight calculation engine 3
F > Weight Calculation L: Accumulator J—’ §
§ T - Weight Sum%
| Observations ‘ |
(0 3 i
Mxp Output engine Output
| ¥ ) > Accumulator >
3 1M ‘J\X) r’ *
P v B - B B ) B B D L
T : ™\ The Sample engine
[+«

Figure 2 The two-step architecture with sequential resampling.




of register NR is transferred to register NS. NS is
decremented at each clock cycle.

b. The contents of register Particle S are sampled
by adding random values from the Random
Generator and the resulting particle is written to
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c. During decrementing the contents of register
NS to zero, the FIFO reading does not stop until
a non-zero value of NR register is found. Figure
3 shows the state diagram of the read and write
operations from and to the FIFO.

the FIFO. At the same time, the generated parti-
cle is used to the weight calculation unit. In
addition, the contents of register Particle S are
used in the output calculation by multiplying the
particle x and y values by 1/M and accumulated
to get the mean output values (the X and Y posi-
tions of the tracked object).

5. As the M particles are read and repeated accord-
ing to their replication factors, the resampling engine
calculates sequentially the replication factor for each
particle for the next instant. The resampling engine
calculates one replication factor every clock cycle.

6. Finally, again, the FIFO contains M particles and
so the RFM contains M corresponding replication

Read FIFO
NR < RFM

Particle_R < FIFO
i<i+1

Start

Idle sate

Transfer
NS < NR
Particle_S < Particle_R

Write FIFO
NS -1 >NS
FIFO_in < particle_S
+ noise

NS>0

Figure 3 The read/write FIFO operations. Where FIFO_out represents the valid reading data from the FIFO and NR represents the
corresponding replication factor read from the RFM. FIFO_in represents the data written to the FIFO.
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factors. For each coming observation, repeat the
steps 4 and 5.

Thus, based on the data independencies between the
particles, our architecture carries out the three steps of
the particle generation, the weight, and output calcula-
tions concurrently. The resampling step cannot be over-
lapped in time with the weight calculation step due to
the necessity of knowing the overall sum of the weights.
So, we select the modified RSR algorithm [25]. In the
following, we describe the main function blocks of our
proposed structure.
2.3.1.1. The weight calculation engine To obtain
robust performance, we calculate the weight by using
the multi likelihood functions proposed in [22]. For
hardware simplification, we implement only the position
and intensity likelihoods LP and the intensity likelihood
LI, while the similarity likelihood is dropped. LP and LI
are defined by:

(=2 +G =17

LP = exp(— ) (6)
201,2
() i)y 2
I —z
L =exp(_(t 261; )) )

where (i, j) is the particle position and (x, y) is the
previous object position. op is the variance of the posi-

tion. I[(i,j) is the mean gray intensity level estimated at
particle position (i, j) at time ¢, and z() is the mea-
sured mean gray level intensity value at position (i, j) at
time ¢ oy is the variance of the gray level intensity. The
overall likelihood is taken as L = LP * LI

Taking into consideration the complexity of the hard-
ware implementation of the exponential function, we
can simplify the LP and LI likelihood calculations by
piecewise linear approximations. Figure 4a, b shows the
Gaussian likelihood functions LI/ and LP and the corre-
sponding linearized functions, respectively. The piece-
wise linear function for the position likelihood is chosen
to have sharp vertex for more accurate tracking. On the
other hand, the piecewise linear function for the inten-
sity likelihood is chosen of a trapezoidal form to tolerate
small intensity variations. To test whether this approxi-
mation affects the performance of the tracker signifi-
cantly or not, we carried several MatLab experiments.
Figure 4c, d documents one such MatLab experiment.
Here, we consider the frame number 89 within the
tracking sequence A of reference [26]. Starting with the
same particle set, we calculate the normalized weight of
these particles according to either the exponential func-
tions or the linearized functions. Hence, we calculate

Page 7 of 19

the replication factors corresponding to each case.
Figure 4c, d indicates that the tracker suffers only minor
differences if the exponential weight functions are
replaced with the numerically favorable linearized func-
tions. All the variables are represented in the fixed point
representation.

The weighting engine stores the index of the maxi-
mum weight values to be used in the resampling engine.
In addition, the weighting engine accumulates the
weight sum for use in the resampling unit.

2.3.1.2 The resampling engine The Systematic Resam-
pling (SR) algorithm has two loops: one for loop of M
iterations and a while loop with non-deterministic number
of iterations, since this while loop depends on the normal-
ized weight of each particle. We used the RSR algorithm.
The flowchart is shown in Figure 5. The RSR algorithm is
two times faster than the SR algorithm. The modified RSR
algorithm [25] avoids the M divisions in hardware, and
instead uses one division (M by the total sum of weights).
The weight value of a particle is normalized, i.e., the range
of weight of a particle is from 0 to 1. Therefore, the sum
of weights for 64 particles ranges from 0 to 64. We use a
LUT) of 64 entries to handle the inverse for the range of
the sum of weights from 1 to 64 values.

Figure 6 shows a simplified structure of the resam-
pling unit. First, the LUT is used to calculate the inverse
value of the total weight W, then D = M/W value is cal-
culated using one multiplier. The replication factor r” =
w™*D, m = I,..., M values are calculated and stored in
the REM.

For hardware simplification, we simply use AU(i) = 0,
i = 1,.,M to eliminate the use of random generator. For

the RR method [25], the sum of the replication factors
M

of all the particles (N = Zrm) is less than M, except
m=1

for special cases. The remaining particles are obtained
using other mechanisms. We added the difference (M -
N) number to the replication factor of the particle hav-
ing the largest weight. The index of the highest weight
particle is stored during the calculation of the weight
values in the weight calculation engine.

2.3.1.3 The execution time The timing diagram of the
implemented SIRF is shown in Figure 7. The TL, is the
particle generation latency and equals two clock cycles.
Apart from the first PF iteration, the total required time,
in cycles, is Ts;pr = (aM + TLyw + TL,cs), where TLyy is
the start up latency of the weight calculation unit. 7Ly,
equals one clock cycle for our simplified piecewise linear
functions. Therefore, the total latency cycles are three.
TL,es is the resampling time and equals M + 1 clock
periods (one clock to add the M - N to the highest
weight replication factor). The value of a lies between 1
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and 2, and depends on the replication factors of the par-
ticles. The worst case takes place if M - I particles have
zero replication factors and only the last stored particle
in the FIFO has a replication factor = M. In this case,
the FIFO needs to read M - 1 particles first, until the

FIFO reaches the particle number M. Then, the sam-
pling, weighting, and the output calculations are started
and repeated for this particle M times. For all other
cases (when some of the particles have non-zero replica-
tion factors) the value of a is close to one.
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Figure 5 Flowchart of RSR algorithm.

2.3.1.4 Main features of the two-step architecture
with sequential resampling The two-step architecture
with sequential resampling, presented in Section 2.2.1
and Figure 2, has the following advantageous features
relative to published architectures [2,6,7,9,10]:

i. FIFOs are used instead of memories whenever pos-
sible. This saves address decoding logic and
enhances speed of operation.

ii. Linearized likelihood functions to speed up the
weight calculations while preserving the localization
features of the Gaussian likelihood functions

Mxw
weights
memory

W Lookup 1w

w' r] Mx2
Wz rz M=2"
Replication

factor memory

\ 4
X «— Z
) 4

Table

Figure 6 The resampling unit.
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Figure 7 The timing of the two-step architecture with serial resampling.

2.3.2. The two-step architecture with parallel resampling
The two-step architecture with parallel resampling was
proposed in [15]. Figure 8 shows the block diagram of
this architecture, which is the same as the first architec-
ture except that the resampling engine is a parallel
engine.

2.3.2.1. The parallel resampling engine The RSR algo-
rithm can also be modified for parallel execution pur-
poses by splitting the resampling process into multiple
concurrent loops. Each loop does the usual RR algo-
rithm for M/L particles, where L is the number of loops
(cf. Table 1). This mechanism reduces the execution
time of the resampling to M/L cycles at the cost of add-
ing more hardware. To speed up the resampling step,
we selected L = M. This is feasible since the number of
particles in our example is around 100 particles and our
platform is FPGA. Since M = L, there is one particle for
each resampling unit, and resampling takes place in just
one clock cycle. The implemented RSR resampling elim-
inates the use of memory for storing the normalized
weights.

Table 2 shows the resource utilization for hardware PF
resampling in the case of single, 8, and 64 parallel
resampling loops.
2.3.2.2. The execution time The timing diagram of the
two-step architecture with parallel resampling SIRF is
shown in Figure 9. The TL, TLy, and a have the same
values as for the two-step architecture with sequential
resampling SIRF. Tsire (in cycles) = (aM + TLy +
TL,es), and TL,s is the resampling time. For L = M,

TL..s equals two cycles (one for calculation + one for
modification of M - N).

3. The distributed implementation of PF

In the following sections, we propose a distributed
architecture for efficient implementation of the PFs. The
main design goal of this architecture is to minimize the
execution time. This goal is achieved by using multiple
PEs with a CU. First, we review the published study on
distributed PFs. We, also, review the different networks
to connect the PEs. Next, we introduce our proposed
distributed SIRF.

3.1. Algorithms and architectures for distributed PFs

In this section, we discuss the different resampling algo-
rithms for distributed PFs.

3.1.1. Centralized resampling [27]

Centralized resampling is a straightforward approach to
implement the SIRFs based on the architecture pre-
sented in Figure 1. The particles are sampled and the
weights computed in parallel by the PEs. The CU carries
out the resampling and particle routing as well as the
overall control. Figure 10a shows the sequence of opera-
tions and the directions of communication. The CU is
responsible for full resampling, which is performed
sequentially. The communication requirements of this
implementation are immense. The CU collects M
weights in order to perform the resampling, and returns
M indexes and replication factors to the PEs, with the
assumption that particle allocation with arranged
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Figure 8 The two-step architecture with parallel resampling.

indexes is applied. While the communication of the
weights and indexes is deterministic, the particles are
routed in a non-deterministic fashion.

3.1.2. Distributed RPA [27]

Let the number of particles be M and number of
PEs is K, so each PE is assigned N = M/K particles.
After the weight calculation step, each PE calculates
the sum of the weights of its particles, i.e.,

N
wk = Zwi’k, k=1,2,...,K. Each PE, then, sends only
i=1

Table 1 Pseudo-code of splitting the RSR algorithm into
L loops: Generate a random number AU" ~ u[0, 1]
D = M/W // where W is the total sum of weights.
—-Forl=1tolL
r(l) = int(W() -AUM)*D);
AU(H1) = AU + r()- W() * D;

Loop |
- For m = (I-1)*M/L to I*M/L-1
Perform RSR
- End For
- End For

this sum to the CU. Next, the CU treats the individual
PEs as particles, and carries out a resampling step
between these K PEs according to their total weight
sums. This resampling step is termed “Inter-resam-
pling”. The CU sends to each PE its share of the repli-
cated particles. Each PE would subsequently carry out
“intra-resampling” amongst the particles share assigned
to it by the CU. The sequence of operations performed
by the PE and CU are shown in Figure 10b. Obviously,
particles should be redistributed among PEs after each
cycle of inter- and intra-resampling. Thus, each cycle
of inter- and intra-resampling is followed by a PEs’
communication phase to rebalance the particles distri-
bution among PEs. To speed up this process, PEs are
divided into groups, and particles are locally redistribu-
ted—in parallel-within each group. PEs are next
regrouped via several alternative schemes until the
goal of equal particle redistribution among PEs is
achieved.

The same resampling results are obtained via RPA or
via sequential resampling. RPA is obviously superior to
centralized resampling due to the time savings in the
parallelized intra-resampling step as well as the reduced
PE-CU communications. Also, CU design is simpler.
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Table 2 Comparison between the resources for different
cases of the two-step sequential architecture with
parallel resamplin (Xilinx FPGA xc5vIx50t-3-ff1136)

Resource Sequential Parallel RSR Parallel RSR
L=1,M=8 L=M=8 L=M=64

Slice register 11 11 131

Slice LUTs 77 78 1692

Number of slices 77 78 1692

used as logic

Number of 1 8 48

DSP48Es

The time for the resampling procedure in the distribu-

M
ted RPA is reduced M times, where M/K corre-
/K +K

sponds to the intra-resampling time and K is a time for
inter-resampling.

3.1.3. Distributed resampling with RNA [27]

The problems of the particle routing and the delay intro-
duced by the global pre-processing step (inter-resam-
pling) can be solved by using the RNA algorithm. In the
RNA algorithm, the number of particles within a group
(one or more PEs) is fixed and equals to the number of
particles per group (N = N). So, full independent sam-
pling is performed by each group. The inter-resampling
step is eliminated completely. Again, intra-resampling
leads to imbalance in particle distribution among the PEs
groups. Thus, group communications is again needed
post intra-sampling. Bolic et al. [27] proposed several
schemes for speeding up this communications, which
they termed “regrouping”. The main advantage of RNA is
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the routing of particles which is deterministic and is
planned by a designer. The other characteristic of RNA is
that the weights after resampling are not equal to 1/M;
instead, they are equal inside the groups.

3.2. The proposed distributed architecture for SIRF

We propose a variant of the distributed RPA architecture
with K PEs and CU as shown in Figure 11. Our proposed
distributed RPA architecture implements a simple ring
network for particle routing. Yet, it enhances the perfor-
mance of this simple communication scheme by imple-
menting a by-pass mechanism that allows particles to be
routed quickly across several nodes (PEs). Each PE in our
architecture is the same as to the proposed two-step archi-
tecture with sequential resampling described in Section
2.3.1. The CU function is to collect the partial sums of the
weights from the PEs and to calculate the outputs, as well
as to perform the inter-resampling.

The particles that are replicated as a result of the
resampling for PE* are stored into the local FIFO® for N
(N = M/K) particles. When there is a surplus of parti-
cles, N* > N, these particles are routed to the neighbor-
ing processor PE*! through the local interconnections.

If there is a shortage of particles in PEX, N* < N, then
PE* reads particles from the neighboring processor PEX*
through the local interconnections.

The sequence of the SIRF operations is carried out in
the PEs and the CU as follows:

1- Each PE* performs the sample step, the
importance step to N particles (N = 8 in our design

Particle
Generation 1

Weight
Calculation 1

Particle
Generation 2

Weight
Calculation 2

Output
Calculation 1

Particle
Generation 3

Weight
Calculation 3

Output
Calculation 2

Figure 9 Timing diagram for the two-step architecture with parallel resampling.
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example) and accumulates PE total weight

N
Wk = Zw”‘,k =1,2,...K.
i=1

2- The CU receives the partial sums of the proces-
sors weights from the PEs, performs the inter-resam-
pling, and sends back the replication number of
particles N* to PEX for k = 1,2,..., K.

3- The CU also, calculates the inverse of WX (1/W¥) for k
= I, 2.., K and sends them to PE for k = 1,2,.., K, respec-
tively, to be used in the intra-resampling in each PE.

4- The PEs perform the intra-resampling in parallel.
The particles are allocated to the local correspond-
ing FIFO for N particles.

5- All the PEs with N* > N will send the surplus (N*
- N) particles to the local network in parallel.
6- All the PEs with N* < N will take the remainder
(N - N¥) particles from the local network in parallel.
7- The CU calculates the output X-mean, Y-mean
position of the object as well as I-mean gray level
intensity of the object as cumulative sums.
3.2.1. The resampling step
We use the modified RSR algorithm described in Sec-
tion 2.3.1.2 in both the inter-resampling in the CU and
intra-resampling in the PEs.
3.2.1.1. The inter-resampling The CU performs the
partial resampling wusing the partial weights

N
Wk = Zwi'k,k =1,2,...,K to produce Ny, k = 1, 2, ...,
i=1
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Figure 11 The distributed SIRF architecture, where the A group particles represent the uniformly distributed particles, the B group
particles represent the weighted particles, the C group particles represent the uniformly replicated particles, and finally, the D group
particles represent the uniformly sampled particles.

K using the modified RSR algorithm [25]. Since the

resampling produces replication factors equal or less
K

than M (M > ZNk), we opted to add the remaining
i=1

particles to the PE with the largest weight. The index of

this PE is stored during the calculation of the replication

factors.

Using the LUTs, we calculate the inverse of the total
weight WT and the individual weights W* of each PE.
For our example with M = 64 and K = 8, simple reflec-
tion would reveal that the same LUT can be used to cal-
culate both WT and W*, provided that a simple
selectable shift operation is added at the output of this
LUT.
3.2.1.2. The Intra-Resampling We implement the RSR
resampling described in Section 2.3.1.2. After the CU
calculates the number of particles that each PE repli-
cates (N, k = 1,...,K), the intra-resampling is performed
inside each PE. Each PE calculates one replication factor
for each particle of its M/K particles per clock cycle,
leading to K replication factors calculated by the K PEs
per clock cycle.

3.2.2. The local interconnect network

It is important to notice that N* is a random number,
which depends on the overall distribution of the
weights. The PEs with N* > N have surplus of particles
and they need to exchange particles with the other PEs
having a shortage of particles (N < N). The N* numbers
change after each sampling period, so that it is necessary
to connect different PEs in order to perform particle
routing. In summary, the communication pattern is

non-deterministic and the connections among the PEs
are changed after each sampling period.

Depending on the value of N¥, each PEX has one of the
three possible states shown in Figure 12.

1- State “00” where N* = N. So, any incoming parti-
cle from PE*" is sent to PE.

2- State “01” where N* > N. The processor is a
source element. As soon as PEX replicates the first N
particles, it sends the reminder N* - N to the neigh-
bor PEF*!. After PEF completes the replication of N*
particles and any stored particles in the local net
memory, the state transfers to state “00”. If during
replication of the particles, a particle from PEX? is
coming, then PEX stores this value in local net mem-
ory until it completes the replication of all its inter-
nal generated particles.

3- State “10” where N* < N. The PEX is a sink ele-
ment. First, it replicates N* and reads any incoming
particles through the network to complete its FIFO
to N particles. As soon as the reminder N - N* parti-
cles are read from the network, the PE state trans-
fers to state"00”.

The particles sent to the network from source PEX
(N* > N) are sent from the register Particle S (i.e.,
before performing the sample in the source processor).
Also, the particles received at the sink processor PE/
(N < N, where k=j) are received in register Particle S
(i-e., just before sampling in the sink processor). Figure
13 shows the local communication between two conse-
cutive PEs.
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Figure 12 The possible states of the processor element during routing.

STATE 01
Source PE

Finish—

Note that the use of the local net memories inside PEs
together with the control FSM of Figure 12 allows fast
exchange between non-neighboring PEs. If, for example,
N°=N+1,N°=N =N, and N* = N - 1, then the
local net memories allow PE® to send the surplus parti-
cle to PE® in 2 cycles. Also, the routing step and the
next sampling step are overlapped allowing pipelining of
their operations. Consequently, the particle routing time
adds only partially to the total execution time of the PF.

Figure 14 shows a ModelSim simulation run illustrating
the operation of the local interconnect network. In the
shown simulation, the PE2, PE* PE®, PE®, and PE® are
sink elements, while processors PE!, PE?, and PE’ are
source elements. As soon as the sources PEk, k=1,3
and 7 complete writing N particles to their FIFOs, they
start sending the reminder N*-N, k = 1, 3, and 7 to the
neighboring PEX*! at the same time. The sinks PEX, k =
2, 4, 5, 6, and 8 accept the incoming particles from the

k

k+1

Local net
Memory

PE PE
Particle R particle R
F F
! |
F v v F
Particle S
o article OOl > Particle S o
2M/k | 2M/K

Figure 13 The local communication between two consecutive processor elements.

Local net
Memory




Abd El-Halym et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:17

http://asp.eurasipjournals.com/content/2012/1/17

Page 16 of 19

™ wave . |[&]
Fle £t Yew Add Format Took Window
(0308 1@ AER || SERN|| 4« | Flom  HUBHA BT DS «
Messanes !k
& Iof_datrbedipesiishe |1 f B
& ipf_detribatedipesitshd |1 I
& it _dstrtnpedipesiistd |1 an T T M L
& ipf_dstristedipesiishs | 1 1 I
& iof_detrbutedipesffshs |1
& Iof_datrbstedipesiish? |1 f
& Jof_dstrbagedipesitsha |1 f
& ot 4] i3]
& ot o4 0]
& if o (73
& it o7 o
L 2 04 ]
L 2l [ [
& 0ot i 18
& iof @ [+3
& it 1 WHMJJIIIIII_I—M
fpf_dis 2 1 J l
> 1682317
L 4
L 4 PIITAL] T/ T T 71
+ |
<, THIED TR (=Y
J
L 4 TZSIELS Neale  Nieegalr
L 4
L
+
N
1
L 4 N 5T L 7aTH
+ f
TR 17— b
.GSm;‘ ‘-.’Uu;—' I"_".A_L ..nl-<..l;...||>. F‘; "ﬁ:};ﬁ“lllllﬁlola;’;‘l'.;&::.
10104 ps

_

Figure 14 The parallel routing of the particles in the local interconnection network. PE?, PE*, PE°, PE®, and PE® are sinks elements, while
processors PE', PE®, PE” are sources elements. Where the waveform pk_k+1 represents the particles transferred from PE to PE*". The
waveforms nk and fshk represents the N and finish indicator written signal for N particles in the local FIFOX, respectively (N = 8 in our case).

network to complete their FIFOs to N particles, and
send the incoming particles to the neighboring PE**!,

The local net memory size is designed to handle the
worst case, in which two sequential processor elements
PEk, PEX! have half the replicated particles, i.e., N* = N*
= M2,

So, the local net memory should be enough to store M/
2- N (= M(K - 2)/2K). In our case, the local net memory
size has 24 particle locations. If the number of PEs K is
less than two, then the local net memory is zero. This is
logical since the net memory is used inside each PEs to
store the particles passing through the PEs. If we have
one PE or two PEs, then there is no passing-through par-
ticles, and hence, there is no need to the net memory.

The distributed RPA PF is captured using VHDL and
verified using ModelSim simulator.

3.2.3. The execution time of the distributed SIRF

The timing diagram of the implemented distributed
SIRF is shown in Figure 15. TLy and TL,.s have the
same meaning and values in the first implemented SIRF

described in Section 2.2.1. After the first instant, the
total cycle time required is Tsre (in cycles) = (aM/K +
TR + TLyw + TL,s), where TR is the routing time and
equals b(k - I)M/k clock cycles. b assumes values
between 0 and 1. b = 0 if no routing is needed; i.e., N*
=N, k=12, .., K b=1if only one processor element
PE has N = M, and N* = 0 for all other k’s. That PE/
has only one particle with replication factor ¥ = M at
location N of its local FIFQY. The TL, is the resampling
time and equals the CU resampling time K + I, in addi-
tion to the PEs resampling time M/K + 1. Totally, TL,s
equals K + M/K + 2. So, Tsig = (aM/K + K + M/K + 2
+ b(K - 1)M/K + TL) clock cycles, assuming the same
latencies TL for the single and distributed SIRF.

4. Comparison of the execution time between the
three different implementations for SIRF

In summary, the following are the total execution times
of SIRF in our three different implementations:
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Figure 15 The timing diagram for the distributed SIRF with comparison versus the two-step architecture with sequential resampling.

- The total time of the two-step architecture with
sequential resampling:

(aM + M + TL) clock cycles

- The total time of the two-step architecture with
parallel resampling:

(@M + 2 + TL) clock cycles

- The total time of the distributed PF: (aM/K + K +
M/K + 2 + b(K-1)M/K + TL) clock cycles

Table 3 compares the best case and the worst case tim-
ing for the three implementations. TL = 3 clock cycles.
Consider, for example, the two-step PF with parallel
resampling. Table 4 indicates that the worst case Tsirp =
132 cycle. Full compilation of this PF on the Xilinx Virtex
5 xc5vIx50t-3-ff1136 FPGA indicated that this hardware
design can support clock frequencies up to 36 MHz.
Therefore, we can attain a throughput of 36/132 x 10° =
270 x 10° PF iterations/s on this platform.

5. Synthesis comparison between the three
different SIRF implementations

All the proposed architectures are captured using
VHDL, and are synthesized using Xilinx environment

on device xc5vIx50t-3-ff1136. Table 5 depicts the
resources utilization for the proposed architectures. The
total memory requirements for the first and second
architectures are one dual-port FIFO of 2M words to
store the particles vectors of width p (equals to 28 bits),
M x n memory to store the replication factor where M
= 2", and M x w memory to store the weights of the
particles where w equals to 8 bits used in our fixed
point representation.

The third implemented distributed RPA with local
network, uses 2M/K FIFOs for each processor element,
plus (K-2)M/2K memory locations as the local net mem-
ory in each processor elements. Totally each processor
elements requires a total of (M/2+M/K) location mem-
ory to store the particles. The overall required memory
is (M+KM/2). In the comparison, the architecture pre-
sented in [6] needs M memory locations for each pro-
cessor elements (M/K inside the processor elements
plus (K-1)M/K memory locations at the CU). Thus, the
total memory locations required in [6] design is MK.
Thus, our implementation has a resource reduction
advantage of M(K - 2)/2 in addition to a speed advan-
tage without compromising the SIRF performance.
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Table 3 The timing comparison in the worst case and the
best case

HW implementation Worst case Best case
The two-step architecture with a=2 a=1
sequential resampling 3M + 1+TL 2M + 1+TL

196 cycle 132 cycle
The two-step architecture with parallel a=2 a=1
resampling 2M+24+TL M+2+1TL

132 cycle 69 cycle
The distributed PF a=2andb= a=1andb

1 =0

2MK + K+M - 2M/K + K +2

+2+TL +TL

93 cycle 29 cycle

For several hundred particles, the ratio between the
latencies cycles and the number of particles affects the
total execution time. For our object tracking application,
the moving object moves between two consecutive
frames in an area of 32 x 32 pixels. So, the number of
particles, needed to represent this state space, is of mod-
erate value. That is why it is important to consider the
latencies cycles. For example, in the implementation of
Athalye et al. [7], the latency of sampling and impor-
tance computation units are 8 and 53 cycles, respec-
tively, giving a total value for 7L = 61 cycles. If M =
10000 (as in case of reference [7]) this TL value is insig-
nificant. However, if M = 64 (as in our case) this TL
value is close to 100% of the computation time of the
total sampling time. In our implementations, 7L is
reduced to 3 cycles, leading to a latency time overhead
of 3/64, less than 5%.

6. Conclusion

In this article, three novel architectures for SIRF are
proposed. The first architecture is a two-step architec-
ture with sequential resampling, where particle sample,
weight calculation, and output calculation are carried
out in parallel during the first step, followed by sequen-
tial resampling in the second step. This first architecture
serves as a core unit for the next proposed architectures.
The second architecture speeds up the resampling step
(second step) via a parallel, rather than a serial, architec-
ture. The third architecture implements the SIRF as a
distributed PF composed of several PEs and a CU. Each
PE is in fact the two-step core of the first architecture.

Table 4 Worst case throughputs of proposed
architectures (M = 64)

HW implementation Worst Maximum clock  Throughput
case  frequency (MHz)

The two-step architecture 132 36 270 x 10°

with parallel resampling cycle iterations/s

The distributed PF 93 74 795 x 10°
cycle iterations/s
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Table 5 The resources utilization for the three proposed
architectures on the Xilinx Virtex 5 FPGA xc5vIx50t-3-
ff1136

Device utilization summary

Resource Single PE with Single PE Distributed FPGA
sequential with parallel PF 8 PE available
resampling resampling resources

Slice 891 967 9049 28800

registers

Slice LUTs 1203 4430 15017 28800

Fully used 364 746 2517 21549

Bit Slices

Bonded 28 28 148 480

IOBs

Block 1 1 4 60

RAM/FIFO

BUFG/ 2 2 2 32

BYFGCTRLs

DSP48Es 5 48 17 48

All the proposed architectures are captured using
VHDL and are synthesized using Xilinx environment
and verified using Modelsim simulator.

The main features of the proposed architectures are

+ Memory addressing is eliminated via the efficient
use of dual-port FIFOs to store the particles’ state
vectors. Consequently, significant speed up of the PF
process is achieved. There is no need to add mem-
ories to store the particles addresses or indexes as in
[2,7]. The overall memory size is 2M for the sequen-
tial PF. In comparison, required memory sizes for
the PFs of references [2,7] are 3M and 4M, respec-
tively. The FIFO eliminates the need to read, write,
or store the states addresses/indexes in separate
memory, and hence, reduces the execution cycle
time.

« The use of linearized weight likelihood functions
instead of the exponential functions. This feature
captures the localization of the likelihood function
while reducing the hardware resources needed to
evaluate it.

+ The second architecture speeds up the resampling
by a factor of M via a parallel, rather than a serial,
architecture.

« The third distributed PF architecture is implemen-
ted by several PEs with simple but efficient ring
interconnection network. The local routing of the
particles among the PEs executed in parallel with
the particle generation, weight, and output calcula-
tions pipeline step. The proposed ring interconnec-
tion network delay is in the range of zero cycle in
the best case to (K-1)M/K cycle in the worst case
when only one particle has a non-zero weight. The
proposed distributed PF achieves a total execution
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time of (2M/K + K + 2 + TL) in the best case to
(2M/K + K+ M + 2 + TL) in the worst case. In
comparison, the PF designs of references [2,6]
require 3M/4 + 2 cycles and (2M/K + K + Mr + TL)
cycles, respectively. Mr is the delay due to particles
routing assuming the same latencies 7. In addition
our distributed PF gain a reduction of memory size
of M(K-2)/2 when compared with the parallel PF
proposed in [6].
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