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Abstract

Pavement crack detection plays an important role in pavement maintaining and management. The three-
dimensional (3D) pavement crack detection technique based on laser is a recent trend due to its ability of
discriminating dark areas, which are not caused by pavement distress such as tire marks, oil spills and shadows. In
the field of 3D pavement crack detection, the most important thing is the accurate extraction of cracks in individual
pavement profile without destroying pavement profile. So after analyzing the pavement profile signal characteristics
and the changeability of pavement crack characteristics, a new method based on the sparse representation is
developed to decompose pavement profile signal into a summation of the mainly pavement profile and cracks.
Based on the characteristics of the pavement profile signal and crack, the mixed dictionary is constructed with an
over-complete exponential function and an over-complete trapezoidal membership function, and the signal is
separated by learning in this mixed dictionary with a matching pursuit algorithm. Some experiments were
conducted and promising results were obtained, showing that we can detect the pavement crack efficiently and
achieve a good separation of crack from pavement profile without destroying pavement profile.

Keywords: Pavement crack detection, Three-dimensional laser scanning system, Sparse representation, Mixed over-
complete dictionary
Introduction
In the life cycle of pavement, there will be various pave-
ment distresses due to the burden of vehicles and nat-
ural causes. The pavement distress will affect the
lifespan of the pavement, vehicles energy assumption,
transportation efficiency, and the transportation safety
[1]. Among the various pavement distresses, pavement
cracking data is the most important element for quanti-
fying the condition of pavement surface [2,3], so it is
crucial to detect and recognize the pavement cracking
automatically and accurately before repairing them.
There are some methods for detecting pavement

cracking. The traditional method is to detect by human
vision, but manual surface distress survey are subject to
many limitation such as non-repeatability, subjectivity,
and high personal costs [4]. Manual procedures are
time-consuming, and present substantial differences be-
tween evaluations of different raters [5]. In recent years,
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several 2D image analysis-based pavement crack detec-
tion techniques were proposed [6–10]. One major issue
with pure 2D video-based systems is their inability to
discriminate dark areas not caused by pavement distress
such as tire marks, oil spills, shadows, and recent fillings
[11]. Moreover, the shadows and poor illumination are
also major problems for daytime operation though they
can be overcome using additional lighting systems or by
acquiring data in the night after sunset [12].
Pavement crack detection technique based on the 3D

laser is a recent trend. The measurement principle of
pavement crack detection based on the 3D laser tech-
nique is shown in Figure 1. A laser stripe is emitted from
a structured light source, and is projected onto the
detected object. Since the surface of the detected object
is not on the plane of the detection platform, the stripes
from the lamp house will produce a deformed line on
the across the detected object. By using the CCD camera
to capture the deformed line, we can obtain the contour
of the detected object by analyzing the deformed line
[13]. In the practical application of pavement detection,
the stripes from light source will deform after going
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Figure 1 Illustration of 3D laser detection system.

Figure 3 Pavement scanned by laser stripes with shadows.
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through the pavement cracks (Figure 2), thus the 3D in-
formation in both x and y dimensions (surface) and z
dimensions (depth) of the crack can be analyzed based
on these deformed stripes. The advantage of using 3D
laser technique is that it is insensitive to the disturbance
such as tire marks, oil spills, and shadows. A crack with
some shadows is shown in Figure 3, which contains
some shadows, tire marks, and one transverse crack
marked in green box. The longitudinal laser stripe
deforms across transverse crack and the deformation
part is marked in green Oval box. From Figure 3, it is
obvious that the 3D laser based technique can effectively
detect the crack accurately in case of shadows.
Since each laser profile acquired by 3D laser detection

system has its own characteristic in terms of profile
shape, crack shape, the number of cracks and signal-to-
noise ratio, the signal processing techniques are adapted
to each laser profile to extract the features of the crack.
As the technology protection, few literatures describe
Figure 2 Pavement scanned by laser stripes. (a) the stripes from the lig
profile from picture (a), the elevation coordinate for each profile is relative
algorithms in detail in this area. Bursanescu used a spe-
cial filter to avoid the noise and extract the crack. The
filter uses an adaptive width mobile widow, and width is
self-adjusting. We cannot find more details in his papers
[5,11,14]. Laurent introduced the algorithm for the de-
tection of cracks, which is the valley detection of candi-
date cracks in the individual pavement profiles [15–17].
This simple technique is fast and easy to implement, but
it cannot achieve a good separation of crack from pave-
ment profile.
For profile signal, the main profile signal is varying

slowly, which spreads over the whole observing period;
Crack signal has sharp edges and performs different
shapes, which belongs to narrow-scale signal. Wavelets
can detect the location of cracks accurately due to its
good time-frequency characteristic, but the wavelet base
ht source deform across the pavement cracks; (b) the corresponding
in this Figure.



Figure 4 Pavement profile signal.

Figure 5 The basic shapes of crack.
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is fixed which cannot match the crack shape well. So
after analyzing the characteristics of main profile and
cracking, we constructed a mixed over-complete diction-
ary according to main profile and crack characteristics
and proposed a novel method based on sparse represen-
tation for crack detection and the mainly pavement pro-
file extraction without noise. Some experiments were
conducted and promising results were obtained, showing
that we can detect the pavement crack accurately and
achieve a good separation of crack from pavement
profile.

Pavement crack and profile detection based on
sparse representation
Sparse representation of signals
Sparse representation of signals has become a major area
of research in the last few years [18,19]. Using an over-
complete dictionary matrix D 2 Rn×K that contains K
atoms, {dj}j = 1

K , as its columns, it is assumed that a sig-
nal y 2 Rn can be represented as a sparse linear combin-
ation of these atoms. The representation of y may either
be exact y = Dx, or approximate, y � Dx, satisfying ‖y −
Dx‖2 ≤ E. The vector x 2 RK displays the representation
coefficients of the signal y. This, sparest representation,
is the solution of either

min
x

x0 subject toy ¼ Dx ð1Þ

or

min
x

x0 subject to‖y� Dx‖2≤E ð2Þ

where ‖.‖0 is the l0 norm , counting the non zero entries
of a vector[20].
For our profile signal f contains crack signal sC and

main profile signal sProf two layers as a linear combin-
ation, we propose to seek the sparsest of all representa-
tion over the mixed dictionary. Thus we need to solve

xoptc ; xoptp

n o
¼ Arg

xoptc ;xoptpf g
min xc0 þ xp0

� �
subject to

:¼ Φcxc þΦpxp ð3Þ

where Φc is the crack dictionary, Φp is the main profile
dictionary, xc and xp are the coefficients in the corre-
sponding dictionaries.

Characteristics of main profile signal and crack signal
The profile signal acquired by 3D laser detection tech-
nology as shown in Figure 4.can be expressed as follows:

f ¼ sR þ sC þ sbump þ sProt þ sProf þ sn ð4Þ

where f is profile signal, sC is crack signal, sProf is main
profile signal, sn is noise. where f is profile signal, sProf is
the main profile signal, sR, sC,sbump ,sProt , and sn repre-
sent the rut signal, crack signal, bump signal, pothole
signal, and noise, respectively. This paper mainly studies
the characteristics of cracks and main profiles and how
the crack to be separated from the main profile.
Since longitudinal main profile signal sProf is used to

calculate the international roughness index (IRI), it
should not contain distress and noise. Therefore, it is ne-
cessary to analyze the characteristics of sC and sProf and
separate sC from f without destroying sProf.
sC has the following characteristics: clear and sharp

edges, a direction below the horizontal surface, different
narrow-scale shapes. In order to calculate the crack width
and location accurately and achieve a good match with
the shape of crack, we observed a large amount of crack
data. Figure 5 clearly shows the basic shapes of crack,
while most cracks perform asymmetrical form of these
basic shapes due to the rain erosion, sand filling, etc.
sProf is a low-frequency curve as the red curve shown

in Figure 6, spreads over all the observing periods and
performs to be the profile of pavement without distress
and noise.



Figure 6 Red curve is the sProf of real profile signal.
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Mixed over-complete dictionary
The success of sparse representation application depends
on how to pick the suitable dictionary which is employed
to sparsely describe the signal. Based on the difference be-
tween sC and sProf, it is possible to detect sC and sProf by
performing two different transformations. That is to say,
we try to find two dictionaries Φc and Φp in line with the
real signal to separate the sC and sProf from f.
The four-point curve is a function of a vector x, which

depends on four scalar parameters a, b, c, and d. As
shown in Figure 7, this function is flexible, which can
construct different shapes of the cracks using four-point
Figure 7 Atoms in four-point function over-complete dictionary. The
transform. The mathematical function model of the
four-point curve is represented as follow:

f x; a; b; c; dð Þ ¼

0; x≤a
x� a
b� a

; a≤x≤b

1; b≤x≤c
d � x
d � c

; c≤x≤d

0; d≤x

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5Þ

Certainly, we construct the over-complete dictionary
Φc with four-point curve function which can efficiently
express the sharp edges and diversity of crack. The para-
meters a and d locate the “feet” of the trapezoid and the
parameters b and c locate the “shoulders”. As for our
work in this article, the scales (d – a) of the four-point
curve range from 1 to 5 and the shifts are densely
sampled from 0 to L – 1 for each scale, where L is the
length of signal.
As shown in Figures 6 and 8a, exponential function

with large-scale can construct main profile. The math-
ematical function model of the exponential function
could be represented as follow:

φk tð Þ ¼ Ak exp � t �mk

nk

� �2
 !

k ¼ 0; 1; 2; ð6Þ

where m is the position information of exponential func-
tion, n is the scale information, A is a normalization fac-
tor. When m and n change in different areas separately,
we can have different profiles. As for our work, m ranges
y-axis is the normalized amplitude.



The  
mixed  
over-complete 
dictionary

Mainly 
profile 

dictionary 

Crack 

Mainly profile 

Remaining 
signal 

Crack  feature 
extraction with MP 

Mainly profile 
reconstruction with 
MP

Crack
dictionary 

Figure 8 The framework of the algorithm used in this paper.

Figure 9 Simulation signal of pavement profile. (a) simulation mainly profile signal (b) simulation pavement distress (c) noisy signal with
SNR = 8db (d) simulation signal of pavement profile.
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Figure 10 Comparison result of crack extraction. (a) Traditional method (b) The sparse representation method.
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from 0 to L – 1, where L is the length of signal, and the
n ranges from 1 to 800.
Finally, the mixed over-complete dictionary Φ is com-

posed of exponential function Φp and trapezoidal mem-
bership function Φc, which can be denoted by Φ = Φp +
Φc , and all the atoms in over-complete dictionary are
normalized.

Signal separation by the matching pursuit method
The matching pursuit (MP) algorithm [21] iteratively
projects a signal onto a given dictionary and chooses the
dictionary atom that best matches the signal in each
Figure 11 Comparison result of main profile extraction. (a) Traditional
iteration. We use this algorithm to decompose signal
into sparse expression iteratively in the mixed over-
complete dictionary Φ. Figure.9 shows the framework of
the algorithm based on MP used in this article. The
more detailed algorithm is given below:

1. Initialization: Set k=1, S(0) = 0,R(0) = S, xck =0, where
k is the number of iteration, S is the profile signal to
be decomposed, R is the residual signal during the
iterations; the superscript is the iteration number; xck
is the coefficients in Φc ;δcmin and δcmax are the
threshold of inner product between residual signal
method (b) The sparse representation method.



Figure 12 Comparison result of extracted crack accuracy. (a) Traditional method (b) The sparse representation method.
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and each atom in crack dictionary Φc;δp is the
threshold of inner product between residual signal
and each atom in crack dictionary Φp

2. Crack feature extraction with MP:

2.1 -find the atom in Φc with maximum inner
product in each iteration, i.e. R k�1ð Þ;Φcj

� ��� �� ¼
sup R k�1ð Þ;Φc

� ��� ��, xck ¼ maxj R k�1ð Þ;Φcj
� ��� �� where

Φcj is the jth atom in Φc,xck is the coefficients.
2.2 -If δmin≤ R k�1ð Þ;Φcj

� ��� ��≤δmax, Sk ¼ S k�1ð Þ þ
xckΦck , R kð Þ ¼ S � S kð Þ,k++, go to 2.1. Else, no
crack, go to Step3.

2.3 -Through step 2.1 and step 2.2, S can be

expressed as S ¼ Sresidue þ
Xm
k¼1

xckΦck m is the

total number of iterations.

3. Main profile reconstruction with MP:

3.1 - Set k=1, Sresidue ¼ S �
Xm
k¼1

xckΦck ,

R 0ð Þ
residue ¼ Sresidue
ble 1 Disease characteristic parameter of the left crack
Figure 8d (d)

rameter Theoretical
Value

Traditional
method

Our
method

sition(mm) 161 161 161

idth(mm) 4 6 4

pth(mm) 6 1.896 6
3.2 -Project Sresidue on a dictionary Φp and find the
atom in Φp with maximum inner product in each
iteration, i.e. Rresidue

k�1ð Þ;Φpj
� ��� �� ¼

sup Rresidue
k�1ð Þ;Φp

� ��� ��, xpk ¼
maxj Rresidue

k�1ð Þ;Φpj
� ��� �� where Φpj is the jth

atom in Φp, xpk is the coefficients.

3.3 -If Rresidue
k�1ð Þ;Φpj

� ��� ��≤δp, Sresiduek ¼
Sresidue k�1ð Þ þ xpkΦpk , R

kð Þ
residue ¼ Sresidue � S kð Þ

residue,k
++, go to 3.2. Else, go to step 4.

4. Finally, S can be expressed as follow:

S ¼
Xm
k¼0

xckΦck þ
Xn
k¼0

xpkΦpk þ σ , m is the iteration

number of crack feature extraction, n is iteration
number of main profile reconstruction, σ includes
noise and approximation error.

Experimental results
The following experiments are designed to examine the
performance of the proposed approach for a good separ-
ation of the crack and main profile.
Table 2 Disease characteristic parameter of the right
crack in Figure 8d (d)

Parameter Theoretical
Value

Traditional
method

Our
method

Position(mm) 356 357 356

Width(mm) 7 13 7

Depth(mm) 4 2.442 4



Figure 13 Comparison result of extracted crack accuracy.

Sun et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:191 Page 8 of 11
http://asp.eurasipjournals.com/content/2012/1/191
Comparison experiment with wavelet and median
filtering method
In order to verify the effectiveness of our method, we
construct the simulation signal of pavement profile. The
simulation signal is presented in Figure 8d, where the
profile is composed of main profile simulated by expo-
nential function (Figure 8a), pavement distress (Figure 8b)
and white Gaussian noise (SNR = 8db).
Figure 10a presents cracks obtained by wavelet and

median filter method, where the db4 wavelet has been
used to remove the profile noise and median filter has
been used to extract the crack feature. Due to the limita-
tion of this algorithm, the cracks in Figure 10a have dis-
tortion, which also contains some information about
main profile and noise. The processed crack output by
sparse representation method is shown in Figure 10(b).
Figure 14 Enlarged image of cracks in Figure 12a left crack Figure 12
It is observed that cracks have clearly been detected by
sparse representation method.
Figure 11 presents main profile extraction results.

From Figure 11, it can be seen that the main profile in
Figure 11a have distortion, which will affect the results
of the subsequent calculation of IRI. The processed main
profile output by sparse representation method is shown
in Figure 11b. It is observed that this method can not
only remove the noise, but also maintain the shape of
original main profile well.
Figure 12, Table 1 and Table 2 presents extracted crack

accuracy result. From Figure 12, Table 1 and Table 2 it
can be seen that both methods can check the location of
cracks accurately, but traditional method cannot detect
the width and depth accurately.
From the above experiment results, it is clear that the

sparse representation method outperforms the wavelet
and median filtering method not only in crack detection
and main profile reconstruction but also a good separ-
ation between crack and main profile.
Comparison experiment with wavelet and Gabor
dictionary
We also did comparison experiment with wavelet and
Gabor dictionary. The experimental parameters of the
wavelet method are as follows: the db4 wavelet has been
used to extract crack and make seven-layer wavelet de-
composing; The parameters of Gabor dictionary are as
follows: gr tð Þ ¼ 1ffiffi

s
p g t�u

s


 �
cos vt þ wð Þ is the functional

form, γ = (s,u,v,w) = (aj, pajΔu, ka−jΔv, iΔw) is time-
frequency parameters of Gabor atom, in which a = 2, Δu
= 1/2, Δv = π, Δw = π/6, 0 < j ≤ log 2N, 0 < p ≤ N2−j+1,
0 < k ≤ 2j+1,0 ≤ i ≤ 12; Figure 13 presents cracks obtained
b right crack.



Figure 15 The experiment result of actual pavement crack.

Figure 16 Similarity between the actual crack waveform and
the extracted crack waveform.
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from Figure 8 d) by wavelet and Gabor dictionary and
Figure 14 is an enlarged image of two cracks in
Figure 13.
From Figures 13 and 14, it can be seen that the cracks

detected by wavelet method and Gabor dictionary have
distortion, which will affect the results of the subsequent
main profile. It is observed that Gabor dictionary can
match triangular shape of the crack very well, but when
it detects trapezoidal shape of the crack, the match re-
sult is not good.

Experiment result of actual pavement crack
The experiment was carried out to examine the efficiency
of the proposed technique for crack detection and main
profile reconstruction. From Figure 15a, we can see that
the horizontal light deforms when it encounters crack.
After this image is processed by center coordinates ex-
traction, calibration, we can obtain the profile of the pave-
ment. As shown in Figure 15b, this profile includes main
profile, noise, and pavement crack. Then we adapt the
sparse representation method to the profile signal to ex-
tract the features of crack and reconstruct the main pro-
file. From Figure 15c, we can see that this method not
only detects the location of crack accurately, but also
matches the shape of crack very well. Figure 15d shows
the reconstructed main profile by sparse representation
method, in which the blue line is the original profile
signal and the red line is the reconstructed main profile
without crack and noise. From Figure 15d, we can see
that the reconstructed main profile not only removes the
crack without destroying the main profile, but also retains
the original profile information.
In order to verify the consistency between the crack

shape extracted by our algorithm and the actual crack
shape, we use waveform similarity to evaluate our
method. Assuming that the actual crack waveform is x



Figure 17 Accuracy experiment of crack detection (a) gauge block (mm) (b) experimental image.
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(t), the crack waveform extracted by our algorithm is y
(t), similarity R can be expressed as:

R ¼
X

x tð Þ � y tð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x tð Þ2 �

X
y tð Þ2

q ð7Þ

We captured 39 images with cracks randomly, and use
sparse representation method to extract cracks. Experi-
ment result was shown in Figure 16. From Figure 16, we
can see that similarities R are all concentrated between
0.94 and 1, and the extracted crack waveform is good
consistency with actual waveform.

Accuracy experiment
In the area of pavement crack detection, crack location
and width are the two important indicators. So the pur-
pose of our experiment is to verify the accuracy of the
extracted crack location and width with our method. As
shown in Figure 17, we processed an adjustable gauge
block with different groove width (4, 6 and 8mm, the ac-
curacy is 0.1mm), to simulate the pavement cracks with
different width (4, 6 and 8mm). The experiment was
Table 3 The first group of experiment accuracy with longitud

The first group Direction The true
position(mm)

The d
positi

1 Longitudinal 449 449

2 Longitudinal 430 430

3 Longitudinal 393 393

4 Longitudinal 298 298

5 Longitudinal 270 270

6 Longitudinal 228 228

7 Longitudinal 193 193

8 Longitudinal 180 180

9 Longitudinal 234 234

10 Longitudinal 231 231
divided into two groups. We made the opening direction
of groove parallel with the longitudinal direction of
pavement in one group, i.e. let the transverse laser stripe
project onto the groove of gauge block. In the other
group, we made the opening direction of groove parallel
with the transverse direction of pavement, i.e. let the
longitudinal laser stripe project onto the groove of gauge
block. Then the 3D laser scanning system is used to de-
tect the groove of gauge block with the speed of 80km/h
and the results are shown in Table 3. From Tables 3 and
4, we can see that, whether with the transverse or the
longitudinal laser stripe, our method can detect the loca-
tion and width of crack accurately, the indication error
is not greater than 1mm.

Conclusions
In this article, a novel method based on sparse represen-
tation is developed to detect pavement cracks and re-
construct the main pavement profile. The key for cracks
separation from main profile is based on the features of
the mixed over-complete dictionary, which consists of
two kinds of atoms, one for crack representation and an-
other for main profile representation. In this study,
inal direction

etected
on(mm)

The true
width(mm)

The detected
width(mm)

Indication
Error(mm)

4 4.2856 0.2856

4 4.2593 0.2593

6 5.7726 −0.2274

6 5.6775 −0.3225

8 8.9032 0.9032

8 8.2566 0.2566

8 8.1504 0.1504

6 6.2302 0.2302

6 5.8847 −0.1153

6 5.7726 −0.2274



Table 4 The second group of experiment accuracy with transverse direction

The second
group

Direction The true
position(mm)

The detected
position(mm)

The true
width (mm)

The detected
width(mm)

Indication
error(mm)

1 Transverse 141 141 6 6.5002 0.5002

2 Transverse 127 127 6 6.8589 0.8589

3 Transverse 141 141 6 5.9583 −0.0417

4 Transverse 101 101 6 6.067 0.067

5 Transverse 143 143 6 6.3648 0.3648

6 Transverse 145 145 6 5.4348 −0.5652

7 Transverse 147 147 6 6.2089 0.2089

8 transverse 157 157 8 8.3092 0.3092

9 Transverse 180 180 8 8.2698 0.2698

10 Transverse 144 144 8 7.5107 −0.4893
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atoms of trapezoidal membership function are adopted
to represent crack, and exponential function for main
pavement profile. Compared to the wavelet and median
filtering method, the cracks extracted by our method
can match the shape of crack very well, which cannot
damage the information of the main profile signal. Some
outdoor and accuracy experiments were conducted and
promising results were obtained, showing that this
method cannot only detect the position of pavement
crack efficiently and achieve a good separation of crack
from pavement profile, but also reconstruct main profile
very well. Because MP is very time consuming when the
greedy exhaustive search in the whole huge over-
complete dictionary adopted and it is still a challenging
problem. In the future work, we will use computer grid
technology to improve computational efficiency.
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