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Abstract

An orthogonal cocyclic framework of the block-wise inverse Jacket transform (BIJT) is proposed over the finite field.
Instead of the conventional block-wise inverse Jacket matrix (BIJM), we investigate the cocyclic block-wise inverse
Jacket matrix (CBIJM), where the high-order CBIJM can be factorized into the low-order sparse CBIJMs with a
successive block architecture. It has a recursive fashion that leads to a fast algorithm concerned for reducing
computational load. The fast transforms are also developed for the two-dimensional cocyclic block-wise inverse
Jacket transform (CBIJT). The present CBIJM may be used for many matrix-based applications, such as the DFT signal
processing, combinatorics, and the Reed-Muller code design.

Introduction
The orthogonal transforms, such as the discrete Fourier
transform (DFT) and the Walsh-Hadamard transform
(WHT), have been widely employed in images process-
ing, feature selection, signal processing, data compressing
and coding, and other areas [1-7]. Using orthogonality
of the WHT, the interesting orthogonal matrices, such
as the element-wise or block-wise inverse Jacket matrices
(BIJMs) [8-12], have been developed.More details of these
matrices can be referred to [13-19].

Definition 1. An n × n matrix Jn = (αij)n×n is called
the element-wise inverse Jacket matrix (EIJM) of order
n if its inverse matrix J−1

n can be simply obtained by
its element-wise inverse, i.e., J−1

n = 1
n (α−1

ij )Tn×n, ∀ i, j ∈
Zn := {0, 1, . . . , n − 1}, where the superscript T denotes
the transpose.

Many interesting orthogonal matrices, say the
Hadamard matrices and the DFT matrices, belong to
the Jacket matrix family. With the rapid technological
development, different forms of such transforms were
improved and generalized. It has been discovered that the
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newly proposed transforms have been widely used in var-
ious signal processing, CDMA, cooperative relay MIMO
system [20-28].
Recently, the BIJM [ J]n has been investigated while the

complex unit exp
√−1(2π/p) of the EIJM Jn is substituted

for a suitable matrix unit [15-17]. However, the CBIJM
does not attract much attention even though the cocyclic
matrix has been very useful for the data coding and
processing [5,14,29,30].

Definition 2. If G is a finite group of order r with oper-
ation ◦ and C is a finite Abelian group of order t, a cocycle
is a mapping φ : G × G → C satisfying

φ(a, b)φ(a ◦ b, c) = φ(a, b ◦ c)φ(b, c), (1)

where a, b, c ∈ G. A square matrixM(φ) whose row a and
column b can be indexed by G with entry φ(a, b) ∈ C in
position (a, b) under some fixed ordering, i.e., M(φ) =
(φ(a, b))a,b∈G , is called a cocyclic matrix. If φ(1, 1) = 1,
then it is the normalized cocyclic matrix for the standard
usage [5,29,30].

Definition 3. Let Jp = (ω〈i◦j〉p)p×p, ∀ i, j ∈ Zp :=
{0, 1, . . . , p − 1}, be a matrix of order p, where ω =
exp(

√−1(2π/p)) and 〈i ◦ j〉p = i × j mod p, i.e., the sub-
script p implies modulo-p arithmetic for the argument.
Then the matrix Jp and its s-fold matrix of order ps

Jps = J⊗s
p = Jp ⊗ Jp · · · ⊗ Jp︸ ︷︷ ︸

s
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are the conventional cocyclic element-wise inverse Jacket
matrices (CEIJM), where ⊗ denotes the Kronecker prod-
uct and p is a prime number.

As a generation of the Hadamard matrix, the BIJM
inherits the merits of the Hadamard matrix, at the same
time, without the restriction that entries must be ‘±1’. On
the other hand, this matrix has very amicable properties,
such as reciprocal orthogonality. The inverse transform
can be easily obtained by the reciprocal relationships and
the fast algorithms. However, the versions of cocyclic
block-wise inverse Jacket matrix (CBIJM) are still absent
since the existence of the CEIJM has attracted minor
attention in the existing literature [8,21]. The purpose
of this article is to develop the CBIJM and its general-
izations, instead of the CEIJM. In addition, the present
CBIJM has some potential practical applications in sig-
nal sequence transforms [1-7], coding design for wireless
networks [22,27,28], and cryptography [31].
This article is organized as follows. Section ‘Cocyclic

block-wise inverse Jacket transforms’ presents a simple
framework of the fast CBIJT. Section ‘Designs of the
CBIJM over finite field GF(2m)’ reports the CBIJM over
finite field GF(2p). Section ‘Two-dimensional fast CBIJM’
proposes the structure of the two-dimensional CBIJM.
Finally, conclusions are drawn in Section ‘Conclusion’.

Cocyclic block-wise inverse Jacket transforms
In this section, we show that the EIJM can be generalized
for the constructions of the CBIJT.
Based on the one-dimensional BIJM [ J]p of order p,

which can be partitioned to the p × p block matrix, we
can transform a suitable vector x into another vector y
through a BIJT, i.e.,

y =[ J]p x. (2)

In order to derive the CBIJT, we denote a matrix unit by
α such that αp = Ip for a given prime number p, where Ip
denotes the p × p identity matrix. As an example, let α be
a square matrix of size 2 × 2 defined as

α =
(
0 1
1 0

)
. (3)

It is easy to prove that α2 = I2. Actually, matrix α in (3)
has been employed for the existence of the BIJM [15-17].
Fortunately, it will be shown that the s-fold block Jacket
matrix [ J]2s � α⊗s is also a CBIJM.
In what follows we illustrate the cocyclicity of the BIJM

[ J]ps based on the matrix unit α of size p×p. In particular

for the given prime number p, we define the matrix unit
αh =[ ei,j]p, where

ei,j =
{
1, for i = 〈j + h〉p;
0, otherwise,

(4)

where 〈j+h〉p = j+hmod p, ∀ i, j, h ∈ Zp := {0, 1, . . . , p−
1}. It can be shown that A := {αh : h ∈ Zp} forms an
Abelian group with the traditional matrix multiplication.
Namely, for the given number p, one obtains the matrix
units as follows

α0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...
...
...

...
...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,α1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
...
...

...
...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, · · ·

αp−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...
...
...

...
...
...

1 0 0 · · · 0 0
0 1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,αp−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...

...
...
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(5)

Example 1. Let p = 3, and we have

α0 =
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ ,α1 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ ,α2 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ .

(6)

It is obvious that Zp with the multiplication operation
〈a ·b〉p is a finite field of order p. For ∀ a, x ∈ Zp, we define
an multiplication function fa(x) over Zp, i.e.,

fa(x) := 〈a · x〉p. (7)

With the aid of the multiplication function fa(x), we
define a block matrix of size p × p2 by concatenating p
matrices αhi of size p × p, ∀ hi ∈ Zp, i.e.,

[β] :=
[
αh0 ,αh1 , . . . ,αhp−1

]
(8)

and hence

[βa] :=
[
αfa(h0),αfa(h1), . . . ,αfa(hp−1)

]
. (9)

Lemma 1. For block matrices [βa] and [βb], ∀ a, b ∈
Zp, we have

[βa] ·[βb]T =
{
pI, for 〈a + b〉p = 0;
0, for 〈a + b〉p 
= 0. (10)

The proof of Lemma 1 is illustrated in Appendix.
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Example 2. Let us consider α with p = 2 in (3). It is
obvious that α2 = I is an identity matrix of size 2 × 2. Let
[β]= [

α0,α1], then we have

[β0]=
[
α0,α0] =

[
1 0 1 0
0 1 0 1

]
, (11)

[β1]=
[
α0,α1] =

[
1 0 0 1
0 1 1 0

]
. (12)

It is straightforward to show that

[β0] ·[β0]T =[β1] ·[β1]T = 2I2. (13)

The p-order CBIJM
In [15-17], Lee et al. expanded the EIJM to the BIJM.

Definition 4. An np × np block matrix [ J]n =
([αij]p )np×np is called the BIJM of order n if [ J]−1

n =
1
c ([αij]−1 )Tnp×np where c is the normalized value and
[αij]p×p denotes a matrix unit of size p × p.

Definition 5. For a given prime number p, let α be a
p × pmatrix unit such that αp = I and

[β]= [
α0,α1, . . . ,αp−1] . (14)

Define the p-order BIJM [ J]p of size p2 × p2 as follows

[ J]p :=

⎡
⎢⎢⎢⎢⎢⎣

[β0]
[β1]
[β2]
...

[βp−1]

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

α0 α0 · · · α0

α0 α1 · · · αp−1

α0 α2 · · · α2(p−1)

...
...

. . .
...

α0 αp−1 · · · α(p−1)(p−1)

⎤
⎥⎥⎥⎥⎥⎦ (15)

and thus its inverse

[ J]−1
p := 1

p

⎡
⎢⎢⎢⎢⎢⎣

α0 α0 · · · α0

α0 α〈−1〉p · · · α〈−(p−1)〉p
α0 α〈−2〉p · · · α−2(p−1)

...
...

. . .
...

α0 α〈−(p−1)〉p · · · α〈−(p−1)(p−1)〉p

⎤
⎥⎥⎥⎥⎥⎦ . (16)

Consequently, we have

[ J]p ·[ J]−1
p =[ J]−1

p ·[ J]p = Ip2×p2 . (17)

Example 3. Taking [β0] and [β1] for p = 2, we have

[ J]2 =
[

α0 α0

α0 α1

]
=

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ , (18)

and its inverse

[ J]−1
2 = 1

2

[
α0 α0

α0 α〈−1〉2

]
= 1

2

⎡
⎢⎢⎣
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦ . (19)

Actually, we have

[ J]2 [ J]−1
2 =

[
α0 α0

α0 α1

] [
α0 α0

α0 α1

]
=

[
I2 0
0 I2

]
, (20)

where α0 + α1 = 0 since α2 = I and α 
= I over the finite
field.

We note that the above-mentioned BIJM was first pro-
posed by Lee and Hou [13] for the proof of existence of
Jacket matrices over the finite field. Next, we illustrate that
this BIJM is also a CBIJM in essence.

Theorem 1. Let G = Zp with an operation a ◦ b :=
〈a + b〉p, ∀ a, b ∈ Zp, and C := {αi : i ∈ Zp} with the tra-
ditional multiplication. The BIJM [ J]p in (15) whose rows
and columns are both indexed in G under the increasing
order (i.e., 0 ≺ 1 ≺ · · · ≺ p − 1) and entries φ(a, b) in
position (a, b) is the normalized CBIJM.

The proof of Theorem 1 is illustrated in Appendix.

Example 4. We consider p = 3 with

α =
⎡
⎢⎣
0 0 1
1 0 0
0 1 0

⎤
⎥⎦
3×3

.

It is easy to verify that α3 = I3×3. Let [β]=
[
α0,α1,α2] be

a blockmatrix of size 3×9. Thus we obtain the three-order
BIJM [ J]3 of size 9 × 9 as follows

[ J]3 =
⎡
⎣ α0 α0 α0

α0 α1 α2

α0 α2 α1

⎤
⎦ , (21)

and its inverse

[ J]−1
3 =

⎡
⎣ α0 α0 α0

α0 α〈−1〉3 α〈−2〉3
α0 α〈−2〉3 α〈−1〉3

⎤
⎦ , (22)

where α−1 = α〈−1〉3 = α2 and α−2 = α〈−2〉3 = α. More-
over, the indexed BIJM [ J]3 can be mapped in Table 1. It
shows that the present BIJM [ J]3 is a three-order CBIJM
in C = {I3,α,α2} and G = Z3 under the increasing order
0 ≺ 1 ≺ 2.

Table 1 Correspondence between indexes and entries of
[ J]3
a\b 0 1 2

0 α0 α0 α0

1 α0 α1 α2

2 α0 α2 α1



Guo et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:184 Page 4 of 10
http://asp.eurasipjournals.com/content/2012/1/184

Themulti-fold CBIJM
In order to derive the high-order recursive CBIJM [ J]ps
for any prime number p and nonnegative integer s, let us
introduce some lemmas [1-5].

Lemma 2. Let A,B,C, and D are matrices with suitable
sizes. Then we have

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D),
(A ⊗ B)−1 = (A−1 ⊗ B−1),
(A ⊗ B)T = (AT ⊗ BT). (23)

Theorem 2. For a given prime number p, let [A]p =
[αi,j]p and [B]p =[ γs,t]p, ∀ i, j, s, t ∈ Zp, be two CBIJMs of
order p that corresponds to the matrix units α and γ such
that αp = I and γ p = I, respectively. Then the two-fold
Kronecker product matrix

[ J]p2 =[A]p ⊗[B]p (24)

is a two-fold CBIJM of order p2.

The proof of Theorem 2 is shown in Appendix.

Corollary 1. For any prime number p and non-negative
integer number s, let [ J]ps =[ J]⊗s

p be an s-fold block
matrix, i.e.,

[ J]ps = [ J]p ⊗ · · · [ J]p︸ ︷︷ ︸
s

. (25)

Then the block matrix [ J]ps is a CBIJM of order ps.

Example 5. For p = 2 and s = 2, we consider a matrix
unit α of size 2 × 2 in (3). Thus we have the four-order
BIJM [ J]22 given by

[ J]22 =[ J]2 ⊗[ J]2

=
[

α0 α0

α0 α1

]
4×4

⊗
[

α0 α0

α0 α1

]
4×4

=

⎡
⎢⎢⎣

α0α0 α0α0 α0α0 α0α0

α0α0 α0α1 α0α0 α0α1

α0α0 α0α0 α1α0 α1α0

α0α0 α0α1 α1α0 α1α1

⎤
⎥⎥⎦
8×8

. (26)

Similarly, we have an index order matrix in Table 2, where
the row and column index orders are

00 ≺ 01 ≺ 10 ≺ 11 (27)

and for ∀ a1, b1, a2, b2 ∈ Z2,

a1a2 ◦ b1b2 = 〈a1 + b1〉2〈a2 + b2〉2. (28)

As an example, if a = 2 and b = 3, then we have

α10◦11 = α〈1+1〉2〈0+1〉2 = α01 = α.

Table 2 Correspondence between indexes and entries of
the 2-fold CBIJM [ J]22 based on the basic CBIJM [ J]2
�a\�b ◦ 00 01 10 11

◦ a\b 0 1 2 3

00 0 α0α0 α0α0 α0α0 α0α0

01 1 α0α0 α0α1 α0α0 α0α1

10 2 α0α0 α0α0 α1α0 α1α0

11 3 α0α0 α0α1 α1α0 α1α1

It can be easily verified that the two-fold matrix [ J]22 in
(26) is a four-order CBIJM of size 8× 8. In addition, using
the same index mapping in Table 1, we obtain the index
matrix I4 as follows

I4 =

⎡
⎢⎢⎣
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦ , (29)

which is a generator matrix of the first order binary Reed-
Muller code [3].We note that this phenomena exists in the
generalized s-fold CBIJM [ J]ps of order ps for any prime
number p.
Actually, the two-fold CBIJM [ J]22 in (26) based on the

factorization algorithm can be rewritten as

[ J]22 =[ J]2 ⊗[ J]2 = (I2⊗[ J]2 ) ([ J]2 ⊗I2) . (30)

Namely, we have

[ J]22 =

⎡
⎢⎢⎣

α0 α0 α0 α0

α0 α1 α0 α1

α0 α0 α1 α1

α0 α1 α1 α0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

α0 α0 0 0
α0 α1 0 0
0 0 α0 α0

0 0 α0 α1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α0 0 α0 0
0 α0 0 α0

α0 0 α1 0
0 α0 0 α1

⎤
⎥⎥⎦ .

The comparison between the direct computation and fast
transform in terms of operations (i.e., additions and mul-
tiplications) is illustrated in the Table 3. From this table,
it is shown that for N = 4 if we compute directly there
are 12 additions and 16 multiplications, but if we use
the fast transform algorithm the numbers of additions
and multiplications can be reduced to 8 and 4, respec-
tively. It is obvious that the proposed algorithm has a

Table 3 Complexity of the fast algorithms forN = ps,
where ADD andMUL denote additions andmultiplications

Directionmethod Fast algorithms

ADD (N − 1)N sps(p − 1)

MUL N2 sps−1(p − 1)2
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greater efficiency for computation than that of the direct
approach.

Example 6. From Equation (23), we have p = 3, s = 2
and

α0=
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ ,α1=

⎡
⎣ 0 0 1
1 0 0
0 1 0

⎤
⎦ ,α2=

⎡
⎣ 0 1 0
0 0 1
1 0 0

⎤
⎦ ,

then we can derive the two-fold CBIJM [ J]32 =[ J]3 ⊗[ J]3,
i.e.,

[ J]32 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α0 α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α0 α1 α2 α0 α1 α2

α0 α2 α1 α0 α2 α1 α0 α2 α1

α0 α0 α0 α1 α1 α1 α2 α2 α2

α0 α1 α2 α1 α2 α0 α2 α0 α1

α0 α2 α1 α1 α0 α2 α2 α1 α0

α0 α0 α0 α2 α2 α2 α1 α1 α1

α0 α1 α2 α2 α0 α1 α1 α2 α0

α0 α2 α1 α2 α1 α0 α1 α0 α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
27×27

, (31)

which can be factorized as

[ J]32 =[ J]3 ⊗[ J]3 = (I3⊗[ J]3 )([ J]3 ⊗I3)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α0 α0 0 0 0 0 0 0
α0 α1 α2 0 0 0 0 0 0
α0 α2 α1 0 0 0 0 0 0
0 0 0 α0 α0 α0 0 0 0
0 0 0 α0 α1 α2 0 0 0
0 0 0 α0 α2 α1 0 0 0
0 0 0 0 0 0 α0 α0 α0

0 0 0 0 0 0 α0 α1 α2

0 0 0 0 0 0 α0 α2 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
27×27

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 0 0 α0 0 0 α0 0 0
0 α0 0 0 α0 0 0 α0 0
0 0 α0 0 0 α0 0 0 α0

α0 0 0 α1 0 0 α2 0 0
0 α0 0 0 α1 0 0 α2 0
0 0 α0 0 0 α1 0 0 α2

α0 0 0 α2 0 0 α1 0 0
0 α0 0 0 α2 0 0 α1 0
0 0 α0 0 0 α2 0 0 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
27×27

. (32)

with the signal flow graph in Figure 1. It is obvious that
I3⊗[ J]3 and [ J]3 ⊗I3 are both sparse matrices, and the
two-foldmatrix [ J]32 is a nine-order CBIJM of size 27×27.
The index matrix I9 of [ J]32 is given by

3-point PE

X1

X2

X3

X4

X5

X6

X7

X8

X9

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y9

Y8

Figure 1 Signal flow graph for the two-fold CBIJM [ J]32 of order
nine.

I9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
9×9

which can be used for the generalization of the first order
3-ary Reed-Muller code [3].

Consequently, the s-fold CBIJM [ J]ps of order ps can be
generated from the following factorization algorithm

[ J]ps =[ J]ps−1 ⊗[ J]p =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
(33)

where Ipi denotes the identity matrix of size pi × pi and
Ip0 = 1 for the simple description.

Corollary 2. Based on the p-order CBIJM [ J]p for any
number p, the s-fold CBIJM [ J]ps of order ps can be
constructed with the recursive formula

[ J]ps =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
, (34)

where p is any prime number and s is a nonnegative
integer number.

The proof of Corollary 2 is shown in Appendix.
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In order to show the factorization of the generalized
CBIJM [ J]n of order ps with any prime number p, we
propose several construction approaches in Table 4. In
this table, the second column is the decomposition for
the numbers (order) of the CBIJM, and the third column
is the construction for CBIJM. It shows that the large-
order CBIJM can be designed on the basis of the lower
order CBIJM [ J]p with sparse matrices in the successive
architecture.

Low-density of the CBIJM
In what follows, we consider the density of 1’s in the s-fold
CBIJM [ J]ps .
According to the afore-mentioned CBIJM [ J]p, it is

known that matrix [ J]p whose matrix unit is α in (4) is a
p2 × p2 binary matrix. The total number of 1’s is p in each
matrix unit αh, ∀ h ∈ Zp. Then the density of 1’s in αh is

ρ(αh) = p
p2

= 1
p
. (35)

Therefore the density of 1’s in [ J]p is calculated as

ρ([ J]p ) = ρ(αh) = 1
p
, (36)

and the density of 1’s in the s-fold matrix [ J]ps is

ρ([ J]ps ) = ρ([ J]p ) = 1
p
, (37)

which shows that the larger matrix order p means the
lower density of 1’s in both [ J]p and [ J]ps .
As an example, we consider the CBIJM [ J]2 in Example

3 and the two-fold CBIJM [ J]22 in Example 5 with matrix

Table 4 Decompositions of orders for the CBIJM [ J]ps with
density 1/p
Order Decomposition CBIJM Density

2 2 = 2 [ J]2 =[ J]2 1/2

3 3 = 3 [ J]3 =[ J]3 1/3

4 22 = 2 × 2 [ J]4 =[ J]⊗2
2 1/2

5 5 = 5 [ J]5 =[ J]5 1/5

7 7 = 7 [ J]7 =[ J]7 1/7

8 23 = 22 × 2 [ J]8 =[ J]⊗3
2 1/2

9 32 = 3 × 3 [ J]9 =[ J]⊗2
3 1/3

11 11 = 11 [ J]11 =[ J]11 1/11

13 13 = 13 [ J]13 =[ J]13 1/13

16 24 = 23 × 2 [ J]16 =[ J]⊗4
2 1/2

17 17 = 17 [ J]17 =[ J]17 1/17

19 19 = 19 [ J]19 =[ J]19 1/19

23 23 = 23 [ J]23 =[ J]23 1/23

25 52 = 5 × 5 [ J]25 =[ J]⊗2
5 1/5

unit α = [ ei,j]2×2 in (4). It is easy to verify that the den-
sities of 1’s in [ J]2, and [ J]22 are all 1/2, i.e., ρ([ J]22 ) =
ρ([ J]2 ) = 1/2. Generally, for any prime number pwe have
ρ([ J]p2 ) = ρ([ J]p ) = ρ(α) = 1/p, as shown in Table 5.

Designs of the CBIJM over finite field GF(2m)
In this section, we consider the generalized CBIJM over
finite field GF(2m) and derive the high-order CBIJM for
p = 2m − 1.
Let α be amatrix unit of size p×p over GF(2m) such that

α2m−1 = I and α 
= I. Then we obtain the (2m − 1)-order
CBIJM [ J]2m−1 as follows.

Theorem 3. Let

[ J]2m−1�[αij]2m−1

be a (2m − 1)-order block matrix over GF(2m), ∀ i, j ∈
Z2m−1, where α is a matrix unit of size (2m − 1) × (2m −
1) satisfying α2m−1 = I and α 
= I. Then block matrix
[ J]2m−1 is a CBIJM.

The proof of Theorem 3 are shown in Appendix.

Example 7. We consider the seven-order block matrix
[ J]23−1 with the primitive polynomial x3 + x+ 1 = 0 over
GF(23). Let α be an arbitrary matrix unit such that α7 = I
and α 
= I. Then any matrix element β over GF(23) can be
represented as a binary vector (b0, b1, b2), ∀ bi ∈ Z2 and
i ∈ {0, 1, 2}, such that

β = b0 + b1α + b2α2.

By the Table 6, it is straightforward that Theorem 3 is
true over GF(23). Then we obtain the BIJM [ J]7 and its
inverse [ J]−1

7 , i.e.,

[ J]7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α0 α0 α0 α0 α0 α0

α0 α1 α2 α3 α4 α5 α6

α0 α2 α4 α6 α1 α3 α5

α0 α3 α6 α2 α5 α1 α4

α0 α4 α1 α5 α2 α6 α3

α0 α5 α3 α1 α6 α4 α2

α0 α6 α5 α4 α3 α2 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (38)

Table 5 Densities of thematrix units α, CBIJM [ J]p, and
s-fold CBIJM [ J]ps

2 3 5 7 11

α 1/2 1/3 1/5 1/7 1/11

[ J]p 1/2 1/3 1/5 1/7 1/11

[ J]ps 1/2 1/3 1/5 1/7 1/11
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Table 6 Binary representation of β over GF(23)

Elements Binary representation

0 (0 0 0)

α0 (1 0 0)

α1 (0 1 0)

α2 (0 0 1)

α3 (1 1 0)

α4 (0 1 1)

α5 (1 1 1)

α6 (1 0 1)

and

[ J]−1
7 = 1

7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α0 α0 α0 α0 α0 α0

α0 α6 α5 α4 α3 α2 α1

α0 α5 α3 α1 α6 α4 α2

α0 α4 α1 α5 α6 α2 α3

α0 α3 α6 α2 α5 α1 α4

α0 α2 α4 α6 α1 α3 α5

α0 α1 α2 α3 α4 α5 α6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

Actually, according to the index mapping of the present
matrix in Table 7, it can be shown that matrix [ J]7 in (38)
is a seven-order CBIJM over GF(23).

Two-dimensional fast CBIJM
In the previous section, we consider the one-dimensional
CBIJT based on the CBIJM. Now we extend it to the
version of the two-dimensional CBIJT.
The fast two-dimensional CBIJM can be similarly

derived from the two-dimensional Jacket transform [15]

Y =[ J]ps X[ J]Tps ,

which can be expressed by the transformation of the
column-wise stacking vector X as

vec(Y ) = ([ J]ps ⊗[ J]ps )vec(X).

Namely, if X = (x0, x1, . . . , xps−1), then vec(X) =
(xT0 , xT1 , . . . , xTps−1)

T, where xi denotes the ith column of

Table 7 Indexmapping of CBIJM [ J]7 over GF(23)

g \ h 0 1 2 3 4 5 6

0 α0 α0 α0 α0 α0 α0 α0

1 α0 α1 α2 α3 α4 α5 α6

2 α0 α2 α4 α6 α1 α3 α5

3 α0 α3 α6 α2 α5 α1 α4

4 α0 α4 α1 α5 α2 α6 α3

5 α0 α5 α3 α1 α6 α4 α2

6 α0 α6 α5 α4 α3 α2 α1

X, ∀ i ∈ Zps . It shows that the fast algorithm of the two-
dimensional CBIJM can be designed from the two-fold
one-dimensional CBIJM, i.e.,

[ J]p2s =[ J]ps ⊗[ J]ps .

Based on the fast algorithm of [ J]ps ⊗[ J]ps , we have the
fast algorithm of two-dimensional CBIJM [ J]p2s in the
recursive fashion expressed in (40). It illustrates that the
two-dimension CBIJM can be concerned with the sparse
matrix factorizations based on the factorizations of one-
dimensional CBIJM. A successive architecture for reduc-
ing the computational load can also be developed in the
similar fast algorithms as that of one-dimensional CBIJM
while factorizing two-dimensional CBIJM into the lower
order sparse matrices with low complexities.

[ J]p2s = (
[ J]ps ⊗Ips

) (
Ips ⊗ [ J]ps

)
= [(

[ J]ps−1 ⊗[ J]p
) ⊗ Ips

] [
Ips ⊗ (

[ J]ps−1 ⊗[ J]p
)]

= {[(
[ J]ps−1 ⊗Ip

) (
Ips−1 ⊗ [ J]p

)] ⊗ Ips
}

× {
Ips ⊗ [(

[ J]ps−1 ⊗Ip
) (
Ips−1 ⊗ [ J]p

)]}
= (

[ J]ps−1 ⊗Ip ⊗ Ips
) (
Ips−1⊗[ J]p ⊗Ips

)
× (

Ips⊗[ J]ps−1 ⊗Ip
) (
Ips ⊗ Ips−1 ⊗ [ J]p

)
.

(40)

Example 8. We consider the two-dimensional four-
order CBIJM

[ J]24 =[ J]22 ⊗[ J]22
= ([ J]2 ⊗I2 ⊗ I4) (I2 ⊗ [ J]2 ⊗ I4) ·

× (I4 ⊗ [ J]2 ⊗ I2) (I4 ⊗ I2 ⊗ [ J]2) . (41)

It is shown in the previous section that block matrix
[ J]22 is a four-order CBIJM that can be constructed in
the recursive fashion on the basis of [ J]2 with fast algo-
rithm. Therefore, the two-dimensional CBIJM [ J]24 can
be similarly designed in the recursive fashion with fast
algorithm based on two-fold four-order CBIJT [ J]22 , as
shown in Figure 2. Compared with the fast algorithm of
the one-dimensional CBIJM [ J]32 in Figure 1, the present
fast algorithm needs four steps for calculations, instead of
two steps for the factorizing decomposition.

Conclusion
A simple method of developing the fast CBIJM is pro-
posed over finite field. This method is presented for its
simplicity and clarity, which decomposes the high-order
CBIJM into multiple sparse matrices with the lower-order
CBIJMs, instead of the conventional BIJMs or EIJMs. This
factorization algorithm is valid for the generalized s-fold
CBIJM of order ps over finite field with a suitable matrix
unit α of size p × p. Also, the present CBIJM is useful
for developing the fast two-dimensional CBIJM based on
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Figure 2 Signal flow graph for the two-dimensional two-fold four-order CBIJM [ J]16 based on [ J]2, i.e., [ J]16 = [ J]22 ⊗ [ J]22 .

sparse matrices in the recursive forms. It may have poten-
tial applications in combinatorial designs (CD) [8], space-
time block codes [23,27], and odd-order code design [20]
thanks to its successive architecture.

Appendix
Proof of Lemma 1
If a = b = 0, then [β0]= [I, I, . . . , I], and hence
[β0] ·[β0]T = pI. If 〈a + b〉p = 0, ∀ a, b ∈ Zp, then for
∀ hi ∈ Zp,

fa(hi) + fb(hi) = 〈ahi〉p + 〈bhi〉p = 〈(a + b)hi〉p = 0.
(42)

Therefore, it is easy to verify that

[βa] ·[βb]T =
p∑

i=1
αfa(hi)+fb(hi) = pI.

But if 〈a + b〉p 
= 0, then for 0 < 〈a + b〉p < p,{〈c(a + b)〉p : c ∈ Zp
} = Zp. (43)

Consequently, we have

[βa] ·[βb]T =
p−1∑
i=0

αi, (44)

which can be proved to be equal to zero over the finite
field since αp − I = 0 but for α 
= I.

Proof of Theorem 1
According to the defined BIJM [ J]p in (15), we have
φ(a, b) := α〈a·b〉p . For ∀ c ∈ Zp, we have

φ(a, b)φ(a◦b, c) = α〈a·b〉p ·α〈(a+b)c〉p = α〈a·b+(a+b)·c〉p .
(45)

On the other hand,

φ(a, b ◦ c)φ(b, c) = α〈a·(b+c)〉p ·α〈b·c〉p = α〈a·(b+c)+b·c〉p .
(46)

Combining (45) and (46), we have

φ(a, b)φ(a ◦ b, c) = φ(a, b ◦ c)φ(b, c). (47)

Thus the BIJM [ J]p is also a CBIJM.

Proof of Theorem 2
Since [A]p =[αi,j]p and [B]p =[ γs,t]p are both BIJM, we
have the inverse

[A]−1
p = 1

p
[α−1

i,j ]
T
p , [B]−1

p = 1
p
[ γ −1

s,t ]Tp . (48)

Let

[A]p ⊗[B]p = [
σip+s,jp+t

]
p2 ,

where σip+s,jp+t = αi,j · γs,t denotes the traditional multi-
plication of two matrices. Therefore, we have the inverse
matrix [ J]−1

p2 that can be calculated directly from the
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block-wise inverse of the original block matrix [ J]p2 in
(24), i.e.,

−1
p2 = (

[A]p ⊗[B]p
)−1 =

(
[A]−1

p ⊗[B]−1
p

)
= 1

p2
[
α−1
i,j · γ −1

s,t

]T
p2

= 1
p2

[
σ−1
ip+s,jp+t

]T
p2
.

(49)

It implies that [ J]p2 is a block Jacket matrix.
Next, we show that matrix [ J]p2 is a CBIJM under the

indexed row and column. Assume that [A]p and [B]p are
both CBIJMs under the row and column index over Zp,
respectively,{

as1 ≺ as1 ≺ · · · ≺ asp, for asj ∈ Zp, ∀ j ∈ Zp;
bs1 ≺ bs1 ≺ · · · ≺ bsp, for bsk ∈ Zp, ∀ k ∈ Zp,

(50)

where s ∈ {r, c}, arj and acj denote the jth row and the jth
column index of block matrix [A]p, brk and bck denote the
kth row and the kth column index of block matrix [B]p,
and ≺ denotes the increasing order. Then for the p2-order
block matrix [ J]p2 over Zp2 , the row and column index
order can be defined as follows

asjbsk ≺ asibsh if
{
asj ≺ asi;
asj = asi, bsk ≺ bsh.

(51)

Also the entries of [ J]p2 are defined on the basis of [ J]p as

φp2(aribrh, acjbck) = φp(ari, acj) · φp(brh, bck). (52)

As for the entries φp(ai, aj) and φp(bh, bk) of [A]p and
[B]p, ∀ ai, aj, al ∈ Zp and ∀ bh, bk , bt ∈ Zp, we have

φp(ai, aj)φp(ai ◦ aj, al) = φp(ai, aj ◦ al)φp(aj, al), (53)
φp(bh, bk)φp(bh ◦ bk , bt) = φp(bh, bk ◦ bt)φp(bk , bt).

(54)

Therefore, it can be easily verified that

φp2(aibh, ajbk)φp2(aibh, ajbk ◦ albt)
= φp2(aibh, ajbk ◦ albt)φp2(ajbk , albt).

(55)

It shows that block matrix [ J]p2 is also a CBIJM under
the indexed order in (51). This completes the proof of this
theorem.

Proof of Corollary 2
We deploy induction on index s. If s = 1, then it is
clearly true, i.e., [ J]p1 =[ J]p. In what follows, we assume
the hypothesis is true for s. Namely, for ∀ i ∈ {1, 2, . . . , s}
we have the following hypothesis:

[ J]ps =
s∏

i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
. (56)

Then we show it must therefore hold for s+1. Actually, by
induction based on properties of the Kronecker product
we have

[ J]ps+1 =[ J]p ⊗[ J]ps

= (
[ J]p ·Ip

) ⊗ (
Ips · [ J]ps

)
= (

[ J]p ⊗Ips
) (
Ip ⊗ [ J]ps

)
. (57)

Combining (56) and (58), we obtain

[ J]ps+1 =
s+1∏
i=1

(
Ips−i⊗[ J]p ⊗Ipi−1

)
. (58)

This completes the proof of this corollary.

Proof of Theorem 3
In order to prove Theorem 3, we introduce a lemma as
follows.

Lemma 3.
2m−2∑
i=0

αir =
{

(2m − 1)I, for r = 0;
0, for 1 ≤ r ≤ 2m − 2. (59)

Proof. It is evident that
∑2m−2

i=0 αir contains 2m−1 terms.
If r = 0, then

∑2m−2
i=0 αir is a sum of 2m − 1 identity matri-

ces. Thus the first equation is proved. We now consider
the case of 1 ≤ r ≤ 2m−2 such that αr 
= I, i.e., αr−I 
= 0.
Since α2m−1 = I, then we have αr(2m−1) = I and

0 = αr(2m−1) − I = (
αr − I

) 2m−2∑
i=0

αir ,

from which we obtain
2m−2∑
i=0

αir = 0.

Then the proof is completed.

With the aid of Lemma 3, we show the existence of
CBIJM for Theorem 3.
According to the definition of the (2m − 1)-order block

matrix [ J]2m−1, we let

[ J]−1
2m−1 = 1

2m − 1
[α〈−ij〉2m−1 ]T2m−1 .

By the simple calculation, it can be verified that

[ J]2m−1 [ J]−1
2m−1 =[ J]−1

2m−1 [ J]2m−1 = I2m−1.

It shows that block matrix [ J]2m−1 is a BIJM. In order to
prove that it is a CBIJM, we let φ(i, j) be an entry in posi-
tion (i, j), where the order of rows and columns is from
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0 to 2m−2 overZ2m−1. Consequently, for i, j, h, k ∈ Z2m−1
we have

φ(i, j) = α〈i·j〉2m−1 ,

φ(i, j ◦ h) = α〈i·(j+h)〉2m−1 ,

φ(i, j)φ(h, k) = α〈i·j+h·k〉2m−1 . (60)

Then we achieve

φ(i, j◦k)φ(j, k) = α〈i·(j+k)〉2m−1α〈j·k〉2m−1 = α〈i·j+i·k+j·k〉2m−1 ,
(61)

and

φ(i, j)φ(i ◦ j, k) = α〈i·j〉2m−1α〈(i+j)·k〉2m−1 = α〈i·j+i·k+j·k〉2m−1 .
(62)

It is obvious to verify

φ(i, j ◦ k)φ(j, k) = φ(i, j)φ(i ◦ j, k), (63)

which implies that the BIJM [ J]2m−1 is a CBIJM over
GF(2m).
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