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Abstract

In this article, we study the optimal structure of the source precoding matrix and the relay amplifying matrices for
multiple-input multiple-output (MIMO) relay communication systems with parallel relay nodes. Two types of receivers
are considered at the destination node: (1) The linear minimal mean-squared error (MMSE) receiver; (2) The nonlinear
decision feedback equalizer based on the minimal MSE criterion. We show that for both receiver schemes, the optimal
source precoding matrix and the optimal relay amplifying matrices have a beamforming structure. Using such optimal
structure, joint source and relay power loading algorithms are developed to minimize the MSE of the signal waveform
estimation at the destination. Compared with existing algorithms for parallel MIMO relay networks, the proposed joint
source and relay beamforming algorithms have significant improvement in the system bit-error-rate performance.
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Introduction
Recently, multiple-input multiple-output (MIMO) relay
communication systems have attracted much research
interest [1-10]. Many studies have studied the optimal
relay amplifying matrix for the source–relay–destination
channel. In [2,3], the optimal relay amplifyingmatrixmax-
imizing the mutual information (MI) between the source
and destination was derived assuming that the source
covariance matrix is an identity matrix. In [4-6], the relay
amplifying matrix was designed to minimize the mean-
squared error (MSE) of the signal waveform estimation at
the destination.
A few research has studied the jointly optimal structure

of the source precoding matrix and the relay amplifying
matrix. In [7], both the source and relay matrices were
jointly designed to maximize the source–destination MI.
A unified framework was developed in [8,9] to jointly opti-
mize the source and relay matrices for a broad class of
objective functions. All the works in [2-9] considered a
single relay node at each hop. The authors of [10] inves-
tigated the optimal relay amplifying matrices for two-hop
MIMO relay networks with multiple parallel relay nodes.
However, the source precoding matrix was not optimized
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in [10]. In [11,12], parallel MIMO relay systems have been
investigated with power constraint at the output of the
second-hop channel considering a linear and a nonlinear
receiver, respectively.
In this article, we jointly optimize the source precod-

ing matrix and relay amplifying matrices for a two-hop
MIMO relay network with multiple parallel relay nodes
and transmission power constrain at each relay node. Two
types of receivers are considered at the destination node:
(1) The linear minimal MSE (MMSE) receiver; (2) The
nonlinear decision feedback equalizer (DFE) based on the
MMSE criterion. We show that for both receiver schemes,
the optimal source precoding matrix and the optimal relay
amplifying matrices have a beamforming structure. This
result generalizes the optimal source and relay matrices
design from a single relay node per hop case [8,13] to
multiple parallel relay nodes scenario. Simulation results
demonstrate that with a linear MMSE receiver at the des-
tination, the system with the jointly optimal source and
relay matrices has a better bit-error-rate (BER) perfor-
mance compared with that of the relay system with only
optimal relay matrices developed in [10]. Moreover, a
nonlinear DFE receiver recovers the source signals suc-
cessively by exploiting the finite alphabet property of
the source signals. Using a DFE receiver we can remove
the effect of interferences of the data streams we have
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already recovered from the subsequent streams. There-
fore, introducing a nonlinear MMSE–DFE receiver at the
destination yields further improvement in the system BER
performance compared with the MIMO parallel relay sys-
tem using a linear MMSE receiver. Our simulation results
also demonstrate a better performance of the nonlinear
receiver algorithm.
The rest of this article is organized as follows. In the fol-

lowing section, we introduce the model of parallel MIMO
relay systems with a linear MMSE receiver and a non-
linear MMSE–DFE receiver at the destination. In Section
“MMSE relay design” we study the optimal structure of
the source and relaymatrices using both receiver schemes,
after that simulation results are given in Section “Simula-
tions”. Finally, conclusions are drawn in the last section.

Systemmodel
Figure 1 illustrates a two-hop MIMO relay communica-
tion system consisting of one source node, K parallel relay
nodes, and one destination node. We assume that the
source and the destination nodes have Ns and Nd anten-
nas, respectively, and each relay node has Nr antennas.
The generalization to the system with different number of
antennas at each relay node is straightforward. Due to its
merit of simplicity, we consider the amplify-and-forward
relaying scheme at each relay. The communication pro-
cess between the source and destination nodes is com-
pleted in two time slots. In the first time slot, the Nb × 1
modulated source symbol vector s is linearly precoded as

x = B s (1)

where B is an Ns × Nb source precoding matrix. We
assume that the source signal vector satisfies E[ ssH ]=
INb , where In stands for an n × n identity matrix, (·)H is

the matrix (vector) Hermitian transpose, and E[ ·] denotes
statistical expectation. The precoded vector x is transmit-
ted to K parallel relay nodes. The Nr × 1 received signal
vector at the ith relay node can be written as

yr,i = Hsr,ix + vr,i, i = 1, . . . ,K (2)

whereHsr,i is the Nr ×Ns MIMO channel matrix between
the source and the ith relay nodes and vr,i is the additive
Gaussian noise vector at the ith relay node.
In the second time slot, the source node is silent, while

each relay node transmits the linearly amplified signal
vector to the destination node as

xr,i = Fi yr,i, i = 1, . . . ,K (3)

where Fi is the Nr × Nr amplifying matrix at the ith relay
node. The received signal vector at the destination node
can be written as

yd =
K∑
i=1

Hrd,ixr,i + vd (4)

whereHrd,i is theNd×Nr MIMO channel matrix between
the ith relay and the destination nodes, vd is the additive
Gaussian noise vector at the destination node.
Substituting (1)–(3) into (4), we have

yd =
K∑
i=1

(Hrd,iFiHsr,iBs + Hrd,iFivr,i
) + vd

= HrdFHsrBs + HrdFvr + vd (5)

Figure 1 Block diagram of a parallel MIMO relay communication system.
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where we define

Hsr �
[HT

sr,1,HT
sr,2, . . . ,HT

sr,K
]T

Hrd �[Hrd,1,Hrd,2, . . . ,Hrd,K ]

F � bd[F1,F2, . . . ,FK ]

vr �
[vTr,1, vTr,2, . . . , vTr,K ]T .

Here (·)T denotes the matrix (vector) transpose, bd[ ·]
stands for a block-diagonal matrix,Hsr is aKNr×Ns chan-
nel matrix between the source node and all K relay nodes,
Hrd is anNd×KNr channel matrix between all relay nodes
and the destination node, vr is obtained by stacking the
noise vectors at all relays and F is the KNr × KNr equiva-
lent block diagonal relay amplifying matrix. The diagram
of the equivalent MIMO relay system described by (5)
is shown in Figure 2 (without the receiving filters). We
assume that all noises are independent and identically dis-
tributed (i.i.d.) Gaussian noise with zero mean and unit
variance.
By introducing

F̄ � HrdF (6)

the received signal vector at the destination can equiva-
lently be written as

yd = F̄HsrBs + F̄vr + vd = H̄s + v̄
where we define H̄ � F̄HsrB as the effective MIMO chan-
nel matrix of the source–relay–destination link, and v̄ �
F̄vr + vd as the equivalent noise vector. The transmission
power consumed by each relay node can be expressed as

E[ tr(xr,ixHr,i)] = tr
(Fi[Hsr,iBBHHH

sr,i + INr

]FHi )
,

i = 1, . . . ,K
(7)

where tr(·) stands for the matrix trace. In the following,
we introduce the linear MMSE receiver and the nonlinear
MMSE–DFE receiver for MIMO relay systems.

Linear MMSE receiver
Using a linear receiver, the estimated signal waveform
vector at the destination node in Figure 2 (without the
feedback operation) is given by ŝ = WHyd , whereW is an
Nd × Nb weight matrix. The MSE of the signal waveform
estimation is given by

Figure 2 Block diagram of the equivalent MIMO relay system.

MSE = tr
(
E
[(ŝ − s)(ŝ − s)H])

= tr
((WHH̄ − INb

)(WHH̄ − INb

)H + WHCv̄W
)
(8)

where Cv̄ is the equivalent noise covariance matrix given
by Cv̄ = E

[v̄v̄H] = F̄F̄H + INd . The weight matrix W
whichminimizes (8) is theWiener filter and can be written
as

W = (H̄H̄H + Cv̄)
−1H̄ (9)

where (·)−1 denotes the matrix inversion. Substituting (9)
back into (8), it can be seen that the MSE is a function of
F̄ and B and can be written as

MSE = tr
([

INb+H̄HC−1
v̄ H̄

]−1
)
. (10)

Nonlinear MMSE–DFE receiver
With a nonlinear DFE receiver employed at the destina-
tion node, the source symbols are detected successively
with the Nbth symbol detected first and the first symbol
detected last. The equivalentMIMO relay systemmodel is
shown in Figure 2. Assuming that there is no error prop-
agation in the DFE receiver, the estimated source symbol
vector is

s̄ = W̄Hyd − Cs = (W̄HH̄ − C)s + W̄H v̄ (11)

where W̄ is the Nd × Nb feed-forward weight matrix, C
is the Nb × Nb strictly upper-triangle feedback matrix of
the DFE receiver. To minimize the error of the signal esti-
mation in (11), we have C = U [ W̄HH̄], where U [ W̄HH̄]
denotes the strictly upper-triangular part of W̄HH̄.
When the MMSE criterion is used to estimate each

symbol, the feed-forward matrix W̄ is given as

[ W̄]k = (
[ H̄]1:k [ H̄]H1:k +Cv̄

)−1[ H̄]k , k = 1, . . . ,Nb

where [A]1:k stands for a matrix containing the first k
columns ofA, and [A]k is the kth column ofA. Let us now
introduce the following QR decomposition

G �
[
C− 1

2
v̄ H̄

INb

]
= QR =

[Q̄
Q

]
R (12)

where R is an Nb × Nb upper-triangular matrix with
all positive diagonal elements, Q is an (Nd + Nb) × Nb
semi-unitary matrix with QHQ = INb , Q̄ is a matrix con-
taining the first Nd rows of Q, and Q contains the last Nb
rows ofQ.
Using the QR decomposition (12), it has been shown in

[13] that the feed-forward weight matrix W̄, the feedback
matrix C, and the MSE matrix E = E

[
(s̄ − s)(s̄ − s)H]

can
be represented as

W̄ = C− 1
2

v̄ Q̄D−1
R , C = D−1

R R−INb , E = D−2
R (13)
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where DR is a matrix taking the diagonal elements of R as
the main diagonal and zero elsewhere.

Minimal MMSE relay design
In this section, we address the joint source and relay
optimization problem for systems with a linear MMSE
receiver and a nonlinear MMSE–DFE receiver at the des-
tination node, respectively. In particular, we show that
for both receiver schemes, the optimal source and relay
matrices have a general beamforming structure.

Optimal design with linear MMSE receiver
Based on (7) and (10), the joint source and relay optimiza-
tion problem with a linear MMSE receiver used at the
destination node can be formulated as

min{Fi},B
tr

([
INb + H̄HC−1

v̄ H̄
]−1

)
(14)

s.t. tr
(BBH) ≤ Ps (15)

tr
(Fi[Hsr,iBBHHH

sr,i+INr

]FHi )≤Px,i, i = 1, . . . ,K
(16)

where (15) is the transmit power constraint at the source
node, while (16) is the power constraint at each relay node.
Here Ps > 0 and Px,i > 0, i = 1, . . . ,K , are the cor-
responding power budget. Obviously, to avoid any loss
of transmission power in the relay system when a linear
receiver is used, there should be Nb ≤ min(Ns,KNr ,Nd).
Due to the power constraint at each relay node (16), the

source and relay matrices optimization problem (14)–(16)
is much more challenging to solve when K ≥ 2 com-
pared with the case of K = 1. To overcome this difficulty,
we relax the power constraints in (16) by considering the
power of the signal at the output of Hrd, which can be
expressed as [10]

E
[
tr

(
(Hrdxr)(Hrdxr)H

)] = tr
(F̄[HsrBBHHH

sr + IKNr

]F̄H)
≤ Pxtr(HrdHH

rd).
(17)

Here, Px �
∑K

i=1 Px,i is the total transmission power
budget available to all K relay nodes. Using (17), the
relaxed joint source and relay optimization problem can
be written as

min
F̄,B

tr
([

INb + H̄HC−1
v̄ H̄

]−1
)

(18)

s.t. tr
(BBH) ≤ Ps (19)

tr
(
F̄[HsrBBHHH

sr + IKNr

]F̄H)
≤ Pr (20)

where Pr � Pxtr(HrdHH
rd).

Let Hsr = Us�sVH
s denote the singular value decompo-

sition (SVD) ofHsr , where the dimensions ofUs,�s,Vs are

KNr × KNr , KNr × Ns, Ns × Ns, respectively. We assume
that the main diagonal elements of �s are arranged in a
decreasing order. The optimal structure of F̄ and B as the
solution to the problem (18)–(20) is given by

F̄ = V�fUH
s,1, B = Vs,1�b (21)

where V is any Nd ×Nb semi-unitary matrix with VHV =
INb , Us,1 and Vs,1 contain the leftmost Nb columns of
Us and Vs, respectively, �f and �b are Nb × Nb diago-
nal matrices. The proof of (21) is similar to the proof of
Theorem 1 in [8]. From (21), we see that the optimal F̄
and B have a beamforming structure. In fact, they jointly
diagonalize the source–relay–destination channel H̄ up
to a rotation matrix V. Using (21), the joint source–relay
optimization problem (18)–(20) becomes

min
�f ,�b

tr
([INb + (�f �s�b)

2(�2
f + INb)

−1]−1
)

(22)

s.t. tr
(
�2

b
) ≤ Ps (23)

tr
(
�2

f
[(

�s�b
)2 + INb

])≤ Pr . (24)

Let us denote λf ,i, λs,i, λb,i, i = 1, . . . ,Nb, as the main
diagonal elements of �f , �s, �b, respectively, and intro-
duce

ai � λ2s,i, xi � λ2b,i, yi � λ2f ,i
[(

λs,iλb,i
)2+1

]
,

i = 1, . . . ,Nb.
(25)

The optimization problem (22)–(24) can be equivalently
rewritten as

minx,y

Nb∑
i=1

aixi + yi + 1
aixiyi + aixi + yi + 1

(26)

s.t.
Nb∑
i=1

xi ≤ Ps, xi ≥ 0, i = 1, . . . ,Nb (27)

Nb∑
i=1

yi ≤ Pr , yi ≥ 0, i = 1, . . . ,Nb (28)

where x �[ x1, x2, . . . , xNb ]T and y �[ y1, y2, . . . , yNb ]T .
The problem (26)–(28) can be solved by an iterative
method developed in [8], where in each iteration, x and y
are updated alternatingly by fixing the other vector. After
the optimal x and y are found, λf ,i and λb,i can be obtained
from (25) as

λf ,i =
√

yi
λ2s,ixi + 1

, λb,i = √
xi, i = 1, . . . ,Nb. (29)

Using (6) and the optimal structure of F̄ and B in (21),
we have Hrd,iFi = V�f �i, where matrix �i contains the
(i − 1)Nr + 1 to iNr columns of UH

s,1. Then we obtain



Toding et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:174 Page 5 of 7
http://asp.eurasipjournals.com/content/2012/1/174

Fi = H†

rd,iV�f �i, i = 1, . . . ,K (30)

where (·)† denotes matrix pseudo-inverse. Finally, we
scale Fi in (30) to satisfy the power constraint (16) at each
relay node as

F̃i = αiFi, i = 1, . . . ,K (31)

where the scaling factor αi is given by

αi =
√

Px,i
tr(Fi[Hsr,iBBHHH

sr,i + INr ]FHi )
, i = 1, . . . ,K .

(32)

Optimal design with nonlinear MMSE–DFE receiver
Using (12), (13), and the relaxed power constraint (20), the
joint source and relay optimization problem which mini-
mizes the MSE of the signal waveform estimation with a
nonlinear MMSE–DFE receiver can be formulated as

min
F̄,B

tr
(D−2

R
)

(33)

s.t. G = QR (34)

tr(BBH) ≤ Ps (35)

tr
(
F̄[HsrBBHHH

sr + IKNr

]F̄H)
≤ Pr . (36)

Let us introduce M � min(Nb, rank(Hsr)), where
rank(·) denotes the rank of a matrix. The optimal source
precoding matrix and the optimal relay amplifying matri-
ces as the solution to the problem (33)–(36) are given by

F̄ = U�fUH
s,1, B = Vs,1�bVH

r (37)

where �f and �b are M × M diagonal matrices, U is any
Nd×M semi-unitarymatrix withUHU = IM,Us,1 andVs,1
contain the leftmost M vectors of Us and Vs, respectively,
and Vr is an Nb × M semi-unitary matrix (VH

r Vr = IM)

such that the QR decomposition in (34) holds. The proof
of (37) is similar to the proof of Theorem 2 in [13].
From (37), we find that both F̄ and B have a beamform-

ing structure. In particular, they jointly diagonalize the
source–relay–destination channel matrix H̄ up to rotation
matrices U and Vr . It can be shown similar to [13,14] that
the constraint (34) is equivalent to

d[DR]≺ σG (38)

where ≺ stands for multiplicative majorization [15], σG is
a column vector containing all singular values of G, and
d[DR] is a column vector containing all diagonal elements

ofDR. Using (37) and (38), the optimization problem (33)–
(36) can equivalently be rewritten as

min
δf ,δb

tr
(D−2

R
)

(39)

s.t. d[D2
R
]≺w

⎡
⎣{

1 +
(
δf ,iλs,iδb,i

)2
δ2f ,i + 1

}T

, 1Nb−M

⎤
⎦
T

(40)

M∑
i=1

δ2b,i ≤ Ps (41)

M∑
i=1

δ2f ,i
[(

λs,iδb,i
)2+1

] ≤ Pr (42)

δb,i ≥ 0, δf ,i ≥ 0, i = 1, . . . ,M (43)

where ≺w stands for weakly multiplicative submajoriza-
tion [15], 1Nb−M denotes a 1 × (Nb − M) vector with
all 1 elements, δf �[ δf ,1, δf ,2, . . . , δf ,M], and δb �
[ δb,1, δb,2, . . . , δb,M].
Using the definition of the operator ≺w in [15] and the

notations of

ai � λ2s,i, x̃i � δ2b,i, ỹi � δ2f ,i
[(

λs,iδb,i
)2+1

]
,

i = 1, . . . ,M (44)

the optimization problem (39)–(43) can equivalently be
converted to the following problem

min
x̃,ỹ

M∑
i=1

log
aix̃i + ỹi + 1

aix̃iỹi + aix̃i + ỹi + 1
(45)

s.t.
M∑
i=1

x̃i ≤ Ps, x̃i ≥ 0, i = 1, . . . ,M (46)

M∑
i=1

ỹi ≤ Pr , ỹi ≥ 0, i = 1, . . . ,M. (47)

Similar to the problem (26)–(28), the problem (45)–(47)
can be solved by an iterative method developed in [8].
Then Fi, i = 1, . . . ,K , are obtained similar to (29) and
(30). Finally, the relay matrices satisfying the constraints
(16) are obtained as (31) and (32).
The major computation task of the proposed algo-

rithms lies in performing the SVD of channel matrices
and calculating the power loading parameters. Since both
algorithms require the same amount of channel informa-
tion at each node and use iterative approach to obtain
the optimal power allocation vectors, they have the same
computational complexity order. It can easily be seen from
(26)–(28) that the computational complexity of the pro-
posed algorithms is the same as an iterative water-filling
algorithm [8] with two variables of dimension Nb × 1.
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Simulations
In this section, we study the performance of the proposed
jointly optimal source and relay beamforming algorithms
for parallel MIMO relay systems with linear MMSE and
nonlinear MMSE–DFE receivers, respectively. All simula-
tions are conducted in a flat Rayleigh fading environment
where the channel matrices have zero-mean entries with
variances σ 2

s /Ns and σ 2
r /(KNr) for Hsr and Hrd, respec-

tively. The BPSK constellations are used to modulate the
source symbols, and all noises are i.i.d. Gaussian with zero
mean and unit variance. We define SNRs = σ 2

s PsKNr/Ns
and SNRr = σ 2

r PrNd/(KNr) as the signal-to-noise ratio
(SNR) for the source–relay link and the relay–destination
link, respectively. In all simulations, we set Nb = Ns =
Nr = Nd = 3 and SNRr = 20 dB. We transmit 1000Ns
randomly generated bits in each channel realization, and
all simulation results are averaged over 200 channel real-
izations.
In the first example, a parallel MIMO relay system

with K = 3 relay nodes is simulated. We compare the
BER performance of the following algorithms: (i) two
proposed joint source and relay schemes considering
individual power constraints (IPC) at each relay node;
(ii) The source and relay matrices design in [11,12]
with power constraint at the output of Hrd; (iii) the
naive amplify-and-forward (NAF) algorithm where both
the source and relay matrices are scaled identity matri-
ces satisfying power constraints (19) and (20); (iv) the
optimal relay only (ORO) algorithm developed in [10]
where the relay matrices are optimized based on the
MMSE criterion, while the source precoding matrix is a
scaled identity matrix. Figure 3 shows the BER perfor-
mance of six systems versus SNRs. It can be seen from
Figure 3 that the NAF algorithm has the worst perfor-
mance, since it does not exploit the channel knowledge
available. Although both the ORO algorithm and the
proposed MMSE (IPC) algorithm use a linear MMSE
receiver at the destination node, the proposed algo-
rithm has a better performance, since it jointly opti-
mizes the source and relay matrices. We also observe
from Figure 3 that as expected, the proposed optimal
relay algorithm with the nonlinear MMSE–DFE receiver
has the best BER performance. Note that although
the algorithms in [11,12] have a better BER perfor-
mance compared with the proposed algorithms, the
relay matrices developed by Toding et al. [11,12] do
not satisfy the power constraints at each relay node,
which is more relevant for practical relay communication
systems.
In the second example, we study the effect of the num-

ber of relays to the system BER performance using the
proposed algorithms. Figure 4 displays the system BER
versus SNRs with K = 2, 3, and 5. It can be seen that
at BER = 10−4, for both the linear MMSE-based optimal
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Figure 3 Example 1. BER versus SNRs with K = 3.

relay system and the nonlinear MMSE–DFE-based opti-
mal relay system, we can achieve approximately 5-dB gain
by increasing from K = 2 to K = 5. We would like to
mention that although the nonlinear MMSE–DFE algo-
rithm has an improved BER performance compared with
the linear MMSE algorithm, the former system has a
higher decoding complexity than the latter one. Such
performance-complexity tradeoff is very useful for practi-
cal communication systems.

Conclusions
We have derived the optimal structure of the source
precoding matrix and the relay amplifying matrices for
parallel MIMO relay communication systems using linear
MMSE receiver and nonlinearMMSE–DFE receiver at the
destination node. The proposed source and relay matrices
jointly diagonalize the source–relay–destination channel
and minimize the MSE of the signal waveform estimation.
Simulation results demonstrate that the proposed algo-
rithms have improved BER performance compared with
the existing techniques.
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Figure 4 Example 2. BER versus SNRs with varying K .
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