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Abstract

Recently, a system concept for joint communication and positioning has been proposed by the authors. Channel
parameter estimation (CPE) is the core part of this system proposal. Parameters of the physical channel, which can be
exploited for positioning, are estimated based on the assumption that a priori knowledge about pulse shaping and
receive filtering is available. At the same time, channel estimates of the equivalent discrete-time channel model,
which are needed for data detection, are obtained inherently. This article focusses on the positioning part of the
system proposal. Performance limits for CPE in terms of Cramer-Rao lower bounds are determined for different
channel models. The influence of oversampling and of different channel characteristics is investigated. Oversampling
proves especially helpful in dense multipath scenarios, which are most challenging. Based on the presented results,
oversampling with a factor of two is recommended in order to improve the positioning accuracy. Excessive
oversampling like in conventional global positioning system receivers is not necessary.

Introduction
Interest in joint communication and positioning is steadily
increasing [1-4]. The combination of communication
and positioning offers a wide range of advantages and
synergistic effects like enhanced resource allocation or
improved power control in cellular networks. Further-
more, applications such as locating emergency calls, track-
ing, and guiding firefighters or policemen on a mission,
or location-based services become feasible. Communica-
tion and positioning can be combined in different ways:
existing systems can be combined in a hybrid receiver,
existing systems can be extended to provide additional
services, or new systems with a unified signal structure
can be designed. The latter approach is considered in
this article. The main aim of such a joint communica-
tion and positioning system is to provide high data rates
with low bit error rate for the communication part, and a
high localization accuracy for the positioning part. Since
it is quite challenging to fulfil both conditions at the same
time, a flexible system configuration is desirable in order
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adjust the tradeoff between communication and position-
ing to the recent needs: in case of an emergency call,
emphasis can be laid on the positioning part, whereas
the communication payload can be increased in case of
data transmissions like file downloads or video streaming.
Furthermore, a flexible configuration allows adapting the
transmission scheme to changing channel conditions in
order to fulfil a certain quality of service.
Recently, a system concept for joint communication and

positioning has been proposed by the authors of [5,6].
The system proposal is based on multi-layer interleave-
division multiple access (ML-IDMA) [7] in combination
with pilot layer-aided channel estimation (PLACE) [8].
ML-IDMA is a combination of interleave-division mul-
tiplexing (IDM) and IDMA. The application of IDM as
multiplexing scheme is essential for the system proposal
since it provides the desired flexibility, while the choice
of the multiple access scheme is less crucial. IDM is a
special code-division multiplexing scheme, where differ-
ent data streams (called layers) are separated by layer-wise
interleaving. The key idea for joint communication and
positioning is to allocate one layer with a known training
pattern employed for positioning and channel estimation,
whereas the remaining layers are information-bearing
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layers employed for data communication. This article
focusses on the positioning part of the proposed system,
which is based on the time-of-arrival (ToA) concept: Radi-
olocation is typically performed in two steps [9]. First,
parameters of the physical channel like the received sig-
nal strength, the angle-of-arrival, or the ToA are estimated
(parameter estimation). Based on these parameters, the
position of the mobile station is determined in a second
step (position estimation). The parameter estimation error
translates into a positioning error via the geometric dilu-
tion of precision (GDOP) [10]. Given a certain GDOP, the
positioning accuracy increases if the parameter estimation
error decreases. Thus, accurate parameter estimation is a
prerequisite for precise radiolocation.
Channel parameter estimation (CPE) is the core part

of the proposed system concept. Based on the assump-
tion that a priori information about pulse shaping and
receive filtering is available, parameters of the physical
channel including the ToA are estimated and exploited
for positioning. At the same time, estimates for the chan-
nel coefficients of the equivalent discrete-time channel
model, which are needed for data detection, are obtained
inherently. Thus, CPE enables positioning and data detec-
tion. Typically, only one aspect of CPE is considered: On
the one hand, CPE is well known in the context of channel
sounding [11-13]. In this case, the parameters of the phys-
ical channel are of interest, while the channel coefficients
of the equivalent discrete-time channel model, which are
available as well, are not further processed. On the other
hand, the usage of a priori information about pulse shap-
ing and receive filtering has already been suggested in
[14-16] for improved channel estimation in communi-
cation systems. In this case, the information about the
physical channel is discarded. For joint communication
and positioning, both aspects of CPE are exploited.
The channel parameter estimator considered in this

contribution is based on the maximum-likelihood prin-
ciple. There are two equivalent approaches: On the one
hand, the channel parameters can be estimated directly
from the received samples as it is often the case for
channel sounding [11-13]. Similar estimators have been
investigated for example in the context of Rake receivers in
code-division multiple access [17] or for pure navigation
purposes [18]. On the other hand, CPE can be performed
in two steps: First, standard channel estimation (without
a priori information about pulse shaping and receive fil-
tering) is applied in order to obtain a preliminary estimate
of the channel coefficients. Based on this pre-stage chan-
nel estimates, the parameters of the physical channel are
estimated and enhanced channel estimates are obtained.
This two-step approach is for example considered in [19].
Similar to the channel estimation approaches in [14-16],
the channel estimates which are available after CPE are
more reliable than the pre-stage channel estimates due

to the exploitation of a priori information about pulse
shaping and receive filtering. Since the approach based on
the received samples and the two-step approach based on
the pre-stage channel estimates are equivalent, the latter
approach is recommended due to complexity reasons.
In this article, performance limits for parameter estima-

tion in terms of Cramer-Rao lower bounds (CRLBs) are
determined for different channel models. Especially, the
impact of oversampling is analyzed. Three different kinds
of channel models are considered: A single-path channel,
several two-path channels, and different wireless world
initiative new radio (WINNER) channels with numerous
multipath components. The single-path channel is taken
into account since it is the best possible case for position-
ing and, thus, provides a lower bound for all other channel
models. By means of the two-path channel models, the
influence of different channel characteristics such as the
excess delay, power ratio, and phase offset of the propaga-
tion paths can be investigated. The results obtained for the
two-path channels are the basis for more realistic chan-
nel models with an arbitrary number of propagation paths
like the WINNER channel models that are considered
in this article. It is observed that oversampling provides
a performance gain compared to symbol-rate sampling.
Oversampling proves especially helpful in dense multi-
path scenarios, which are most challenging with respect
to positioning. Since the performance for all oversampling
factors larger than two is about the same, oversampling
with a factor of two is recommended.
Many applications of joint communication and posi-

tioning are located in urban or indoor areas including
hotspots like train stations, airports, or shopping malls. In
these environments, multipath components are typically
dense, i.e., these environments are very demanding con-
cerning radiolocation. However, the required positioning
accuracy is quite high in urban or indoor areas. Often, it
is not possible to meet the required accuracy with a sin-
gle radiolocationmethod. Therefore, several radiolocation
methods should be combined via sensor fusion [20-22]
in order to improve the positioning accuracy. Keeping in
mind that a system can always be extended by assisting
concepts, the system proposal should be understood as
a single contribution concerning positioning, that can be
combined with other radiolocation methods via sensor
fusion.
The remainder of this article is organized as follows:

In Section “System concept”, the system and chan-
nel model is introduced and the joint communica-
tion and positioning system proposed by the authors
is presented. CPE is explained in Section “CPE”. The
basic estimation problem is introduced and the two-
step maximum-likelihood approach is presented. In
Section “Performance limits—CRLB”, performance lim-
its for the derived channel parameter estimator are
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determined in terms of CRLBs. Numerical results for
different channel models and for different oversam-
pling factors are presented. Furthermore, the impact of
the obtained results on the overall positioning process
are discussed. Finally, conclusions are drawn in Section
“Conclusion”.

System concept
Throughout this article, the discrete-time complex base-
band notation is used. Let x′[ κ], 0 ≤ κ < K ′, denote the
κth symbol of a coded and modulated burst of length K ′.
If oversampling is applied, this sequence is upsampled to
a burst of length K = JK ′, where J is the oversampling
factor. The symbols of the upsampled sequence are given
according to

x[ k]=
{
x′[ k/J] if kmod J = 0,
0 else.

(1)

In case of symbol-rate sampling (J = 1), both sequences
are the same (x[ k]= x′[ κ] and K = K ′). Assuming a lin-
ear modulation scheme, the received sample y[ k] at time
index k is given by

y[ k]=
L∑

l=0
hl[ k] ·x[ k − l]+n[ k] , 0 ≤ k < K + L, (2)

where hl[ k] is the lth channel coefficient of the equiva-
lent discrete-time channel model with channel memory
length L and n[ k] is a zero mean Gaussian noise sample.
The equivalent discrete-time channel model comprises all
continuous-time elements of a transmission link, namely
the pulse shaping filter gTx (τ ), the time-variant physical
channel c(τ , t), additive white Gaussian noise (AWGN),
the receive filter gRx (τ ), and sampling. This means that
the channel coefficients hl[ k] are the samples of the over-
all channel weight function h(τ , t), which is given by the
convolution of gTx (τ ), c(τ , t), and gRx (τ ). Due to the
associative and commutative properties of the convolu-
tion, pulse shaping and receive filtering can be combined:
g (τ ) = gTx (τ ) ∗ gRx(τ ). The physical channel c(τ , t) is
typically modeled by a weighted sum of delayed Dirac
impulses. In this case, the channel coefficients after sam-
pling at t = kT + ε are given by

hl[ k]=
I∑

i=1
fi[ k] ·g (lT + ε − τi[ k] ) . (3)

where fi[ k]∈ C and τi[ k]∈ R≥0 are the complex ampli-
tude and the propagation delay of the ith propagation
path, respectively. Furthermore, I denotes the number of
propagation paths, T = Ts/J denotes the sampling period,
which is given as a fraction of the symbol duration Ts,
and ε is the sampling phase, that accounts for sampling
time offsets. The noise process n[ k] in (2) is generally col-
ored because white Gaussian noise with zero mean and

variance σ 2
n is added to the continuous-time signal before

receive filtering, i.e., the white Gaussian noise is filtered
by gRx (τ ). Thus, the sampled autocorrelation function of
n[ k] is given by

ϕnn[�k]= σ 2
n · ψRx (�kT ) (4)

with �k = k1 − k2 and where ψRx (τ ) = gRx (τ )∗ gRx (−τ)

denotes the autocorrelation function of the receive filter. If
a square-root Nyquist pulse is applied at the receiver, the
noise remains white for symbol-rate sampling.
The channel coefficients in (3) depend on propagation

delays τi[ k] of the physical channel. For positioning based
on the ToA, the propagation delay of the first arriving
path, τ1[ k], needs to be estimated. In contrast, perfect
synchronization is often assumed for the simulation of
communication systems. This means that the propagation
delay of the first arriving path is known and eliminated
perfectly such that excess delays νi[ k]= τi[ k]−τ1[ k] are
considered only. The sampling phase ε is zero in this
case. Consequently, the leading channel coefficients with
zero values are eliminated and a shorter channel memory
length can be taken into account. The assumption of per-
fect synchronization is not applicable in this contribution
since the positioning part of the proposed system concept
is based on the ToA. Therefore, a coarse synchronization
is considered subsequently, that eliminates the propaga-
tion delay of the first arriving path only approximately:

ν′
i[ k]= τi[ k]−τ̌1[ k]= τi[ k]−(τ1[ k]+ε) = νi[ k]−ε.

(5)

This means that excess delays in combination with a non-
zero sampling phase are taken into account. In this case,
the propagation delays in (3) are replaced by excess delays:

hl[ k]=
I∑

i=1
fi[ k] ·g (lT + ε − νi[ k] ) . (6)

Based on the above assumptions, the estimation of the
ToA τ̂1[ k] corresponds to the estimation of the sampling
phase ε̂. The final ToA estimate, that can be exploited for
positioning, is given as

τ̂1[ k]= τ̌1[ k]−ε̂ = τ1[ k]+ε − ε̂. (7)

It should be noted here that the requirements concerning
synchronization differ for communication and positioning
purposes. Assuming that a correlation-based synchro-
nization is performed, the highest correlation peak should
be chosen for communication purposes in order to maxi-
mize the signal-to-noise ratio (SNR) at the receiver side. In
contrast, the first correlation peak, whichmight not be the
highest, is important for positioning via the ToA.With the
proposed system concept both requirements can be met:
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First, a coarse synchronization is performed that maxi-
mizes the SNR. Then, the ToA is determined more accu-
rately by estimating the sampling phase using CPE. Thus,
CPE corresponds to a fine-tuning of synchronization for
positioning purposes.
Now, it becomes clear why CPE is the core part of

the proposed joint communication and positioning sys-
tem. Channel estimation is mandatory for communication
purposes since the channel coefficients of the equivalent
discrete-time channel model need to be known for data
detection. If the parameters of the physical channel are
estimated, positioning is enabled and estimates of the
channel coefficients are available inherently. The relation-
ship in (6) is the basis for CPE. From (6), it is obvious that
the channel coefficients are known if the parameters of the
physical channel (fi[ k] , νi[ k] , 1 ≤ i ≤ I) and the shape
of the filter g (τ ) are known. Training symbols should be
inserted into the transmission burst in order to simplify
CPE. All multiplexing techniques including time-division
multiplexing (TDM) and frequency-division multiplexing
can be applied for that purposes. According to the system
proposal in [5,6], IDM [7] in combination with PLACE [8]
is considered in this article. The main idea of IDM is to
linearly superimpose several data streams of a user, which
are called layers in the following. In case of PLACE, a pilot
layer containing training symbols is additionally superim-
posed onto the data layers for CPE purposes as shown in
Figure 1. Each data layer is either dedicated to communi-
cation purposes (e.g., speech or video transmission) or it
may carry auxiliary information for localization purposes
(e.g., time of departure or positions of reference objects).
The layers are distinguished by layer-specific interleavers:
Let um[ n], 0 ≤ n < N , 1 ≤ m ≤ M, denote the nth bit
of the mth data layer. Each bit sequence is encoded with
code rate R = N/K ′ (ENC), interleaved by a layer-specific
interleaver (πm) and mapped onto the complex plane via

binary phase shift keying (BPSK), which leads to the layer-
wise symbols x′

m[ κ]. Before all data layers and the pilot
layer with training symbols x′

0[ κ] are summed up, an ade-
quate power and phase allocation with complex weighting
factors amejξm is performed. Thus, the κth symbol of the
transmission burst of length K ′ is given by

x′[ κ] =
M∑

m=0
amejξm · x′

m[ κ]

= a0ejξ0 · x′
0[ κ]︸ ︷︷ ︸

pilot layer

+
M∑

m=1
amejξm · x′

m[ κ]︸ ︷︷ ︸
data layers

. (8)

Each symbol x′[ κ] carries B = RM bits, where B
is called bit load [7]. Since all layers employ the same
encoders in combination with BPSK mapping, the trans-
mitter structure of IDM is very simple. However, IDM
offers a flexible configuration, which is desirable for joint
communication and positioning, because the data rate can
be easily adapted by changing the number of data lay-
ers M instead of changing the modulation scheme [23].
Furthermore, layer-wise unequal error protection can eas-
ily be achieved by assigning different amplitude levels to
different layers [7]. Similarly, the tradeoff between com-
munication and positioning purposes can be regulated via
an adequate power allocation. The ratio of the pilot layer
power to the total power,

ρ = a20
M∑

m=0
a2m

, (9)

can be varied between 0 and 1, where ρ = 0 and
ρ = 1 correspond to no training at all and pure
training, respectively.

Figure 1 Transmitter structure of IDMwith PLACE.
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CPE
For the purpose of CPE, the channel model in (6) is refor-
mulated by combining the excess delays with the sampling
phase to auxiliary parameters 
i[ k]= νi[ k]−ε, 1 ≤ i ≤ I,
which are termed coarse excess delays in the following.
Furthermore, block fading is assumed, i.e., the parameters
of the physical channel do not change over the transmis-
sion burst. In this case, the channel coefficients do not
depend on the time index k anymore:

hl =
I∑

i=1
fi · g (lT − 
i) . (10)

Block fading can be assumed for 0 ≤ BD · K ′Ts < 0.01,
where BD is the Doppler spread of the physical channel,
K ′ is the burst length and Ts is the symbol duration. The
Doppler spread depends on the mobility of the investi-
gated scenario and can be equated with the maximum
Doppler shift BD = fD,max = v/c · f0. In this case, v
represents the maximum possible velocity, c denotes the
speed of light, and f0 is the carrier frequency. For joint
communication and positioning, mainly indoor and urban
areas are of interest. Hence, the maximum velocities, that
typically occur, lie between 7 and 70 km/h. Thus, a wide
range of reasonable parameter combinations (K ′, Ts, f0)
exists, for which the block fading assumption is valid. If
the parameters are fixed to specific values, that can not
be changed, and the block fading assumption is violated,
the transmission burst can be subdivided into smaller
blocks, for which the block fading assumption is valid
again. In this case, CPE can be performed block- instead of
burst-wise (sliding window approach, see also [8]). Con-
sequently, the assumption of block fading is adequate and
hardly restricts the applicability of the proposed channel
parameter estimator.
In order to emphasize the functional relationship

between the parameters of the physical channel (fi, 
i, 1 ≤
i ≤ I) and the channel coefficients of the equiva-
lent discrete-time channel hl, the channel parameters are
stacked in a vector

θ =[ θ1, . . . , θP]T

= [Re {f1} , Im {f1} , 
1, · · · , Re {fI} , Im {fI} , 
I]T (11)

of length P = 3I. Each propagation path is character-
ized by three parameters: the real and imaginary part of
the complex amplitude, Re

{
fi
}
and Im

{
fi
}
, and the coarse

excess delay 
i. The channel coefficients in (10) can be
expressed as a function of the parameter vector in (11)
according to

hl(θ) =
P∑

p=1
p+=3

(
θp + jθp+1

)
g
(
lT − θp+2

)
. (12)

Based on the training symbols x0[ k], CPE is performed:
Inserting (8) into (2) leads to:

y[ k] =
L∑

l=0

M∑
m=0

hl(θ) · amejξm · xm[ k − l] + n[ k]

=
L∑

l=0
hl(θ) · a0ejξ0 · x0[ k − l]

︸ ︷︷ ︸
useful part for CPE

+
L∑

l=0

M∑
m=1

hl(θ) · amejξm · xm[ k − l]

︸ ︷︷ ︸
data layer interference

+ n[ k] .

(13)

Only the first part in (13) is useful for CPE, while the sec-
ond part (data layer interference) complicates CPE. Typ-
ically, turbo-type iterative receivers are applied for data
detection in case of IDM and related techniques [24-26],
i.e., the receiver consists of a multi-layer detector (MLD)
and a bank of layer-wise decoders. At the MLD, only the
multiplexing and the channel constraint are taken into
account ignoring the coding constraint. In contrast, the
layer-wise decoders consider the coding constraint only.
Extrinsic information is exchanged iteratively between the
MLD and the decoders. In this way, the quality of the
incorporated estimates can be increased over iterations.
In case of channel estimation, the feedback information
from the decoders can be used to mitigate the data layer
interference [8]: By means of data layer interference can-
cellation (DIC), improved channel estimates are obtained,
which in turn lead to improved data estimates. Typically,
the data layer interference can be cancelled nearly per-
fectly, i.e., the residual data layer interference after an
adequate number of receiver iterations is negligible. Under
certain conditions, the residual data layer interference is
not negligible anymore. In this case, the residual data
layer interference can be modeled as a Gaussian vari-
able according to the central limit theorem because M
and L are typically large. Then, the noise and the resid-
ual data layer interference can easily be combined to a
single Gaussian distortion with increased variance com-
pared to pure noise, i.e., non-negligible residual data layer
interference corresponds to a decrease in SNR. Hence,
it is sufficient to consider perfect DIC for the derivation
of performance limits for CPE. This means that CPE is
first performed after an adequate number of receiver iter-
ations. Previously, standard channel estimation is applied.
The assumption of perfect DIC leads to

yDIC[ k]=
L∑

l=0
hl(θ) · a0ejξ0 · x0[ k − l]+n[ k] . (14)
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Without loss of generality, ξ0 = 0 can be assumed. The
remaining phases ξm are distributed equally between 0
and π . Furthermore, the amplitude of the pilot layer can
be expressed as a0 = √

ρ due to power normalization(∑M
m=0 a2m

!= 1
)
. Based on the observations after DIC in

(14), the parameter vector θ can be estimated via the
maximum-likelihood (ML) approach [27,28] exploiting a
priori information about the pilot symbols x0[ k] and the
overall pulse shape g (τ ) (including pulse shaping and
receive filtering). ML estimators are asymptotically opti-
mal (unbiased and efficient), i.e., they achieve the best
possible performance given by the CRLB for a large num-
ber of observations or at high SNR. Furthermore, the
ML estimators correspond to the least-squares (LS) esti-
mators in case of Gaussian noise. For the derivation of
the ML estimator for CPE, it is useful to express (14) in
vector/matrix notation:

yDIC = X0 h(θ) + n, (15)

where yDIC =[ yDIC[ L] , . . . , yDIC[K −1] ]T is the observa-
tion vector containing the received samples after DIC and
X0 is the training matrix with Toeplitz structure:

X0=√
ρ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

x0[ L] x0[ L − 1] · · · x0[ 0]

x0[ L + 1] x0[ L] · · · x0[ 1]
...

...
. . .

...

x0[K − 1] x0[K − 2] · · · x0[K − L − 1]

⎤
⎥⎥⎥⎥⎥⎥⎦.

(16)

Furthermore, h(θ) =[ h0(θ), . . . , hL(θ)]T and n =
[ n[ L] , . . . , n[ k − 1] ]T denote the channel coefficient vec-
tor and a zero mean Gaussian noise vector with covari-
ance matrix Cn, respectively. The entries of the noise
covariance matrix are determined according to the auto-
correlation function of the noise process given in (4):

[Cn]i,j = σ 2
n ψRx

(
(i − j)T

)
. (17)

As already mentioned above, there are two equivalent
approaches to estimate the channel parameters θ based
on the signal model in (15)–(17). The first approach
is based on the received samples yDIC and the second
approach relies on so-called pre-stage channel estimates
ȟ that are obtained via a standard channel estimation
algorithm from the received samples yDIC. Due to com-
plexity reasons, only the second approach is considered
subsequently. Since block fading is assumed, the pre-stage

channel estimates can be obtained in closed form via
(weighted) least-squares channel estimation [28]:

ȟ = (XH
0 C−1

n X0
)−1 XH

0 C−1
n yDIC,

= (XH
0 C−1

n X0
)−1 XH

0 C−1
n X0︸ ︷︷ ︸

I

h(θ)

+ (XH
0 C−1

n X0
)−1 C−1

n XH
0 n︸ ︷︷ ︸

η

, (18)

where η ∼ CN
(
0,Cη

)
is the channel estimation error

with covariance matrix

Cη = (XH
0 C−1

n X0
)−1 . (19)

At this stage, the a priori information about pulse shap-
ing and receive filtering is not exploited yet. The a priori
information about pulse shaping and receive filtering is
incorporated in a second step applying the ML principle:
The parameters of the physical channel θ are estimated by
maximizing the likelihood function p(ȟ, θ) [28]:

θ̂ = argmax
θ̃

{
p(ȟ, θ̃)

}
= argmin

θ̃

{(
ȟ − h(θ̃)

)H
C−1

η

(
ȟ − h(θ̃)

)}
. (20)

Due to the pulse shape g (τ ), the metric in (20) is non-
linear, i.e., the minimization cannot be solved in closed
form. Exhaustive search is prohibitive because the search
space (parameter space) is continuous and of high dimen-
sion (P = 3I). Hence, an optimization method needs
to be applied, which typically performs the minimiza-
tion/maximization in an iterative manner. Due to the
superposition of several multipath components, there
exist many local optima besides the global optimum.
Hence, a global optimization method is required in gen-
eral. A viable global optimization algorithm is for example
particle swarm optimization (PSO) [29,30] as demon-
strated by the authors in [31]. Of course, other optimiza-
tion methods are applicable as well. If a priori information
about the approximate location of the global optimum
is available, even local optimization methods like the
Levenberg-Marquardt algorithm [32, pp. 688–693] can be
applied. For example, the parameter estimate of the pre-
ceding burst can be used as initial guess for the recent
burst if the channel is changing slowly from burst to
burst (tracking). However, a global optimization method
like PSO is still required for acquisition. Even though
the global optimization methods may be computationally
complex in the acquisition phase, they can be reduced in
complexity in the tracking phase, where real-time oper-
ation is more critical: The a priori information about
the approximate location of the global optimum can be
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exploited by global optimization methods to narrow the
search space and to simplify the global search. In this
case, PSO needs much less computations on average com-
pared to acquisition. In general, there is a tradeoff between
performance and complexity. In order to choose an ade-
quate optimization method for a specific application, the
particular requirements of this application need to be
taken into account. The complexity of pre-stage channel
estimation is negligible since the pre-stage channel esti-
mates ȟ are obtained in closed form. Furthermore, the
pseudoinverse (XH

0 C
−1
n X0 )−1XH

0 C−1
n can be computed

in advance since the pilot symbols x0[ k] and the receive
filter gRx (τ ) are known. Hence, the overall complexity is
dominated by the optimization algorithm for CPE.
It should be noted here that the only parameter, that is

needed for positioning, is θ̂3 = 
̂1 = −ε̂. All remaining
P − 1 parameters are not relevant for positioning. How-
ever, the whole parameter estimate θ̂ is needed to obtain
enhanced channel estimates ĥ = h(θ̂), which are more
reliable than the pre-stage channel estimates ȟ due to the
usage of a priori information about pulse shaping and
receive filtering.

Performance limits—CRLB
The CRLB corresponds to the best performance that
any unbiased estimator can achieve. This means that the
covariance matrix of the estimator, C

θ̂
, is greater than

or equal to the inverse of the Fisher information matrix
I(θ)−1 [27,28]:

C
θ̂

− I(θ)−1 ≥ 0, (21)

i.e., the matrixC
θ̂

−I(θ)−1 is positive semidefinite. If only
a single parameter θp, 1 ≤ p ≤ P, is considered, the vari-
ance of this parameter, which corresponds to the mean
squared error (MSE) in case of an unbiased estimator, is
greater than or equal to the corresponding diagonal entry
of the inverse Fisher information matrix:

MSE
(
θ̂p
)

= [C
θ̂

]
p,p ≥ [I(θ)−1]

p,p = CRLB
(
θp
)
.

(22)

According to [28], each entry of the Fisher information
matrix is defined as

[ I(θ)]p,q = −E
{

∂2 ln p(ȟ, θ)

∂θp∂θq

}
. (23)

Employing the Jacobian matrix of the channel function
h(θ), which is given by

J(θ) = ∂h(θ)

∂θT
=

⎡
⎢⎢⎢⎣

∂h0
∂θ1

· · · ∂h0
∂θP

...
. . .

...
∂hL
∂θ1

· · · ∂hL
∂θP

⎤
⎥⎥⎥⎦ , (24)

results in the following Fisher information matrix:

I(θ) = 2Re
{
J(θ)H C−1

η J(θ)
}

= 2Re
{
J(θ)HXH

0 C−1
n X0 J(θ)

}
. (25)

As already mentioned earlier, the estimation of the ToA
corresponds to the estimation of the sampling phase and,
thus, the only parameter of interest for positioning is θ̂3 =

̂1 = −ε̂. Given a certain parameter vector θ , only the
corresponding CRLB according to (22) with p = 3 is
considered:

MSE
(
τ̂1
)=MSE

(
ε̂
)=[C

θ̂

]
3,3 ≥ [I(θ)−1]

3,3 = CRLB (ε) .
(26)

Since there are many possible parameter sets θ , the CRLBs
are determined semi-analytically by means of Monte
Carlo simulations. In each run of a Monte Carlo sim-
ulation, a different channel realization with a different
parameter vector θ is generated and the corresponding
Fisher informationmatrix is determined according to (25).
The overall CRLB is given by the expectation of the inverse
Fisher information matrices

CRLB (ε) = E
{[
I(θ)−1]

3,3

}
, (27)

where the expectation is taken with respect to the param-
eter vector θ . For all channel models examined below, the
CRLBs are determined for different oversampling factors
over the SNR in dB. To be more precise, the pilot-to-noise
ratio (PNR),

γp =
E

⎧⎨
⎩
∣∣∣∣∣ L∑
l=0

hl(θ) · x0[ k − l]

∣∣∣∣∣
2
⎫⎬
⎭

E
{|n[ k] |2} , (28)

is taken into account, which is only a fraction of the SNR,

γs =
E

⎧⎨
⎩
∣∣∣∣∣ L∑
l=0

hl(θ) · x[ k − l]

∣∣∣∣∣
2
⎫⎬
⎭

E
{|n[ k] |2} . (29)

The relationship between the PNR and the SNR is deter-
mined by the pilot layer power: γp = ρ·γs. The following
simulation setup is applied if not stated otherwise: A burst
length of K ′ = 100 (K = JK ′) is assumed and a pseudo-
random sequence of BPSK symbols is used as training. A
Gaussian pulse shape

p(τ ) = exp
(−(τ/Ts)

2) (30)

is applied. In order to obtain a causal pulse shape, the
Gaussian pulse is shifted by a certain amount s. That
means that the overall pulse shape is given by

g (τ ) = gTx (τ ) ∗ gRx (τ ) = p(τ − s), (31)
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which is equally distributed among the pulse shaping and
the receive filter. Hence, the autocorrelation of each fil-
ter corresponds to a Gaussian pulse: ψTx (τ ) = ψRx (τ ) =
p(τ ). In this case, the noise covariance matrix is given by

[Cn ]i,j = σ 2
n p

(
(i − j)T

) = σ 2
n exp

(
−
(
i − j
J

)2
)
.

(32)

An effective pulse width of Tg = 8Ts and a shift of s =
0.5Tg = 4Ts are assumed. In each run of a Monte Carlo
simulation, a uniformly distributed random sampling
phase ε is generated in the interval [−0.5Ts,+0.5Ts]. The
remaining parameters of θ are generated according to the
applied channel model. In all figures below, the quanti-
ties concerning timing or delay measures are normalized
with respect to the symbol duration, e.g., the CRLB of
ε is normalized to T2

s . Three different kinds of channel
models are considered: A single-path channel, several two-
path channels, and differentWINNER channels according
to [33]. The single-path channel comprises only a line-
of-sight (LOS) path and is taken into account since it is
the best possible case for positioning and, thus, provides
a lower bound for all other channel models. The two-path
channels comprise an additional propagation path beside
the LOS path. By means of the two-path channel models,
the influence of different channel characteristics such as
the excess delay, power ratio, and phase offset between the
two propagation paths can be investigated. The relation-
ships observed for the two-path channels are the basis for
more complex channel models with an arbitrary number
of propagation paths. In this case, the mutual relation-
ship between all paths determines the performance. This
means that the results obtained for the two-path channels
can be used to predict the performance for the WINNER
channels, that model wireless radio propagation in urban
and indoor environments in a realistic way. Due to the
assumption of perfect DIC, the performance limits pre-
sented below are not only valid for the system concept
proposed by the authors, but can also be applied to other
multiplexing techniques like TDM.

Single-path channel
The single-path channel, which comprises a LOS path
only, is taken into account since it is the best possible
case for positioning and, thus, provides a lower bound for
all other channel models. The channel coefficients of the
single-path channel are modeled by

hl = exp
(
jΦ
)
exp

(
−
(
lT + ε − s

Ts

)2
)

= f exp
(
−α2

l,J

)
(33)

with f = exp
(
jΦ
)
, αl,J = l/J + (ε − s)/Ts. The start-

ing phase Φ is generated randomly between 0 and 2π .
As there is only a single-path, there are no excess delays
and, thus, the channel memory length results in L′ = 9
(L = JL′). In Figure 2, the normalized CRLB of ε for the
single-path channel is plotted over the PNR. In Figure 2a,
the influence of the burst length K ′ is shown for symbol-
rate sampling (J = 1), whereas in Figure 2b the influence
of the oversampling factor J is illustrated for a burst length
of K ′ = 100. In all cases, the CRLB decreases with the
PNR and is much smaller than one, which corresponds
to a small fraction of the squared symbol duration T2

s .
This means that the estimation error is much smaller than
the symbol duration Ts. The larger the burst length, the
better the performance: The CRLB improves by approxi-
mately 3 dB if the burst length is doubled (see Figure 2a).
The same influence of the burst length is observed in
all other channel models. Hence, only burst lengths of
K ′ = 100 are considered in the following if not stated
otherwise. Furthermore, oversampling provides a slight
performance gain as shown in Figure 2b: For all over-
sampling factors J ≥ 2, the CRLBs are improved by
approximately 0.8 dB in comparison to symbol-rate sam-
pling. A similar behavior is observed for the remaining
channel models as well, i.e., all oversampling factors J ≥ 2
lead to same performance gain. Hence, only J = 2 is con-
sidered subsequently. The question arises for what reason
oversampling provides a performance gain? What is the
difference between symbol-rate sampling and oversam-
pling? In order to answer these questions, the CRLB for
the single-path channel is examined in more detail. The
starting point is the Fisher information matrix given in
(25). In order to keep the following investigations man-
ageable, two assumptions are applied which simplify the
determination of the Fisher information matrix. First,
white noise is assumed for all oversampling factors and,
second, the burst length is assumed to be large. In this
case, the inverse covariance matrix of the channel estima-
tion error can be approximated by a scaled identity matrix

C−1
η = XH

0 C−1
n X0 ≈ γ · I (34)

with scaling factor γ = (K ′ − L′)/(Jσ 2
n ). This leads to an

approximate Fisher information matrix

I(θ) ≈ 2γ · Re {J(θ)HJ(θ)
}
. (35)

Hence, only the Jacobian matrix needs to be deter-
mined. The partial derivatives of the channel coefficients
are given by

∂hl
∂θ1

= exp
(
−α2

l,J

)
,

∂hl
∂θ2

= j exp
(
−α2

l,J

)
,

∂hl
∂θ3

= 2f · exp
(
−α2

l,J

)
· αl,J .

(36)
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Figure 2 Normalized CRLB of ε versus PNR for the single-path channel. (a) Influence of the burst length K ′ (J = 1). (b) Influence of the
oversampling factor J (K ′ = 100).

Multiplying the Hermitian conjugate of the Jacobian
matrix with the Jacobian matrix itself and taking the real
part of the result leads to a Fisher information matrix of
the following form:

I(θ) ≈ 2γ ·
⎡
⎣ A 0 B
0 A C
B C D

⎤
⎦ (37)

with

A =
L∑

l=0

{
exp

(
−α2

l,J

)}2
, (38)

B = 2Re
{
f
} L∑
l=0

{
exp

(
−α2

l,J

)}2 · αl,J , (39)

C = 2 Im
{
f
} L∑
l=0

{
exp

(
−α2

l,J

)}2 · αl,J , (40)

D = 4|f |2
L∑

l=0

{
exp

(
−α2

l,J

)}2 · α2
l,J . (41)

Inverting the matrix in (37) results in

I(θ)−1≈ 1
2γ

· 1
A(AD − B2 − C2)

⎡
⎢⎢⎣
AD − C2 BC −AB

BC AD − B2 −AC

−AB −AC A2

⎤
⎥⎥⎦.

(42)

The CRLB of the sampling phase corresponds to the
third main diagonal entry of the above matrix

CRLB (ε)

= [I(θ)−1]
3,3 ≈ 1

2γ
· A
AD − B2 − C2

= 1
8γ |f |2 ·

×

L∑
l=0

{
exp

(
−α2

l,J

)}2
[

L∑
l=0

{
exp

(
−α2

l,J

)}2][ L∑
l=0

{
exp

(
−α2

l,J

)}2·α2
l,J

]
−
[

L∑
l=0

{
exp

(
−α2

l,J

)}2·αl,J

]2.
(43)

Since |f |2 is always one in the single-path channel,
the difference between symbol-rate sampling and over-
sampling must depend somehow on the sums over the
exponential terms and, thus, on the sampling phase itself.
In Figure 3, the influence of the sampling phase on the
approximate CRLB is illustrated: In Figure 3a, the approx-
imate CRLB is plotted over the sampling phase ε for
symbol-rate sampling and oversampling with J = 2 for
γp = 10 dB. For oversampling with J = 2, the approx-
imate CRLB is constant and does not depend on ε. In
contrast, the approximate CRLB varies with the sampling
phase for symbol-rate sampling. Thus, there is a con-
siderable difference between symbol-rate sampling and
oversampling. The same behavior can be observed for the
average channel power divided by the oversampling factor,

1
J
E
{ L∑

l=0
|hl(θ)|2

}
= 1

J
E
{ L∑

l=0

{
exp

(
α2
l,J

)}2}
, (44)
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Figure 3 Influence of the sampling phase on the approximate normalized CRLB. (a) Approximate normalized CRLB of ε versus the sampling
phase with γp = 10 dB. (b) Average channel power divided by the oversampling factor vs. the sampling phase.

which corresponds to the numerator in (43). The average
channel power according to (44) is plotted in Figure 3b:
For oversampling with J = 2, the power of the chan-
nel is constant and, thus, independent of the sampling
phase. For symbol-rate sampling, in contrast, the power
of the channel is a function of the sampling phase: The
highest power is obtained for ε = 0 (perfect synchroniza-
tion), while the smallest power occurs for |ε| = 0.5Ts.
This means that non-perfect synchronization leads to
a power loss concerning symbol-rate sampling. Similar
results have already been reported by the authors in [6] for
a rectangular and a root raised cosine pulse shape.
Now, it is clear that there is a considerable difference

between symbol-rate sampling and oversampling. But the
question remains: How does this difference lead to the
observed performance gain of oversampling? In order to
answer this question, it is necessary to return to the exact
Fisher information matrix described by (25) and the cor-
responding exact CRLB. How does the behavior of the
CRLB change if the exact instead of the approximate ver-
sion is taken into account? In Figure 4a, both types of the

CRLB are plotted over the sampling phase ε for K ′ =
100, γp = 10 dB and J = 1, 2. The curves are labeled
with “A” for approximate and “E” for exact. In order to
have a closer look at the different behavior of the approx-
imate and the exact CRLB, the normalized difference
between the symbol-rate sampled and the oversampled
CRLB according to

CRLB(ε)
∣∣J=1 − CRLB(ε)

∣∣
J=2

CRLB(ε)
∣∣
J=1

, (45)

is plotted for each type in Figure 4b. For the approxi-
mate and the exact CRLB, the shape of the corresponding
curves is basically the same. The difference between the
approximate CRLB and the exact CRLB lies in the fact
that the curves of the exact CRLB are shifted downward
with the shift for symbol-rate sampling being smaller than
the shift for oversampling. This means that the curves of
the normalized difference between the CRLBs are shifted
upward. A slight deviation is observed in case of the
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Figure 4 Comparison of approximate and exact normalized CRLBs vs. the sampling phase with γp = 10dB. The curves are labeled with “A”
for approximate and “E” for exact. (a) Normalized CRLB of ε with K ′ = 100. (b) Normalized difference of CRLBs with K ′ = 100.
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exact CRLB for J = 2: In contrast to the approximate
CRLB for oversampling, the exact CRLB for oversam-
pling is not absolutely constant over the whole range of
sampling phases, but it slightly increases for ε ≥ 0 (see
Figure 4a). This effect is due to the short burst length
of K ′ = 100. For larger burst lengths (e.g., K ′ = 400),
this effect is not present anymore and the exact CRLB
for J = 2 is absolutely constant over the whole sam-
pling phase range as well. The most interesting aspect
is revealed by the mean of the normalized difference,
which is shown as a straight line in Figure 4b. If white
noise is assumed for all oversampling factors (“A”), then
the mean of the normalized difference (45) equals zero
in all cases. That means that on average there is no dif-
ference between symbol-rate sampling and oversampling
such that the CRLBs determined via Monte Carlo simu-
lations (with a random sampling phase) are the same. In
case of colored noise (“E”), the mean of the normalized
difference (45) is approximately 0.16 for K ′ = 100, i.e.,
the exact CRLBs for symbol-rate sampling and oversam-
pling differ on average by a small amount. This difference
leads to the oversampling gain which has been observed
in Figure 2b.
Last but not least, it is interesting to note that the mean

of the normalized difference as well as the oversampling
gain vary with the burst length K ′. In Figure 5, the influ-
ence of the burst length K ′ is examined in more detail:
In Figure 5a, the CRLB of ε is plotted for symbol-rate
sampling and oversampling with different burst lengths
of K ′ = 100 and K ′ = 400. As already mentioned
before, the performance gain of oversampling is approx-
imately 0.8 dB for K ′ = 100. For K ′ = 400, this gain
is increased to approximately 1 dB. For comparison, the
mean of the normalized difference is plotted over the
burst length K ′ in Figure 5b. The circles denote the simu-
lated values, while the dashed line corresponds to a fitted
curve. It is observed that the mean normalized differ-
ence increases with the burst length and saturates around

0.223, i.e., from approximately K ′ = 800 upward the
mean normalized difference is constant. The mean nor-
malized difference for K ′ = 400 is approximately 0.2.
Interestingly, the ratio of the performance gains corre-
sponds to the ratio of the mean normalized differences:
0.8/1 dB = 0.8 = 0.16/0.2. Thus, the mean of the nor-
malized difference translates into the performance gain
with a positive factor. As the mean normalized difference
saturates around 0.223, the maximum achievable over-
sampling gain is approximately 1.115 dB in a single-path
channel.

Two-path channels
Two-path channels represent the simplest form of a mul-
tipath channel. Since block fading is assumed, a two-path
channel can be fully characterized according to

hl = a1 exp
(
jΦ1

)
exp

(
−
(
lT + ε − s

Ts

)2
)

+a2 exp
(
jΦ2

)

× exp
(

−
(
lT + ε − s − ν2

Ts

)2
)
.

(46)

Bymeans of the two-path channel models, the influence of
different channel characteristics such as the excess delay
ν2, power ratio P = a21/a

2
2, and phase offset �Φ =

Φ2 −Φ1 between the two propagation paths can be inves-
tigated. The maximum possible excess delay is fixed to
νmax
2 = 2Ts, which leads to a channel memory length
of L′ = 11 (L = JL′). At first, the CRLB of ε is exam-
ined over PNR, where the power ratio and the phase
offset are generated randomly in the intervals [0.1, 10]
and [0,2π ], respectively. Concerning the excess delay, two
different scenarios are considered: one with small excess
delays (ν2/Ts ∈[ 0.05, 1]) and one with large excess delays
(ν2/Ts ∈[ 1, 2]). The corresponding CRLBs for different
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Figure 5 Influence of the burst length K ′ on the oversampling gain. (a) Normalized CRLB of ε vs. PNR for different oversampling factors and
burst lengths. (b)Mean normalized difference of CRLBs vs. burst length K ′ .
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oversampling factors are shown in Figure 6. The overall
performance decreases with respect to the LOS chan-
nel (as expected) but the oversampling gain increases.
Both, the overall performance and the oversampling gain,
depend on the channel model: The smaller the excess
delay, the worse is the CRLB and the larger is the over-
sampling gain. For the channel with small excess delay,
the gain is approximately 6.5 dB, whereas it is only 2.6 dB
for the channel with large excess delay. In order to have a
closer look at this dependence, the CRLBs are determined
over the excess delay for a fixed PNR (γp = 10 dB). Simi-
larly, the influence of the phase offset �Φ and the power
ratio P is investigated.
In contrast to the LOS channel, the approximate Fisher

information matrix according to (35) and the correspond-
ing approximate CRLB are not considered here. Due to
the increased size of the Fisher information matrix (6×6
instead of 3×3), the resulting formula for the approximate
CRLB consists of many different terms and is, therefore,
less concise than in the case of the LOS channel. Two
basic simulation setups are applied, whose characteris-
tics are tabulated in Table 1. The parameter of interest
is varied, while the other parameters are fixed to the val-
ues given in Table 1. The corresponding CRLBs and their
normalized differences according to (45) are shown on
the left-hand side and on the right-hand side of Figure 7,
respectively. The curves are labeled with “S1” for the first
setup and “S2” for the second setup. The mean normal-
ized difference of the LOS channel (for K ′ = 100) is given
for comparison in Figure 7b,d,f since it corresponds to a
lower bound concerning the normalized difference of the
two-path channels. In the first row of Figure 7, the influ-
ence of the excess delay ν2 is illustrated for both setups,
while the influence of the phase offset �Φ and the power
ratio P are shown in the second and third row, respec-
tively. The overall performance and the oversampling gain
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Figure 6 Normalized CRLB of ε versus PNR for the two-path
channels with small and large excess delay ν2.

Table 1 Basic simulation setups for the two-path channel
models

Parameter Setup 1 Setup 2

ν2/Ts 0.5 1.5

P 1.0 5.0

�Φ 0◦ 90◦

strongly depend on the simulation setup and the channel
characteristic of interest. It is obvious that the first setup
corresponds to a kind of worst case concerning param-
eter estimation, whereas the second setup represents a
kind of best case scenario. For the first setup, oversam-
pling can provide a significant gain over symbol-rate sam-
pling. This gain is not influenced by the power ratio (see
Figure 7f ), while it mainly depends on the excess delay ν2
(see Figure 7b): The smaller the excess delay, the larger is
the oversampling gain. Hence, oversampling proves espe-
cially helpful in dense multipath scenarios. Furthermore,
the phase offset �Φ has a significant impact on the over-
sampling gain, which is highest when both propagations
paths have the same or the opposite phase (see Figure 7d).
As mentioned above, the normalized difference trans-
lates into the oversampling gain with a positive factor.
Thus, the larger the normalized difference, the larger is the
oversampling gain.
Figure 7 does not only illustrate the dependence of

the oversampling gain on the channel characteristics, but
gives also an insight into the relation between these char-
acteristics and the overall performance. With decreasing
excess delay ν2, the CRLB increases as it becomes more
difficult to separate the two propagation paths. Similarly,
the CRLB is worst if the paths are in phase (�Φ = 0◦)
or have an opposite phase (�Φ = 180◦). The smaller the
power ratio P , the smaller is the amplitude of the first
path in comparison to the second path and the more likely
it is that the delay of the first path, namely the sampling
phase, is estimated wrongly. Thus, the influence of the
channel characteristics on the overall performance can be
summarized as follows: Dense multipath scenarios with
similar or opposite phases and a small power ratio are
most challenging. The more challenging it is to estimate
the sampling phase, the higher is the gain due to oversam-
pling. Hence, the application of oversampling (with J = 2)
is highly recommended.

WINNER channels
The WINNER channels described in [33] represent real-
istic scenarios with a high number of propagation paths.
Many different propagation scenarios are considered
including rural, suburban and urban as well as indoor sce-
narios. Generally, theWINNER channel models are suited
for the evaluation of multiple-input multiple-output sys-
tems. However, only the case of single-input single-output
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Figure 7 Comparison of normalized CRLBs and the normalized difference between CRLBs for different channel characteristics with
γp = 10dB. The curves are labeled with “S1” for the first setup and “S2” for the second setup. (a) Normalized CRLB of ε versus excess delay. (b)
Normalized difference of CRLBs versus excess delay. (c) Normalized CRLB of ε versus phase offset. (d) Normalized difference of CRLBs versus phase
offset. (e) Normalized CRLB of ε versus power ratio. (f) Normalized difference of CRLBs versus power ratio.

(SISO) is considered here. Two types of channel models
are presented in [33]: The generic model, that is suited
for system level simulations, and the clustered delay line
(CDL) model, that is reduced in complexity for fast link
level simulations. In this contribution, the CDL models
are utilized. The parameters of the CDL models like the
excess delay or the average power of a multipath com-
ponent are fixed and tabulated. A single multipath com-
ponent is called cluster in [33]. With the Gaussian pulse
shape in (30) and the block fading assumption, the channel
coefficients for WINNER channel models with I clusters
are given as

hl =
I∑

i=1
fi · exp

(
−
(
lT + ε − s − νi

Ts

)2
)
, (47)

where the complex amplitudes fi are determined by the
superposition of R = 20 rays according to

fi = Ai · 1√
R

R∑
r=1

exp
(
jΦi,r

)
. (48)

If a LOS component is present, the first cluster consists
of R = 21 rays. Each cluster is assigned a normalized
amplitude Ai that is computed from the tabulated cluster
powers Pi as

Ai =
√√√√Pi

/ I∑
i=1

Pi (49)

in order to achieve a power normalization. The starting
phases Φi,r are determined randomly between 0 and 2π
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for each ray in every cluster. Three different WINNER
channel models are considered in this paper: typical urban
micro-cell (B1-LOS), large indoor hall (B3-LOS) and typ-
ical urban macro-cell (C2-LOS). For an exact description
of these scenarios and the corresponding parameter tables
please refer to [33].a The most important parameters of
the WINNER channel models are summarized in the
upper part of Table 2. In addition to the number of clus-
ters I and the number of parameters P, the Rician factor
KR as well as the excess delays ν2 and νI are listed. Fur-
thermore, the minimum delay difference, min {νi−νi−1},
and the average delay difference, E {νi−νi−1}, between
neighboring paths is determined. For the minimum delay
difference, the cluster number for which this difference
occurs is given. Until now, only normalized excess delays
ν2/Ts have been considered. Thus, the preceding results
are valid for any choice of the symbol duration Ts. In
case of the WINNER channel models, the excess delays
are given as absolute values in ns. Hence, the simulation
results depend on the choice of the symbol duration Ts.
Here, Ts=10 ns is considered. In the lower part of Table 2,
the channel memory length L′ for symbol-rate sampling
(L=JL′) as well as the relative excess delays and relative
delay differences for Ts=10 ns are tabulated.
In the WINNER channel models, parameter estimation

is much more challenging in comparison to the two-path
channel models since a much larger number of prop-
agation paths I>2 is considered. Thus, the dimension
of the estimation process P=3I increases significantly.
However, the relationships observed for the two-path
channels are the basis for more complex channel mod-
els with an arbitrary number of propagation paths like the
WINNER channel models. In this case, the mutual rela-
tionship between all paths determines the performance,
where the relationship between the first and the second

path is of special importance. A performance progno-
sis can be given based on the results obtained for the
two-path channel models: Densemultipath scenarios with
similar or opposite phases and a small power ratio are
most challenging. Due to the superposition of several rays
per cluster with random starting phases, the phase off-
sets and power ratios of all paths are random and can not
be influenced. Nevertheless, the Rician factor is a valuable
indicator since it is defined as the average power ratio of
the LOS path and the scattered components. The smaller
the Rician factor, the smaller is the average LOS power
and the worse the performance should be. From this point
of view, the B3-LOS channel is most challenging. Fur-
thermore, the relative excess delays and delay differences
are of interest. Especially, the relative excess delay of the
first multipath component ν2/Ts is important since the
corresponding pulse overlaps the most with the LOS com-
ponent. For Ts=10 ns, the relative excess delays of the
first multipath component are in a reasonable range. The
same is valid for the relative minimum delay differences.
Again, the B3-LOS is most challenging with respect to
delay differences because a very small delay difference of
3.5 ns occurs twice. Taking all parameters into account,
the worst performance is expected for the B3-LOS chan-
nel (large indoor hall), whereas the best performance is
predicted for the B1-LOS channel (urban micro-cell). The
CRLBs of all three WINNER channels for symbol-rate
sampling and oversampling with J = 2 are shown in
Figure 8. The above performance prediction is met by
all simulation results: The best and worst performance is
obtained for the B1-LOS and the B3-LOS channel, respec-
tively. For oversampling with J = 2 (dashed lines), the
CRLBs are even better than the corresponding CRLB for
the two-path channel with small excess delay. The per-
formance of the B1-LOS channel is even similar to the

Table 2 Selected parameters of theWINNER channels

Parameter B1-LOS B3-LOS C2-LOS

(urbanmicro-cell) (large indoor hall) (urbanmacro-cell)

I 8 10 8

P 24 30 24

KR (dB) 3.3 2.0 7.0

ν2 (ns) 33.5 3.5 3.5

νI (ns) 460.0 280.0 220.0

min {νi−νi−1} (ns) 8.5(i = 4) 3.5(i = 2; 6) 1.5(i = 6)

E {νi−νi−1} (ns) 65.7 31.1 32.85

L′ 55 37 31

ν2/Ts 3.35 0.35 0.35

Ts=10 ns νI/Ts 46.00 28.00 22.00

min {νi−νi−1} /Ts 0.85 0.35 0.15

E {νi−νi−1} /Ts 6.57 3.11 3.285
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Figure 8 Normalized CRLB of ε versus PNR for the WINNER
channels B1, B3 and C2 with Ts = 10ns.

performance of the two-path channel with large excess
delay. In contrast, a significant performance degradation is
observed for symbol-rate sampling. For the B3-LOS chan-
nel, the normalized CRLB at γp = 0 dB is very high with
a value close to 104. This means that oversampling gains
larger than 30 dB are possible in case of the WINNER
channel models. Hence, it is highly recommended to apply
oversampling with J=2 because accuracies well below the
symbol duration can only be obtained for oversampling.
The symbol duration of Ts = 10 ns has been chosen

for the simulations in order to achieve reasonable val-
ues for the relative excess delays. With increasing symbol
duration Ts, the relative excess delays and delay differ-
ences decrease. Very small delay differences lead to ill-
conditioned (or even rank-deficient) Fisher information
matrices, that are difficult to invert. In order to avoid a
complete failure of the matrix inversion, singular value
decomposition as described in [32, p. 62ff.] can be applied.
However, the corresponding CRLBs degrade significantly
if the relative delay differences become too small. In this
case, the channel models are not adequate anymore and
should be revised because neighboring clusters are not
resolvable by any means and act like additional rays that
contribute to a single cluster. This means, that clusters
with nearly the same relative excess delay should be com-
bined to a single cluster. In this way, the number of clusters
is reduced, the new clusters are resolvable and meaningful
CRLBs can be determined again.

Impact of the performance limits for CPE on the overall
positioning process
As already mentioned in the introduction part of this
article, positioning is typically performed in two steps,
namely parameter estimation and position estimation.
Until now, only the first step (CPE) has been examined.
In the following, the impact of the performance limits

for CPE on the second step is discussed. Hence, sev-
eral links between different reference objects (ROs) and
a mobile station (MS) in a certain geometrical setup have
to be taken into account. For a better understanding, the
positioning problem for localization based on the ToA is
shortly introduced and a corresponding CRLB is derived.
Two-dimensional positioning is considered for that pur-
pose, i.e., at least three ROs are needed to determine the
position of the MS. An extension to three-dimensional
localization is straight forward.
The MS’s position, that shall be estimated from

the ToAs, is denoted by p = [ p1, p2]T =[ x, y]T , while
the known locations of the ROs are denoted by
pb =[ pb,1, pb,2]T =[ xb, yb]T , 1 ≤ b ≤ B, where B is the
number of reference objects. The true distance between
the MS and the bth RO is a nonlinear function of the cur-
rent MS’s position p and can be determined according to

db(p) =
√

(x − xb)2 + (y − yb
)2. (50)

These distances are estimated via the ToAs τ̂b,1
based on d̂b = τ̂b,1 · c, where c is the speed of light.
The estimated distances d̂=[ d̂1, . . ., d̂B]T are called
pseudoranges since they consist of the true dis-
tances d(p)=[ d1(p), . . ., dB(p)]T and estimation errors
e =[ e1, . . ., eB]T with covariance matrix Ce = diag(
σ 2
e1 , . . ., σ

2
eB
)
:

d̂ = d(p) + e. (51)

Again, an ML estimator can be applied to estimate the
position of the MS:

p̂ = argmin
p̃

{(
d̂ − d(p̃)

)T
C−1
e

(
d̂ − d(p̃)

)}

= argmin
p̃

{
Ωd̂(p̃)

} (52)

Similar to the ML estimator for CPE, the metric Ωd̂(p̃)

for position estimation is nonlinear due to the nonlinear
distance function (50). Hence, an optimization algorithm
has to be applied similar to the case of CPE. Often, a
Gauss-Newton approach known asTaylor series algorithm
[34,35] is utilized for positioning. But for positioning,
there are additionally some approximative, non-iterative
estimators like the weighted least-squares algorithm avail-
able [36,37].
As in the case of CPE, a CRLB can be determined for

positioning, that corresponds to the best performance
that any unbiased estimator can achieve. This means that
the covariance matrix of the position estimator Cp̂ is
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greater than or equal to the inverse of the Fisher informa-
tion matrix I−1(p) [27,28]:

Cp̂ − I−1(p) ≥ 0 (53)

i.e., the matrix Cp̂−I−1(p) is positive semi-definite. The
CRLB for positioning is given by the trace of the inverse
Fisher information matrix

CRLB (p) = tr
{
I−1(p)

} =
2∑

i=1

[
I−1(p)

]
i,i . (54)

Similar to the derivations for CPE, the following expres-
sion is obtained for the Fisher information matrix in case
of positioning:

I(p) = 2 · JT (p) C−1
e J(p), (55)

where J(p) denotes the Jacobian matrix of the distance
function d(p) given by

J(p)= ∂d(p)

∂pT
=
[

∂d(p)

∂x
,
∂d(p)

∂y

]
=

⎡
⎢⎢⎣

∂d1(p)
∂x · · · ∂d1(p)

∂y
...

. . .
...

∂dB(p)
∂x · · · ∂dB(p)

∂y

⎤
⎥⎥⎦ ,

(56)

Since the positions of all involved ROs are required in
order to determine the Fisher information matrix, the
positioning accuracy depends on the geometry between
the ROs and the MS. In order to separate the influence of
the geometry from the influence of the estimation errors
e on the positioning accuracy, the GDOP is taken into
account [10]. The GDOP is defined as the square root of
the CRLB, given the assumption that all pseudoranges are
affected by the same error variance σ 2

eb=1, 1 ≤ b ≤ B (i.e.
Ce=I):

GDOP (p)=
√
CRLB (p)

∣∣
Ce=I =

√
1
2
tr
{(
JT (p)J(p)

)−1}.
(57)

The GDOP can be influenced by an adequate spatial dis-
tribution of the ROs. Given a certain GDOP, the CRLB is
only influenced by the variances of the pseudorange errors
σ 2
eb , which should be as small as possible. Since the pseu-

doranges d̂b are determined from the ToAs τ̂b,1, which in
turn depend on the estimated sampling phase ε̂b accord-
ing to (7), the performance limits for CPE are required in
order to determine a CRLB for positioning:

σ 2
eb = c2 · σ 2

τb,1
= c2 · σ 2

εb
= c2 · CRLB (εb) . (58)

Hence, the performance limits for CPE directly translate
into the performance limits for positioning given a certain
GDOP.

Conclusion
In this article, the positioning part of the joint commu-
nication and positioning system recently proposed by the
authors is investigated. CPE is the core part of the sys-
tem proposal, which is based on IDM in combination
with PLACE, and positioning via the ToA. Based on the
assumption that a priori information about pulse shaping
and receive filtering is available, parameters of the physical
channel, that are exploited for positioning, are estimated
jointly with the channel coefficients of the equivalent
discrete-time channel model, which are needed for data
detection. There are two equivalent approaches for CPE,
which are based on the maximum-likelihood principle:
One approach is based on the received samples and the
other approach, which is performed in two steps, is based
on preliminary channel estimates obtained via standard
channel estimation. The latter approach is recommended
since it is advantageous from a complexity point of view.
Performance limits in terms of CRLBs are determined
for a single-path model, different two-path channel mod-
els, and several WINNER channel models. The influence
of oversampling and different channel characteristics is
investigated. It is shown that oversampling provides a per-
formance gain because the channel power as well as the
CRLB for symbol-rate sampling depend on the sampling
phase, while they are independent of the sampling phase
for oversampling. The influence of the channel character-
istics in the two-path channels (namely the excess delay,
phase offset and power ratio) can be summarized as fol-
lows: Dense multipath scenarios with similar or opposite
phases and a small power ratio are most challenging. The
more challenging it is to estimate the sampling phase,
the higher is the gain due to oversampling. Hence, the
application of oversampling (with J = 2) is highly recom-
mended in order to improve the positioning accuracy. The
relationships observed for the two-path channels are the
basis for more complex channel models with an arbitrary
number of propagation paths. In this case, themutual rela-
tionship between all paths determines the performance.
Consequently, the performance for the WINNER chan-
nels can be predicted. A performance prognosis is derived
that is met by the simulation results for the WINNER
channel models. All results presented in this article are
not limited to the proposed system concept but apply for
other multiplexing techniques as well.

Endnote
a The WINNER channel models applied in this contribu-
tion differ slightly from those defined in [33]. In [33], the
two strongest clusters are divided into three sub-clusters:
The first sub-cluster is composed of ten rays and has a zero
delay offset, the second sub-cluster consists of six rays and
has a delay offset of 5 ns and the last sub-cluster comprises
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four rays with a delay offset of 10 ns [33, p. 41]. This divi-
sion is neglected here: All 20 rays have the same delay,
where the original delay is offset by 3.5 ns (mean offset).
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