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Abstract

Wideband spectrum sensing detects the unused spectrum holes for dynamic spectrum access (DSA). Too high
sampling rate is the main challenge. Compressive sensing (CS) can reconstruct sparse signal with much fewer
randomized samples than Nyquist sampling with high probability. Since survey shows that the monitored signal is
sparse in frequency domain, CS can deal with the sampling burden. Random samples can be obtained by the
analog-to-information converter. Signal recovery can be formulated as the combination of an L0 norm minimization
and a linear measurement fitting constraint. In DSA, the static spectrum allocation of primary radios means the
bounds between different types of primary radios are known in advance. To incorporate this a priori information, we
divide the whole spectrum into sections according to the spectrum allocation policy. In the new optimization model,
the minimization of the L2 norm of each section is used to encourage the cluster distribution locally, while the L0
norm of the L2 norms is minimized to give sparse distribution globally. Because the L2/L0 optimization is not convex,
an iteratively re-weighted L2/L1 optimization is proposed to approximate it. Simulations demonstrate the proposed
method outperforms others in accuracy, denoising ability, etc.

Keywords: Cognitive radio, Dynamic spectrum access, Wideband spectrum sensing, Compressive sensing, Sparse
signal recovery

Introduction
Cognitive radio (CR) is a very promising technology
for wireless communication. Radio spectrum is a pre-
cious natural resource. The fixed spectrum allocation
is the major way for the spectrum allocation now. In
order to avoid interference, different wireless services are
allocated with different licensed bands. Currently most
of the available spectrum has been allocated. But the
increasing wireless services, especially the wideband ones,
call for much more spectrum access opportunities. The
allocated spectrum becomes very crowded and spec-
trum scarcity comes. To deal with the spectrum scarcity
problem, there are several ways, such as multiple-input
and multiple-output (MIMO) communication [1], ultra-
wideband (UWB) communication [2], beamforming [3,4],
relay [5], and so on. Although most of the bands are allo-
cated, current investigation demonstrates that most of
the allocated bands are in very low utility ratios [6]. CR
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is proposed to exploit the under-utilization of the radio
frequency (RF) spectrum by dynamic spectrum access
(DSA). It is a paradigm in which the cognitive transmit-
ter changes its parameters to avoid interference with the
licensed users. This dynamic alteration of parameters is
based on the timely monitoring of the factors in the radio
environment.
Spectrum sensing is one of the main functions of CR.

It detects the unused frequency bands, and then CR users
can be allowed to utilize the unused primary frequency
bands. Current spectrum sensing is performed in two
steps [7]: the first step called coarse spectrum sensing is to
efficiently detect the power spectrum density (PSD) level
of primary bands; the second step, called feature detec-
tion or multi-dimensional sensing [8], is to estimate other
signal space accessible for CR, such as direction of arrival
(DOA) estimation, spread spectrum code identification,
waveform identification, etc.
Coarse spectrum sensing requires fast and accurate

power spectrum detection over a wideband and even
ultra-wideband (UWB). One approach utilizes a bank of
tunable narrowband bandpass filters. But it requires an
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enormous number of RF components and bandpass fil-
ters, which leads to high cost. Besides, the number of
the bands is fixed and the filter range is always preset.
Thus the filter bank way is not flexible. The other one is a
wideband circuit using a single RF chain followed by high-
speed digital signal processor (DSP) to flexibly search over
multiple frequency bands concurrently [9]. It is flexible
to dynamic power spectrum density. High sampling rate
requirement and the resulting large number of data for
processing are the major problems [10].
Too high sampling rate requirement brings challenge

to the analog-to-digital converter (ADC). And the result-
ing large amount of data requires large storage space and
heavy computation burden of DSP. Since survey shows
sparsity exists in the frequency domain for primary sig-
nal, compressive sensing (CS) can be used to effectively
decrease the sampling rate [11-13]. It assets that a signal
can be recovered with a much fewer randomized samples
than Nyquist sampling with high probability on condition
that the signal has a sparse representation.
In compressive wideband spectrum sensing (CWSS),

analog-to-information converter (AIC) can be taken to
obtain the random samples from analog signal in hard-
ware as Figure 1 shows [14,15]. To get the spectrum
estimation, there are mainly two groups of methods [13].
One group is convex relaxation, such as basis pursuit (BP)
[16,17], Dantzig selector (DS) [18] , and so on; the other
is greedy algorithm, such as matching pursuit (MP) [19],
orthogonal matching pursuit (OMP) [20], and so on. Both
of the convex programming and greedy algorithm have
advantages and disadvantages when applied to different
scenarios. A short assessment of their differences would
be that convex programming has a higher reconstruction
accuracy while greedy algorithm has less computation
complexity. In contrast to BP, basis pursuit denoising
(BPDN) has better denoising performance [17,21].
In this article, the partial Fourier random samples are

obtained via AIC with the measurement matrix gener-
ated by choosing part of separate rows randomly from
the Fourier sampling matrix [14]. Based on the random
samples, a generalized sparse constraint in the form of
mixed C2/C1 norm is proposed to enhance the recov-
ery performance by exploiting the structure information.

It encourages locally cluster distribution and globally
sparse distribution. In the constraint, the estimated spec-
trum vector is divided into sections with different length
according to the a priori information about fixed spec-
trum allocation. The sum of weighted C2 norms of the
sections is minimized. The weighting factor is iteratively
updated as the reciprocal of the energy in the corre-
sponding subband to get more democratical penalty of
nonzero coefficients. Simulation results demonstrate that
the proposed generalized sparse constraint based CWSS
gets better performance than the traditional methods in
spectrum reconstruction accuracy.
In the rest of the article, Section ‘Signal model’ gives

the signal model; Section ‘The classical compressive wide-
band spectrum sensing’ states the classical CWSS meth-
ods. Section ‘The proposed compressive wideband spec-
trum sensing’ provides the generalized sparse constraint
based CWSS methods; In Section ‘Simulation results’, the
performance enhancement of the proposed method is
demonstrated by numerical experiments; Finally Section
‘Conclusion’ draws the conclusion.

Signal model
According to the FCC report [6], the allocated spectrum
is in a very low utilization ratio. It means the spectrum
is in sparse distribution. Recently a survey of a wide
range of spectrum utilization across 6GHz of spectrum
in some palaces of New York City demonstrated that the
maximum utilization of the allocated spectrum was only
13.1%. Thus it is reasonable that only a small part of
the constituent signals will be simultaneously active at
a given location and a certain range of frequency band.
The sparsity inherently exists in the wideband spectrum
[10,22-28]. It is also the reason that DSA can work.
An N × 1 signal vector x can be expanded in an orthog-

onal complete dictionary �N×N , with the representation
as

xN×1 = �N×NbN×1 (1)

When most elements of the N × 1 vector b are zero or
nearly zero, the signal x is sparse. When the number of
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Figure 1 The proposed compressive wideband spectrum sensing structure.
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nonzero elements of b is S (S � M < N), the signal is said
to be S-sparse.
In traditional Nyquist sampling, the time window for

sensing is t ∈[ 0,T0]. N samples are needed to recover the
frequency spectrum r without aliasing, where T0 is the
Nyquist sampling duration. A digital receiver converts the
continuous signal x(t) to a discrete complex sequence yt of
length M. For illustration convenience, we formulate the
sampling model in discrete setting as it does in [10,22-28]:

yt = Axt (2)

where xt represents anN×1 vector with elements xt[ n]=
x(t), t = nT0, n = 1, . . . ,N , andA is anM×N projection
matrix. For example, whenA = FN withM =N, model (2)
amounts to frequency domain sampling, where FN is the
N-point unitary discrete Fourier transform (DFT) matrix.
Given the sample set xt when M < N , compressive spec-
trum sensing can reconstruct the spectrum of r(t) with the
reduced amount of sampling data.
To monitor such a broad band, high sampling rate is

needed. It is often very expensive. Besides, too many sam-
pling measurements inevitably ask many storage devices
and result in high computation burden for digital sig-
nal processors (DSP), while spectrum sensing should be
fast and accurate. CS provides an alternative to the well-
known Nyquist-Shannon sampling theory. It is a frame-
work performing non-adaptive measurement of the infor-
mative part of the signal directly on condition that the
signal is sparse [13]. Since it is proved that xt has a sparse
representation in frequency domain.We can use anM×N
random projection matrix Sc to sample signals, i.e., yt =
Scxt , where M < N ; Sc is a random subsampling matrix
which is generated by choosingM separate rows randomly
from the unit matrix IN .
The AIC can be used to sample the analog baseband

signal x(t). One possible architecture can be based on
a wideband pseudorandom demodulator and a low rate
sampler [14,15]. First we modulate the analogue signal by
a pseudo-random maximal-length pseudorandom noise
(PN) sequence. Then a low-pass filter follows. Finally, the
signal is sampled at sub-Nyquist rate using a traditional
ADC. It can be conceptually modeled as an ADC operat-
ing at Nyquist rate, followed by random discrete sampling
operation [14]. Then yt is obtained directly from contin-
uous time signal x(t) by AIC. The details about AIC can
be found in [14,15]. Here, we incorporate the AIC to the
spectrum sensing architecture as Figure 1 shows.

The classical compressive wideband spectrum
sensing
CS theory asserts that, if a signal has a sparse repre-
sentation in a certain space, one can use the random

sampling to obtain the measurements and successfully
reconstruct the signal with overwhelming probability by
nonlinear algorithms, as stated in Section ‘Signal model’.
The required random samples for recovery are far fewer
than Nyquist sampling.
To find the unoccupied spectrum for secondary access,

the signal in the monitored band is down-converted to
baseband. The analog baseband signal is sampled via the
AIC that produces measurements at a rate below the
Nyquist rate.
Now we estimate the frequency response of x(t) from

the measurement vector yt based on the transformation
equality yt = ScF−1

N r, where r is the N × 1 frequency
response vector (FRV) of signal x(t); FN is the N × N
Fourier transformmatrix; Sc is theM×N matrix which is
obtained by randomizing the row indices and getting the
firstM rows.
Under the sparse spectrum assumption, the FRV can

be recovered by solving the combinatorial optimization
problem

r̂ = argmin
r

‖r‖0
s. t.

(
ScF−1

M

)
r = yt

(3)

Since the optimization problem (3) is nonconvex and
generally impossible to solve, for its solution usually
requires an intractable combinatorial search. As it does in
[10], BP is used to recover the signal:

rBP = argmin
r

‖r‖1
s. t.

(
ScF−1

M

)
r = yt

(4)

This problem is a second order cone programming
(SOCP) and can therefore be solved efficiently using stan-
dard software packages.
BP finds the smallest C1 norm of coefficients among

all the decompositions that the signal is decomposed into
a linear combination of dictionary elements (columns,
atoms). It is a decomposition principle based on a true
global optimization.
In practice noise exists in data. Another algorithm called

BPDN has superior denoising performance than BP [21].
It is a shrinkage and selection method for linear regres-
sion. It minimizes the sum of the absolute values of the
coefficients, with a bound on the sum of squared errors.
To get higher accuracy, we can formulate the BPDN based
compressive wideband spectrum sensing (BPDN-CWSS)
optimization model as:

rBPDN = argmin
r

‖r‖1
s. t.

∥∥∥(
ScF−1

M

)
r − yt

∥∥∥
2

≤ η1
(5)
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where η1 bounds the amount of noise in the data. The
computation of the BPDN is a quadratic programming
problem or more general convex optimization problem,
and can be done by classical numerical analysis algo-
rithms. The solution has been well investigated [21,29-31].
A number of convex optimization software, such as cvx
[32], SeDuMi [33], and Yalmip [34], can be used to solve
the problem.

The proposed compressive wideband spectrum
sensing
Among the classical sparse signal recovery algorithms,
BPDN achieves the highest recovery accuracy [13]. How-
ever, it only takes advantage of sparsity. In wideband
CR application, additional a priori information about the
spectrum structure can be obtained. The further exploita-
tion of structure information would give birth to recov-
ery accuracy enhancement [28,35,36]. Besides, It is well-
known that the minimization of C0 norm is the best
candidate for sparse constraint. But in order to reach
a convex programming, the C0 norm is relaxed to C1
norm, which leads to the performance degeneration [37].
Here a weighting formulation is designed to democrati-
cally penalize the elements. It suggests that large weights
could be used to discourage nonzero entries in the recov-
ered FRV, while small weights could be used to encourage
nonzero entries. To get the weighted values, a simple
iterative algorithm is proposed.

Wideband spectrum sensing for fixed spectrum allocation
The classical algorithms reconstruct the commonly sparse
signal. However, in the coarse wideband spectrum sens-
ing, the boundaries between different kinds of primary
users are fixed due to the static frequency allocation of
primary radios. For example, the bands 1710–1755MHz
and 1805–1850MHz are allocated to GSM1800. Previous
CWSS algorithms did not take advantage of the infor-
mation of fixed frequency allocation boundaries. Besides,
according to the practical measurement, though the spec-
trum vector is sparse globally, in some certain allocated
frequency sections, they are not always sparse locally. For
example, in a certain time and area, the frequency sections
1626.5–1646.5MHz and 1525.0–1545.0MHz allocated to
international maritime satellite are not used, but the fre-
quency sections allocated to GSM1800 are fully occupied.
The wideband FRV is not only sparse, but also in sparse
cluster distribution with different length of clusters. It is
the generalization of the so called block-sparsity [35,36].
This feature is extremely vivid in the situation that most
of the monitored primary signals are spread spectrum
signals.
Previous classical CWSS does not assume any addi-

tional structure on the unknown sparse signal. However
in the practical application, the signal may have other

structures. Incorporating additional structure informa-
tion would improve the recoverability potentially.
Block-sparse signal is the one whose nonzero entries

are contained within several clusters. To exploit the block
structure of ideally block-sparse signals, C2/C1 optimiza-
tion was proposed. The standard block sparse constraint
(SBSC) in the form of C2/C1 optimization can be formu-
lated as [35,36]:

min
r

(
K∑
i=1

∥∥r(i−1)d0:id0
∥∥
2

)

s. t.
(
ScF−1

M

)
r = yt

(6)

where K is the number of the divided subbands; d0 is
the length of the divided blocks. Extensive performance
evaluations and simulations have demonstrated that as d0
grows the algorithm significantly outperforms standard
BP algorithm [36].
However, in the standard C2/C1 optimization, the esti-

mated sparse signal is divided with the same block length,
which mismatches the practical situation that the values
of the length of the spectrum subbands allocated to dif-
ferent radios can not be all the same. Besides, the linear
measurement fitting constraint in (6) does not incorporate
the denoising function.
To further enhance the performance of CWSS, the fixed

spectrum allocation information can be incorporated in
the CWSS algorithm. Based on the a priori information
about boundaries, the estimating PSD vector is divided
into sections with their edges in accordance with the
boundaries of different types of primary users by fixed
spectrum allocation. In the BPDN-CWSS, the minimiza-
tion of the standard C1-norm constraint on the whole
FRV is replaced by the minimization of the sum of the
C2 norm of each divided section of the FRV to encourage
the sparse distribution globally while blocked distribution
locally. As it combines C1 norm and C2 norm to enforce
the sparse blocks with different block lengths, the new
CWSSmodel, in the name of variable-length-block-sparse
constraint based compressive wideband spectrum sensing
(VLBS-CWSS), can be formulated as:

min
r

(‖r1‖2 + ‖r2‖2 + · · · + ‖rK‖2
)

s. t.
∥∥∥yt − ScF−1

N r
∥∥∥
2

≤ η2
(7)

where r1, r2, . . . , rK are K sub-vectors of r corresponding
to d1, d2, . . . , dK−1 which are the lengths of the divided
sections. η2 bounds the amount of noise in the data. It can
be formulated as:

r =
(

r1 · · · rd1︸ ︷︷ ︸
r1

· · · rdK−1+1 · · · rN︸ ︷︷ ︸
rK

)T

(8)
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Since the objective function in the VLBS-CWSS (7) is
convex and the other constraint is an affine, it is a con-
vex optimization problem. It can also be solved by a host
of numerical methods in polynomial time. Similar to the
solution of the BPDN-CWSS (5), the optimal r of the
VLBS-CWSS (7) can also be obtained efficiently using
some convex programming software packages. Such as
cvx [32], SeDuMi [33], and Yalmip [34], etc.
After we get r from (8), power spectrum can be

obtained. Several ways can indicate the spectrum holes,
such as energy detection [27], edge detection [10], and
so on. For example, in energy detection we will calculate
‖rk‖2, k = 1, 2, . . . , K. Comparing it with an experi-
mental threshold, the spectrum holes for dynamic access
can be clearly given. The energy detection will be used in
numerical simulations.

Enhanced variable-length-block-sparse spectrum sensing
In sparse constraint, C0 norm minimization is relaxed
to C1 norm at the cost of bringing the dependence on
the magnitude of the estimated vector. In the C1 norm
minimization, larger entries are penalized more heavily
than smaller ones, unlike the more democratic penaliza-
tion of the C0 norm. Here in the the VLBS constraint,
to encourage sparse distribution of the spectrum in the
global perspective, the C1 norm of a series of the C2 norm
is minimized. Similarly, the dependence on the power in
each subband exits.
To deal with this imbalance, the minimization of the

weighted sum of the C2 norm of each blocks is designed
to more democratically penalize. The new weighted VLBS
constraint based compressive wideband spectrum sensing
(WVLBS-CWSS) can be formulated as:

min
r

(
w1 ‖r1‖2 + w2 ‖r2‖2 + · · · + wK ‖rK‖2

)
s.t.

∥∥∥yt − ScF−1
N r

∥∥∥
2

≤ η3
(9)

where r1, r2, . . . , rK are defined as (8); η3 bounds the
amount of noise; w = [

w1 w2 · · · wK
]T . wi depends on

pi ≥ 0, for i = 1, . . . ,K , where pi corresponds to the
power of the primary user exists in the ith subband.
Obviously, the object function of theWVLBS-CWSS (9)

is convex. It is a convex optimization problem. In principle
this problem is solvable in polynomial time.
To realize the WVLBS-CWSS (9) in practice, the

weighting vector w should be provided. As it is defined
before, the computation of the weight wi is in fact the
computation of the pi. Here a practical way to iteratively
set the pi is proposed. At each iteration, the pi is the sum

of the absolute value of frequency spectrum vector in the
corresponding subband. It can be formulated as:

pt,i = ∥∥rt−1,i
∥∥
1= ∣∣rt−1, di−1+1

∣∣ + · · · + ∣∣rt−1, di
∣∣ (10)

where rt−1, i is the ith sub-vector as in (8) at the (t-1)th
iteration; rt−1, di−1+1, . . . , rt−1,di are the elements of the
sub-vector rt−1,i. After getting the pi, the weighting vector
w can be formulated. Here we can get it by

wi = 1
pi + δ

(11)

where a small parameter δ > 0 in (11) is introduced to
provide stability and to ensure that a zero-valued compo-
nent in pi does not strictly prohibit a nonzero estimate at
the next step.
The initial condition of the recursive relation is wi = 1,

for all i = 1, . . . ,K . That means in the first step, all the
blocks are weighted equally. Along with the increase of the
iteration times, larger values of pi are penalized lighter in
the WVLBS-CWSS (9) than smaller values of pi. To ter-
minate the iteration at the proper time, the stopping rule
can be formulated as

‖rt − rt−1‖2 ≤ ε (12)

where rt is the estimated FRV at the tth iteration; ε bounds
the iteration residual.
The initial state of the iterative algorithm is the same

with the VLBS-CWSS (7). Tomake a difference, The itera-
tive reweighted algorithm is named as enhanced variable-
length-block-sparse constraint based compressive wide-
band spectrum sensing (EVLBS-CWSS).

Simulation results
Numerical experiments are presented to illustrate perfor-
mance improvement of the proposed EVLBS-CWSS for
CR. Here we consider a base band signal with its fre-
quency range from 0Hz to 500MHz as Figure 2 shows.
The primary signals with random phase are contam-
inated by a zero-mean additive white Gaussian noise
(AWGN) which makes the signal to noise ratio (SNR) be
11.5 dB. Four primary signals are located at 30–60MHz,
120–170MHz, 300–350MHz, 420–450MHz. Their cor-
responding frequency spectrum levels fluctuate in the
range of 0.0023–0.0066, 0.0016–0.0063, 0.0017–0.0063,
and 0.0032–0.0064, as Figure 3 shows. Here we take the
noisy signal as the received signal x(t). As CS theory sug-
gests, we sample x(t) randomly at the subsampling ratio
0.40 via AIC as Figure 1. The resulted sub-sample vector
is denoted as yt .
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Figure 2 The normalized spectrum of noiseless active primary signals in the monitoring band.

To make contrast, with the same number of samples,
the amplitude of frequency spectrum estimated by dif-
ferent methods are given in Figures 4, 5, and 6. Figure 4
shows the result estimated by the standard BPDN-CWSS
(5) where η1 is chosen to be 0.1

∥∥yt∥∥2 with 1000 tries aver-
aged; Figure 5 does it by the VLBS-CWSS (7) where η2 is

chosen to be 0.2
∥∥yt∥∥2; Figure 6 does it by the proposed

EVLBS-CWSS (9) where η3 is chosen to be 0.2
∥∥yt∥∥2, and

δ is chosen to be 0.001.
Figure 6 shows that the proposed EVLBS-CWSS gives

the best reconstruction performance. It shows that there
are too many fake spectrum points in the subbands with
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Figure 3 The normalized spectrum of noisy active primary signals in the monitoring band.



Liu and Wan EURASIP Journal on Advances in Signal Processing 2012, 2012:177 Page 7 of 11
http://asp.eurasipjournals.com/content/2012/1/177

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency (MHz)

N
or

m
al

iz
ed

 P
S

D

Figure 4 The compressive wideband spectrum estimation via BPDN-CWSS.

no active primary signal in Figure 4 which is given by
the standard BPDN. The noise levels of the spectrum
estimated by the BPDN-CWSS and the VLBS-CWSS are
high along the whole monitored band. For the VLBS-
CWSS, as in Figure 5, it has considerable performance
improvement, but the noise level in part of the inactive
subbands is still high. However, in Figure 6, the four occu-
pied bands clearly show up; the noise levels in the inactive
bands are quite low; the variation of the spectrum levels
in the boundaries of estimated spectrum are quite abrupt
and correctly in accordance with the generated sparse

spectrum in Figure 2, which would enhance the edge
detection performance much. Therefore, the proposed
EVLBS-CWSS outperforms the standard BPDN-CWSS
and the VLBS-CWSS for CR.
Apart from the edge detection, energy detection is the

most popular spectrum sensing approach for CR. To
test the CWSS performance by energy detection, 1000
Monte Carlo simulations are done with the same param-
eters above to give the results of average energy in each
section of the divided spectrum vector with the BPDN-
CWSS (5), the VLBS-CWSS (7) and the EVLBS-CWSS
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Figure 5 The compressive wideband spectrum estimation via VLBS-CWSS.
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Figure 6 The compressive wideband spectrum estimation via EVLBS-CWSS.

Table 1 The total energy in each subband with the three CWSSmethods and the values of EDPER, when there are four
active bands and the sub-sampling ratio is 0.40

1 2 3 4 5 6 7 8 9

Real PSD 0 0.4747 0 0.5303 0 0.5107 0 0.4823 0

BPDN-CWSS 0.1149 0.3820 0.1752 0.4734 0.3184 0.4780 0.2333 0.4026 0.1994

VLBS-CWSS 0.0000 0.2447 0.0000 0.5101 0.4220 0.5833 0.0005 0.4020 0.0000

EVLBS-CWSS 0.0000 0.2681 0.0000 0.5396 0.1897 0.6361 0.0000 0.4431 0.0000

R1 100% −35.94% 100% 7.75% −32.54% 22.03% 100% 0.15% 100%

R2 100% −29.82% 100% 13.98% 40.42% 33.08% 100% 10.06% 100%

Table 2 The total energy in each subband with the three CWSSmethods and the values of EDPER, when there are three
active bands and the sub-sampling ratio is 0.40

1 2 3 4 5 6 7 8 9

Real PSD 0.0000 0.0000 0.0000 0.5998 0.0000 0.6171 0.0000 0.5093 0.0000

BPDN-CWSS 0.2489 0.1221 0.1704 0.5080 0.2526 0.5676 0.1637 0.4867 0.1741

VLBS-CWSS 0.0000 0.0000 0.0000 0.5642 0.2544 0.6806 0.0000 0.3922 0.0000

EVLBS-CWSS 0.0000 0.0000 0.0000 0.6029 0.0027 0.5951 0.0000 0.5313 0.0000

R1 100% 100% 100% 11.06% −0.71% 19.91% 100% −19.42% 100%

R2 100% 100% 100% 18.68% 98.93% 4.84% 100% 9.16% 100%
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Table 3 The total energy in each subband with the three CWSSmethods and the values of EDPER, when there are three
active bands and the sub-sampling ratio is 0.35

1 2 3 4 5 6 7 8 9

Real PSD 0.0000 0.0000 0.0000 0.5997 0.0000 0.6171 0.0000 0.5094 0.0000

BPDN-CWSS 0.1966 0.1766 0.2002 0.5912 0.3480 0.4420 0.2573 0.3482 0.1915

VLBS-CWSS 0.0000 0.0000 0.0000 0.8035 0.4190 0.3593 0.0000 0.2231 0.0000

EVLBS-CWSS 0.0000 0.0000 0.0000 0.7572 0.1258 0.5095 0.0000 0.3887 0.0000

R1 100% 100% 100% 35.91% −20.40% −18.71% 100% −35.93% 100%

R2 100% 100% 100% 28.08% 63.85% 15.27% 100% 11.63% 100%

(9). The simulated monitored band is divided into nine
sections as Figure 2. The total energy with each CWSS
method is normalized. Table 1 presents the average energy
in each subband with different recovery methods, when
there are four active bands and the sub-sampling ratio
is 0.40; Table 2 does when there are three active bands
and the sub-sampling ratio is 0.40; Table 3 does when
there are three active bands and the sub-sampling ratio
is 0.35; Table 4 does when there are two active bands
and the sub-sampling ratio is 0.30. For the EVLBS-CWSS,
it is obvious that the estimated noise energy of inactive
bands is much smaller that the other two. To quantify
the performance gain of EVLBS-CWSS against others,
after normalizing the total energy of the spectrum vectors,
we define the energy detection performance enhance-
ment ratios (EDPER) of VLBS-CWSS and EVLBS-CWSS
against BPDN-CWSS for the kth subband as:

R1 (k) =

⎧⎪⎪⎨
⎪⎪⎩

∥∥rVLBSk
∥∥2
2−

∥∥rBPDNk
∥∥2
2∥∥rBPDNk

∥∥2
2

, for active subbands∥∥rBPDNk
∥∥2
2−

∥∥rVLBSk
∥∥2
2∥∥rBPDNk

∥∥2
2

, for inactive subbands

(13)

R2 (k) =

⎧⎪⎪⎨
⎪⎪⎩

∥∥rEVLBSk
∥∥2
2−

∥∥rBPDNk
∥∥2
2∥∥rBPDNk

∥∥2
2

, for active subbands∥∥rBPDNk
∥∥2
2−

∥∥rEVLBSk
∥∥2
2∥∥rBPDNk

∥∥2
2

, for inactive subbands

(14)

where rEVLBSk , rVLBSk , and rBPDNk represent values of esti-
mated frequency spectrum vectors in the kth subband via
EVLBS-CWSS, VLBS-CWSS, and BPDN-CWSS, respec-
tively. These performance functions can quantify how
much energy increased to enhance the probability of
correct energy detection of the active primary bands
and how much denoising performance is enhanced. The
values of EDPER in Tables 1, 2, 3, and 4, clearly tell
the improvement of the proposed EVLBS-CWSS against
VLBS-CWSS and BPDN-CWSS methods. We can see
a small number of negative values of R1 in the tables.
The BPDN-CWSS can occasionally give the estimated
values more similar to real signal in a small number of
subbands. Comparing these occasionally good results of
BPDN-CWSS with VLBS-CWSS, the negative values of
R1 may come out. EVLBS-CWSS is initialized by VLBS-
CWSS. Although it can meet the same situation, the
interactive reweighting improves VLBS-CWSS a lot. We
can see in energy detection the active bands can easily
stand out with the values of energy in subbands estimated
by EVLBS-CWSS in the tables. The whole performance of
EVLBS-CWSS is the best.
To further evaluate the performance of EVLBS-CWSS,

when the number of active bands is four and sub-sampling
ratio is 0.40, the residuals ‖rt − rt−1‖2 for 1000 Monte
Carlo simulations are measured. Using the unnormal-
ized received signal, the measured average power of the
random samples yt is 29533. From t = 2 to t = 8,
the residuals are 361.5066, 261.6972, 55.0035, 17.9325,
15.0799, 13.4075, and 12.6189. It shows the iteration is

Table 4 The total energy in each subband with the three CWSSmethods and the values of EDPER, when there are two
active bands and the sub-sampling ratio is 0.30

1 2 3 4 5 6 7 8 9

Real PSD 0.0000 0.0000 0.0000 0.7918 0.0000 0.0000 0.0000 0.6107 0.0000

BPDN-CWSS 0.1710 0.0736 0.1733 0.5836 0.2742 0.1907 0.2341 0.6021 0.2565

VLBS-CWSS 0.0000 0.0000 0.0000 0.7768 0.2151 0.0000 0.0000 0.5907 0.0000

EVLBS-CWSS 0.0000 0.0000 0.0000 0.7697 0.0012 0.0000 0.0000 0.6387 0.0000

R1 100% 100% 100% 33.10% 21.55% 100% 100% −1.89% 100%

R2 100% 100% 100% 19.60% 74.93% 100% 100% 6.08% 100%
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almost convergent at t = 5. The iteration would bring the
increase of computation complexity, but the performance
enhancement is obvious and worthwhile.
The enhancement of spectrum estimation accuracy

qualifies the proposed EVLBS-CWSS as an excellent can-
didate for CWSS.

Conclusion
In this article, CS is used to deal with the too high
sampling rate requirement problem in the wideband spec-
trum sensing for CR. The sub-Nyquist random samples
is obtained via the AIC with the partial Fourier ran-
dommeasurement matrix. Based on the random samples,
incorporating the a priori information of the fixed spec-
trum allocation, an improved block-sparse constraint with
different block length is used to enforce locally block dis-
tribution and globally sparse distribution of the estimated
spectrum. The new constraint matches the practical spec-
trum better. Furthermore, the iterative reweighting is
used to alleviate the performance degeneration when the
C2/C0 norm minimization is relaxed to the C2/C1 one.
Because the a priori information about boundaries of
different types of primary users is added and iteration
is used to enhance the VLBS constraint performance,
the proposed EVLBS-CWSS outperforms previous CWSS
methods. Numerical simulations demonstrate that the
EVLBS-CWSS has higher spectrum sensing accuracy, bet-
ter denoising performance, etc.
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