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Abstract

Given the nonlinear manifold structure of facial images, a new kernel-based supervised manifold learning algorithm
based on locally linear embedding (LLE), called discriminant kernel locally linear embedding (DKLLE), is proposed
for facial expression recognition. The proposed DKLLE aims to nonlinearly extract the discriminant information by
maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space.
DKLLE is compared with LLE, supervised locally linear embedding (SLLE), principal component analysis (PCA), linear
discriminant analysis (LDA), kernel principal component analysis (KPCA), and kernel linear discriminant analysis
(KLDA). Experimental results on two benchmarking facial expression databases, i.e., the JAFFE database and the
Cohn-Kanade database, demonstrate the effectiveness and promising performance of DKLLE.
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Introduction
Affective computing, which is currently an active research
area, aims at building the machines that recognize,
express, model, communicate and respond to a user’s
emotion information [1]. Within this field, recognizing
human emotion from facial images, i.e., facial expression
recognition, is increasingly attracting attention and has
become an important issue, since facial expression pro-
vides the most natural and immediate indication about a
person’s emotions and intentions. Over the last decade,
the importance of automatic facial expression recognition
has increased significantly due to its applications to
human-computer interaction (HCI), human emotion ana-
lysis, interactive video, indexing and retrieval of image, etc.
An automatic facial expression recognition system gener-

ally comprises of three crucial steps [2]: face acquisition,
facial feature extraction, and facial expression classification.
Face acquisition is a preprocessing stage to detect or locate
the face regions in the input images or sequences. One of
the most widely used face detector is the real-time face
detection algorithm developed by Viola and Jones [3], in

which a cascade of classifiers is employed with Harr-wave-
let features. Once a face is detected in the images, the cor-
responding face regions are usually normalized to have the
same eye distance and the same gray level. Facial feature
extraction attempts to find the most appropriate represen-
tation of facial images for recognition. There are mainly
two approaches: geometric features-based systems and
appearance features-based systems. In the geometric fea-
tures-based systems, the shape and locations of major facial
components such as mouth, nose, eyes, and brows, are
detected in the images. Nevertheless, the geometric fea-
tures-based systems require the accurate and reliable facial
feature detection, which is difficult to realize in real-time
applications. In the appearance features-based systems, the
appearance changes (skin texture) of the facial images,
including wrinkles, bulges, and furrows, are presented.
Image filters, such as principal component analysis (PCA)
[4], linear discriminant analysis (LDA) [5], regularized dis-
criminant analysis (RDA) [6] and Gabor wavelet analysis
[7,8], can be applied to either the whole-face or specific
face regions to extract the facial appearance changes. It’s
worth pointing out that it is computationally expensive to
convolve facial images with a set of Gabor filters to extract
multi-scale and multi-orientation coefficients. Moreover, in
practice the dimensionality of Gabor features is so high
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that the computation and memory requirements are very
large. In recent years, an effective face descriptor called
local binary patterns (LBP) [9], originally proposed for tex-
ture analysis [10], have attracted extensive interest for facial
expression representation. One of the most important
properties of LBP is its tolerance against illumination
changes and its computational simplicity. So far, LBP has
been successfully applied as a local feature extraction
method in facial expression recognition [11-13]. In the last
step of an automatic facial expression recognition system, i.
e., facial expression classification, a classifier is employed to
identify different expressions based on the extracted facial
features. The representative classifiers used for facial
expression recognition are neural networks [14], the nearest
neighbor (1-NN) [15] or k-nearest neighbor (KNN) classi-
fier [16], and support vector machines (SVM) [17], etc.
In recent years, it has been proved that facial images of

a person with varying expressions can be represented as
a low-dimensional nonlinear manifold embedded in a
high-dimensional image space [18-20]. Given the non-
linear manifold structure of facial expression images, two
representative manifold learning (also called nonlinear
dimensionality reduction) methods, i.e., locally linear
embedding (LLE) [21] and isometric feature mapping
(Isomap) [22], have been used to project the high-dimen-
sional facial expression images into a low-dimensional
embedded subspace in which facial expressions can be
easily distinguished from each other [18-20,23,24]. How-
ever, LLE and Isomap fail to perform well on facial
expression recognition tasks due to their unsupervised
ways of failing to extract the discriminant information.
To overcome the limitations of unsupervised manifold

learning methods for supervised pattern recognition, some
supervised manifold learning algorithms have been recently
proposed by means of a supervised distance measure, such
as supervised locally linear embedding (SLLE) [25] using
the linear supervised distance, probability-based LLE using
a probability-based distance [26], locally linear discriminant
embedding using a vector translation and distance rescal-
ing model [27], and so forth. Among them, SLLE has
become one of the most promising supervised manifold
learning techniques due to its simple implementation, and
successfully applied for facial expression recognition [28].
However, SLLE still has two shortcomings. Firstly, due to
the used linear supervised distance, the interclass dissimi-
larity in SLLE keeps increasing in parallel while the intra-
class dissimilarity is increased. However, an ideal
classification mechanism should maximize the interclass
dissimilarity while minimizing the intraclass dissimilarity.
In this sense, this kind of linear supervised distance in
SLLE is not a good property for classification since it will
go to a great extent to decrease the discriminating power
of the low-dimensional embedded data representations
produced with SLLE. Secondly, as a non-kernel method,

SLLE cannot explore the higher-order information of input
data as SLLE cannot employ the characteristic of a kernel-
based learning, i.e., a nonlinear kernel mapping. To tackle
the above-mentioned problems of SLLE, in this article a
new kernel-based supervised manifold learning algorithm
based on LLE, called discriminant kernel locally linear
embedding (DKLLE), is proposed and applied for facial
expression recognition. On one hand, with a nonlinear
supervised distance measure, DKLLE considers both the
intraclass scatter information and the interclass scatter
information in a reproducing kernel Hilbert space (RKHS),
and emphasizes the discriminant information. On the
other hand, with kernel techniques DKLLE extracts the
nonlinear feature information when mapping input data
into some high dimensional feature space. In order to eval-
uate the performance of DKLLE on facial expression recog-
nition, we adopt the LBP features as facial representations
and then employ DKLLE to produce the low-dimensional
discriminant embedded data representations from the
extracted LBP features with striking performance improve-
ment on facial expression recognition tasks. The facial
expression recognition experiments are performed on two
benchmarking facial expression databases, i.e., the JAFFE
database [15] and the Cohn-Kanade database [29].
The remainder of this article is organized as follows:

in Section 2, LBP is introduced briefly. In Section 3,
LLE and SLLE are reviewed briefly. The proposed
DKLLE algorithm is presented in detail in Section 4. In
Section 5, experiments and results are given. Finally, the
conclusions are summarized in Section 6.

Local binary patterns
The original LBP operator [10] labels the pixels of an
image by thresholding a 3 × 3 neighborhood of each pixel
with the center value and considering the results as a bin-
ary code. The LBP code of the center pixel in the neigh-
borhood is obtained by converting the binary code into a
decimal one. Figure 1 gives an illustration for the basic
LBP operator. Based on the operator, each pixel of an
image is labeled with an LBP code. The 256-bin histogram
of the labels contains the density of each label and can be
used as a texture descriptor of the considered region.
The procedure of extracting LBP features for facial

representations is implemented as follows:
First, a face image is divided into several non-overlap-

ping blocks. Second, LBP histograms are computed for
each block. Finally, the block LBP histograms are conca-
tenated into a single vector. As a result, the face image
is represented by the LBP code.

LLE and SLLE
LLE
Given the input data point xi Î RD and the output data
point yi Î Rd (i = 1,2,3,..., N), the standard LLE [21]
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consists of three steps:

Step 1: Find the number of nearest neighbors for
each xi based on the Euclidean distance.
Step 2: Compute the reconstruction weights by
minimizing the reconstruction error.

Let xi and xj be neighbors, the reconstruction error is
measured by the following cost function:

ε(W) =
N∑
i=1

‖ xi −
N∑
j=1

Wijxj ‖
2

(1)

subject to two constraints:
∑N

j=1
Wij = 1 and Wij = 0,

if xi and xj are not neighbors.

Step 3: Compute the low-dimensional embedding.

The low-dimensional embedding is found through the
following minimization:

φ(Y) =
N∑
i=1

‖ yi −
N∑
j=1

Wijyj ‖
2

(2)

subject to two constraints:∑N

i=1
yi = 0 and

1
N

∑N

i=1
yTi yi = I, where I is the d × d

identity matrix. To find the matrix Y under these con-
straints, a new matrix M is constructed based on the
matrix W: M = (I-W)T (I-W). The d eigenvectors which
correspond to the d smallest non-zero eigenvalues of M
yield the final embedding Y.
SLLE
To complement the original LLE, SLLE [25] aims to find
a mapping separating within-class structure from a
between-class structure. One way to do this is to add
the distance between samples xi and xj in different
classes to modify the first step of the original LLE, while
leaving the other two steps unchanged. This can be
achieved by artificially increasing the pre-calculated

Euclidean distance (abbreviated as Δ) between samples
belonging to different classes, but leaving them
unchanged if samples are from the same class:

�′ = � + αmax(�)�ij,α ∈ [0, 1] (3)

where Δ is the distance matrix without considering
the class label information, and Δ’ is the distance inte-
grating with the class label information. If xi and xj
belong to the different classes, then Λij = 1 and Λij = 0
otherwise. In this formulation, the constant factor a (0
≤ a ≤ 1) controls the amount to which the class infor-
mation should be incorporated. At one extreme, when
a = 0, we get the unsupervised LLE. At the other
extreme, when a = 1, we get the fully supervised LLE
(1-SLLE). As a varies between 0 and 1, a partially
supervised LLE (a-SLLE) is obtained. From Eq. (3), it
can be observed that when the intraclass dissimilarity
(i.e., Δ’ = Δ, when Λij = 0) is linearly increased, the
interclass dissimilarity (i.e., Δ’ = Δ +amax(Δ), when Λij

= 1) keeps increasing in parallel, since amax(Δ) is a
constant. Therefore, the used supervised distance mea-
sure in SLLE is linear.

The proposed DKLLE
A discirminant and kernel variant of LLE is developed
by designing a nonlinear supervised distance measure
and minimizing the reconstruction error in a RKHS,
which gives rise to DKLLE.
Given the input data point (xi, Li), where xi Î RD and

Li is the class label of xi, the output data point is yi Î
Rd (i = 1,2,3,..., N). The detailed steps of DKLLE are pre-
sented as follows:

Step 1: Perform the kernel mapping for each data
point xi.

A nonlinear mapping � is defined as:

ϕ : RD → F , x �→ ϕ(x)
The input data point xi is mapped with the nonlinear

mapping �, into some potentially high-dimensional fea-
ture space F . Then, an inner product 〈,〉 can be defined

Figure 1 The basic LBP operator.
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on F for a chosen �, which makes a so-called RHKS.
In a RHKS, a kernel function �(xi, xj) can be defined as:

κ(xi, xj) = 〈ϕ(xi),ϕ(xj)〉 = ϕ(xi)Tϕ(xj) (4)

where � is called a kernel.

Step 2: Find the nearest neighbors for each �(xi) by
using a nonlinear supervised kernel distance.

The kernel Euclidean distance measure [30] for two
data points xi and xj induced by a kernel � can be
defined as:

Dist(xi, xj) =
√〈ϕ(xi) − ϕ(xj),ϕ(xi) − ϕ(xj)〉 =

√
κ(xi, xi) − 2κ(xi, xj) + κ(xj, xj) (5)

Let Dist denotes the kernel distance matrix for all the
input data points, i.e., Dist = Dist(xi, xj), i, j = 1,2,..., N.
To preserve the intraclass neighboring geometry, while
maximizing the interclass scatter, a nonlinear supervised
kernel distance measure KDist in a RHKS can be
defined as:

KDist =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1 − e

−Dist2

β Li = Lj√
e

Dist2

β − α Li 	= Lj

(6)

where KDist is the supervised kernel distance matrix
with the class label information, while Dist is the kernel
Euclidean distance matrix without the class label infor-
mation. a is a constant factor (0 ≤ a ≤ 1) and gives a
certain chance for the data points in different classes to
be more similar so that the dissimilarity in different
classes may be smaller than that in the same class. b is
used to prevent the supervised kernel distance matrix
KDist from increasing too fast when the kernel Eucli-
dean distance matrix Dist is relatively large, since Dist is
in the exponent. Hence, the value of b should depend
on the “density” of data sets and it is usually feasible to
set b to be the average kernel Euclidean distance
between all pairs of data points.
As shown in Eq. (6), we can make two observations.

First, both the interclass dissimilarity and the intraclass
dissimilarity in KDist, is monotone increasing with
respect to the kernel Euclidean distance. This ensures
that the main geometric structure of the original data
sets can be preserved well in the process of dimension-
ality reduction. Second, the interclass dissimilarity in
KDist can be always definitely larger than the intraclass
dissimilarity, conferring a high discriminating power of
DKLLE’s low-dimensional embedded data representa-
tions. This is a good property for classification.

Step 3: Measure the reconstruction error in a RHKS.
The reconstruction error is measured by the follow-
ing cost function:

ε(W) =
N∑
i=1

‖ ϕ(xi) −
k∑
j=1

Wijϕ(xj,i) ‖
2

(7)

where k is the number of nearest neighbors. Given the

constraint:
∑N

j=1
Wij = 1, the reconstruction error can

be rewritten as follows:

ε(W) =
N∑
i=1

‖ ϕ(xi) −
k∑
j=1

Wijϕ(xj,i) ‖
2

=
N∑
i=1

‖
k∑
j=1

Wij(ϕ(xi) − ϕ(xj,i)) ‖
2

=
N∑
i=1

ε(Wi) (8)

Let Pi = [�(xi)-�(x1,i),�(xi)-�(x2,i),..., �(xi)- �(xk,i)], then

ε(Wi) = ‖
k∑
j=1

Wij(ϕ(xi) − ϕ(xj,i)) ‖2 = ‖ PWi ‖2 = WT
i P

TPWi = WT
i KWi (9)

where K = PT P is a positive semi-definite kernel
matrix. To compute the optimal weight Wi, the follow-
ing Lagrange function is formulated with the constraint
WT

i 1 = 1 . (1 = (1,1,...,1)T)

L(Wi,λ) = WT
i KWi − λ(WT

i 1 − 1)

⇒ Wi =
K−11

1TK−11

(10)

Performing eigen-decomposition, let K = UTΛU, then

Wi =
UT�−1U1

1TUT�−1U1
(11)

Therefore, the reconstruction weights can be com-
puted by the kernel matrix’s eigenvalues and eigenvec-
tors.

Step 4: Compute the final embedding.
As LLE done, the following embedding cost function
is minimized.

φ(Y) =
N∑
i=1

‖ yi −
N∑
j=1

Wijyj ‖
2

= tr(YTMY) (12)

where M = (I-W)T(I-W), subject to two constraints:∑N

i=1
yi = 0 and

1
N

∑N

i=1
yTi yi = I, . The final embed-

ding Y comprises d eigenvectors corresponding to d
smallest non-zero eigenvalues of M

Experiments and results
To verify the effectiveness of the proposed DKLLE, we
use two benchmarking facial expression databases, i.e.,
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the JAFFE database [15] and the Cohn-Kanade Database
[29], for facial expression recognition experiments. Each
database contains seven emotions: anger, joy, sad, neu-
tral, surprise, disgust, and fear. The performance of
DKLLE is compared with LLE, SLLE, PCA, LDA, kernel
principal component analysis (KPCA) [31], and kernel
linear discriminant analysis (KLDA) [32]. The typical

Gaussian kernel κ(xi, xj) = exp
(−‖ xi − xj ‖2/2σ 2) is

used for KPCA, KLDA, and DKLLE, and the parameter
s is empirically set to 1 for its satisfying performance.
The number of nearest neighbors for LLE, SLLE, and
DKLLE is fixed with an adaptive neighbor selection
technique [33]. To cope with the embeddings of the
new samples, the out-of-sample extensions of LLE and
SLLE are developed by an existed linear generalization
technique [34], in which a linear relation is built
between the high and low-dimensional spaces and then
the adaptation to a new sample can be done by updating
the weight matrix W. As a kernel method, the proposed
DKLLE can directly project the new samples into a low-
dimensional space by using a kernel trick as in KPCA.
For simplicity, the nearest neighbor (1-NN) classifier
with the Euclidean metric is used for facial expression
classification. A 10-fold cross validation scheme is
employed in 7-class facial expression recognition experi-
ments, and the average recognition results are reported.
Due to the computation complexity constraint, the

reduced dimension is confined to the range [2, 100]
with an interval of 5. An exception is that in the low
range [2,10] we present the recognition results of each
reduced dimension with a small interval of 1, since the
reduced dimension of LDA and KLDA is at most c-1,
where c is the number of facial expression classes. In
each reduced dimension, the constant a (0 ≤ a ≤ 1) for
SLLE and DKLLE can be optimized using a simple
exhaustive search within a scope (a = 0,0.1,0.2,...,1).

Preprocessing
As done in [11,12], on the JAFFE database and the
Cohn-Kanade Database, the eye distance of facial images
was normalized to a fixed distance of 55 pixels once the
centers of two eyes were located. Generally, it is
observed that the width of a face is roughly two times
of the distance, and the height is roughly three times.
Therefore, based on the normalized value of the eye dis-
tance, a resized image of 110 × 150 pixels was cropped
from the original images. To locate the centers of two
eyes, automatic face registration was performed by using
the robust real-time face detector developed by Viola
and Jones [3]. From the results of automatic face detec-
tion including face location, face width, and face height,
two square bounding boxes for left eye and right eye
were automatically constructed by using the geometry of

a typical up-right face which has been widely used to
find a proper spatial arrangement of facial features [35].
Then, the center locations of two eyes could be automa-
tically worked out in terms of the centers of two square
bounding boxes for left eye and right eye. No further
alignment of facial features such as alignment of mouth
was performed. Additionally, there was no attempt
made to remove illumination changes due to LBP’s
gray-scale invariance.
When the facial images of 110 × 150 pixels, including

mouth, eyes, brows, and noses, were cropped from the
original images, the LBP operator was applied to each
cropped image and extracted the LBP features. As sug-
gested in [10-12], we selected the 59-bin LBP operator,
and divided the 110 × 150 pixels facial images into 42
(6 × 7) blocks, and finally extracted the LBP features
represented by the length of 2478 (59 × 42).

Experiments on the JAFFE database
The JAFFE database [15] contains 213 images of female
facial expressions. Each image has a resolution of
256*256 pixels. A few examples of facial expression
images from the JAFFE database are shown in Figure 2.
The number of images corresponding to each of the
seven categories of expressions is roughly the same. The
recognition results obtained by each method at different
reduced dimensions are given in Figure 3. The best
results and the standard deviations (std) for different
methods with the corresponding reduced dimension are
listed in Table 1.
From the results in Figure 3 and Table 1, we can see

that DKLLE achieves the highest accuracy of 84.06% at
40 reduced dimension, outperforming the other meth-
ods. More crucially, DKLLE makes about 9% improve-
ment over LLE and about 6% improvement over SLLE.
This demonstrates that DKLLE is able to extract the
most discriminative low-dimensional embedded data
representations for facial expression recognition. Note
that it’s difficult to perform directly a comparison with
all the previously reported work on the JAFFE database
due to the different experimental settings. Nevertheless,
in our work with LBP-based 1-NN the reported accu-
racy of 84.06% is still very encouraging compared with
the previously published work [12] similar to our experi-
mental settings. In [12], after extracting the most discri-
minative LBP (called boosted-LBP) features, they used
SVM and separately obtained 7-class facial expression
recognition accuracy of 79.8, 79.8, and 81.0% with linear,
polynomial, and radial basis function (RBF) kernels. It’s
worth pointing out that in this work for simplicity we
did not use the boosted-LBP features and SVM. To
further compare the performance of DKLLE with the
work in [12], we will explore the performance of the
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boosted-LBP features and SVM integrating with DKLLE
in our future work.
When DKLLE performs best at 40 reduced dimension,

the corresponding confusion matrix of 7-class facial
expression recognition results is presented in Table 2.
The confusion matrix in Table 2 shows that anger and
joy are identified well with an accuracy of over 90%,
while other five expressions are discriminated poorly
with an accuracy of less than 90%. In particular, sad is
classified with the lowest accuracy of 64.93% since sad is
highly confused to fear and neutral.

Experiments on the Cohn-Kanade database
The Cohn-Kanade database [29] consists of 100 univer-
sity students aged from 18 to 30 years. Image sequences
from neutral to target display were digitized into
640*490 pixels with 8-bit precision for grayscale values.
As done in [11,12], 320 image sequences were selected
from 96 subjects for experiments. For each sequence,
the neutral face and three peak frames were used for
prototypic expression recognition, resulting in 1409
images (anger 96, joy 298, sad 165, surprise 225, fear
141, disgust 135, and neutral 349). Figure 4 shows a few

Figure 2 Examples of facial expression images from the JAFFE database.
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Figure 3 Recognition accuracy vs. reduced dimension on the JAFFE database.
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Table 1 The best accuracy (std) of different methods on the JAFFE database

Method LDA PCA KLDA KPCA LLE SLLE DKLLE

Dimension 6 20 6 40 80 30 40

Accuracy (%) 80.81 ± 3.6 78.09 ± 4.2 80.93 ± 3.9 78.47 ± 4.0 75.24 ± 3.8 78.57 ± 4.0 84.06 ± 3.8

Table 2 Confusion matrix of recognition results with DKLLE on the JAFFE database

Anger (%) Joy (%) Sad (%) Surprise (%) Disgust (%) Fear (%) Neutral (%)

Anger 91.85 0 3.11 0 2.80 0 2.24

Joy 0 95.20 2.27 0 0 0 2.53

Sad 5.82 2.96 64.93 0.02 3.00 9.00 14.27

Surprise 0 3.05 2.39 89.16 0 5.32 0.08

Disgust 6.75 0 2.63 0 83.62 7.00 0

Fear 0 0.03 11.14 5.98 2.10 80.75 0

Neutral 0 0 15.87 1.22 0 0 82.91

Values in boldface represent accuracy per expression.

Figure 4 Examples of facial expression images from the Cohn-Kanade database.
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Figure 5 Recognition accuracy vs. reduced dimension on the Cohn-Kanade database.
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examples of facial expression images from the Cohn-
Kanade database.
Figure 5 presents the recognition performance of dif-

ferent methods. Table 3 shows the best accuracy (std)
for different methods with the corresponding reduced
dimension. The results in Figure 5 and Table 3 indicate
that DKLLE obtains the recognition performance super-
ior to the other used methods again. Compared with the
previously reported work [11,12] in which the experi-
mental settings are similar to ours, the best accuracy of
95.85% obtained by LBP-based 1-NN is highly competi-
tive. In [11], on 7-class facial expression recognition
tasks they used LBP-based template matching and
reported an accuracy of 79.1%. Additionally, they also
employed LBP-based SVM to give an accuracy of 87.2,
88.4, and 87.6% with linear, polynomial and RBF kernels,
respectively. In [12], based on boosted-LBP features and
SVM, on 7-class facial expression recognition tasks they
reported an accuracy of 91.1, 91.1, and 91.4% with lin-
ear, polynomial and RBF kernels, respectively.
Table 4 shows the confusion matrix of 7-class expres-

sion recognition results when DKLLE obtains the best
performance at 30 reduced dimension. From Table 4, it
can be seen that 7-class facial expressions are identified
very well with an accuracy of over 90%.

Conclusions
A new kernel-based supervised manifold learning algo-
rithm, called DKLLE, is proposed for facial expression
recognition. DKLLE has two prominent characteristics.
First, as a kernel-based feature extraction method,
DKLLE can extract the nonlinear feature information
embedded on a data set, as KPCA and KLDA does. Sec-
ond, DKLLE is designed to obtain a high discriminating
power for its low-dimensional embedded data represen-
tations in an effort to improve the performance on facial

expression recognition. Experimental results on the
JAFFE database and the Cohn-Kanade Database show
that DKLLE not only makes an obvious improvement
over LLE and SLLE, but also outperforms the other
used methods including PCA, LDA, KPCA, and KLDA.
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