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Abstract

This article proposes a semiblind channel estimationmethod formultiple-inputmultiple-output orthogonal frequency-
division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the
autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency
response matrix and precoding coefficients. This structure makes it possible to extract information about channel
product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigen-
vectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to
finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by perform-
ing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably
robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of
transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method
and compare it with some existing methods.
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1 Introduction
Orthogonal frequency-division multiplexing (OFDM),
when combined with cyclic prefix (CP) as the guard
intervals, is an effective transmission technique for high-
speed broadband communication systems because of its
high data rate, high spectral efficiency, and lack of inter-
symbol interference (ISI) [1,2]. The operational principle
of OFDM is to use inverse discrete Fourier transform
(IDFT) and CP insertion to divide the original bandwidth
into multiple narrow sub-bands, in which the mobile
channel can be considered non-dispersive [3]. It is then
easy to implement low complexity equalization at the
receiver by using a set of complex multipliers, one for
each sub-band, provided the channel state information is
available [4].
Multiple-input multiple-output (MIMO) technology,

which employs multiple antennas at the transmitters and
receivers, has received much attention due to its ability
to improve the data transmission rate through enormous
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channel capacity gains. Hence, an MIMO–OFDM sys-
tem that combines OFDM and MIMO technologies is a
key way for achieving high performance transmission in
modern wireless communications [5].
The receivers of MIMO–OFDM systems require

channel state information to detect symbols reliably.
Blind or semiblind channel estimation is a bandwidth-
efficient alternative to the conventional training based
approaches [6-8]. Researchers have recently proposed
various methods for (semi) blind channel estimation for
MIMO–OFDM systems [9-12]. Gao et al. [9] proposed
a robust subspace method applicable to MIMO–OFDM
systems. Their method exhibits many advantages, includ-
ing robustness to channel order overestimation and
guaranteeing the channel identifiability. However, this
method is not suitable for the case of more transmit-
ters than receivers, and it imposes some constraints on
channel zero locations. Blind or semiblind estimation
using non-redundant precoding [8] can solve these prob-
lems since it avoids the catastrophic effects of channel
zeros and requires less assumptions on channel. Previous
studies present three typically non-redundant precoding
methods for (semi)blind channel estimation for MIMO–
OFDM systems [10-12]. The method in [10] uses the
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precoding to spread the symbols of each user over all sub-
carriers, thus increasing multipath diversity and reducing
bit error rate (BER) at the receivers. Gao and Nallanathan
[11] generalized the precoding method in [13] to MIMO–
OFDM systems. A distinguishing feature of their method
is that it can be applied to the scenarios in which the
number of transmitters exceeds that of the receivers.
Shin et al. [12] presented a framework for exploiting a
general non-redundant precoding method for MIMO–
OFDM systems and MIMO single-carrier systems with
frequency-domain equalization. Their method is robust
to channel order overestimation and incurs a relaxed
channel identifiability condition.
This article develops a semiblind channel estimation

method for MIMO–OFDM systems based on a specific
and non-redundant precoding scheme, say, circular pre-
coding, since the circular precoding allows channel esti-
mation at the receiver and simplifies the encoding scheme
at the transmitter [14]. In literature, to the best of our
knowledge, only two circular precoding based methods
have been proposed for single-input single-output (SISO)
OFDM systems [14,15]. Thus the current study focuses on
generalizing the methods in the SISO case [14,15] to the
MIMO–OFDM systems. The proposed method is based
on second-order statistics. With circular precoding at the
transmitters, the autocorrelation matrix of the received
data is equal to a noise-perturbated matrix involving the
outer product of the channel frequency response matrix
and the coefficents relating to the precoding. Dividing
each submatrix in the autocorrelation matrix by the cor-
responding coefficient related to the precoding gives a
noise-perturbed outer product of the channel frequency
response matrix. Then we use the relation of the chan-
nel frequency response matrix and the channel impulse
response matrix to transform the above noise-perturbed
matrix to another noise-perturbed matrix. The result-
ing noise-perturbed matrix is equal to an outer product
of the channel impulse response matrix plus a diagonal
matrix due to channel noise. Next, we use a simplemethod
to eliminate the noise components to obtain the outer
product of the channel impulse response matrix. Finally,
the channel impulse response matrix is obtained by

computing the positive eigenvalues and the correspond-
ing eigenvectors of this outer-product matrix. This study
also tests the resistance of the precoding design to finite-
sample estimation errors, and explores the effects of the
precoding scheme on channel equalization through pair-
wise error probability (PEP) analysis. Simulation results
demonstrate the performance of the proposed method
and compare it with previous methods.
This article is organized as follows. Section 2 presents

the system model and problem statement. Section 3
derives the estimation method, studies the precod-
ing design, evaluates the equalization performance, and
provides some further discussion about the proposed
algorithm. Section 4 shows simulation results. Finally,
Section 5 concludes this article.
The notations used in this article are quite standard:

bold uppercase is used for matrices, and bold lowercase
is used for vectors. AT represents the transpose of the
matrix A, and A∗ represents the conjugate transpose of
thematrixA. IM is the identity matrix of dimensionM×M,
and A ⊗ B is the Kronecker product of matrices A and B.
The symbols R and C represent the set of real numbers
and the set of complex numbers, respectively.

2 Systemmodel and basic assumptions
Consider the K-input J-output discrete time OFDM base-
band system shown in Figure 1. Let {H(0) H(1) . . .H(L)}
be the MIMO channel impulse response from the trans-
mitters to the receivers with order L, where H(l) ∈ C

J×K

is the lth lag of the MIMO channel, ∀l = 0, 1, . . . , L.
The matrix element [H(l)]jk = hjk(l) is the lth lag of
the channel between the kth transmitter and the jth
receiver, ∀k = 1, 2, . . . ,K , ∀j = 1, 2, . . . , J . At the
kth transmitter, the nth information vector x(k)(n) =
[ x(k)

1 (n) x(k)
2 (n) . . . x(k)

M (n)]T ∈ C
M is first precoded by

a real circular precoder P ∈ R
M×M, followed by an IDFT

matrix F−1, to obtain

s(k)(n) = F−1Px(k)(n), (2.1)

where s(k)(n) =[ s(k)1 (n) s(k)2 (n) . . . s(k)M (n)]T ∈ C
M, and

P is a circulant matrix with [ p1 p2 . . . pM]T as its

Figure 1 AnMIMO–OFDM baseband systemwith circular precoding.
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first column with pi > 0, ∀i. After CP insertion for each
transmitted vector s(k)(n) and CP removal at the receiver,
as long as the length of CP is longer than or equal to L,
the input-output relation of the system can be described
as follows [11]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(1)(n) =
∑K

k=1
H1ks(k)(n) + w(1)(n)

z(2)(n) =
∑K

k=1
H2ks(k)(n) + w(2)(n)

...

z(J)(n) =
∑K

k=1
HJks(k)(n) + w(J)(n),

(2.2)

where Hjk ∈ C
M×M is a circulant matrix with

[ hjk(0) hjk(1) . . . hjk(L) 0 . . . 0]T ∈ C
M being its

first column, and z(j)(n)=[ z(j)1 (n) z(j)2 (n) . . . z(j)M (n)]T ∈ C
M

and w(j)(n) =[w(j)
1 (n) w(j)

2 (n) . . .w(j)
M (n)]T ∈ C

M are the
received signal vector and the additive white Gaussian
noise (AWGN) vector, respectively, ∀j = 1, 2, . . . , J . Tak-
ing DFT operation on the received signal z(j)(n) in (2.2)
and using (2.1) lead to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1)(n) = Fz(1)(n) =
∑K

k=1
D1kPx(k)(n) + v(1)(n)

y(2)(n) = Fz(2)(n) =
∑K

k=1
D2kPx(k)(n) + v(2)(n)

...

y(J)(n) = Fz(J)(n) =
∑K

k=1
DJkPx(k)(n) + v(J)(n),

(2.3)

where v(j)(n) = Fw(j)(n) =[ v(j)
1 (n) v(j)

2 (n) . . . v(j)
M (n)]T

∈ C
M is the noise vector, y(j)(n) =[ y(j)

1 (n) y(j)
2 (n) . . .

y(j)
M (n)]T ∈ C

M is the received vector, and Djk =
FHjkF−1 = diag[ djk(1) djk(2) . . . djk(M)]∈ C

M×M

is a diagonal matrix, ∀1 ≤ j ≤ J , 1 ≤ k ≤ K . Note
that djk(m) = ∑L

l=0 hjk(l)ω−l(m−1) is the channel fre-
quency response between the kth transmitter and the jth
receiver at the mth subcarrier for m = 1, 2, . . . ,M and
ω = exp(i2π/M).
To further simplify the system model, we regroup the

transmitted symbols, received signals, and noise signals
on the same time slot as follows:

xi(n) =[ x(1)
i (n) x(2)

i (n) . . . x(K)
i (n)]T ∈ C

K ,
i = 1, 2, . . . ,M,

yi(n) =[ y(1)
i (n) y(2)

i (n) . . . y(J)
i (n)]T ∈ C

J ,
i = 1, 2, . . . ,M,

vi(n) =[ v(1)
i (n) v(2)

i (n) . . . v(J)
i (n)]T ∈ C

J ,
i = 1, 2, . . . ,M.

Then, after some proper entry permutations, (2.3) can be
rewritten as

⎡⎢⎢⎢⎣
y1(n)

y2(n)
...

yM(n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

y(n)

=

⎡⎢⎢⎢⎣
D(1) 0 . . . 0
0 D(2) . . . 0
...

...
. . .

...
0 0 . . . D(M)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

D

(P ⊗ IK )

×

⎡⎢⎢⎢⎣
x1(n)

x2(n)
...

xM(n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

x(n)

+

⎡⎢⎢⎢⎣
v1(n)

v2(n)
...

vM(n)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

v(n)

, (2.4)

where D(m) =[ djk(m)]∈ C
J×K is the channel frequency

response matrix from the transmitters to the receivers at
themth subcarrier.
The purpose of this article is to develop a method

of semiblindly identifying the MIMO channel impulse
response {H(0),H(1), . . . ,H(L)}, using second-order
statistics of the received data based on the following
assumptions:

(i) The source signal x(k)(n) is a zero-mean and
white vector sequence with E[ x(k)(m)x(l)(n)∗]=
δ(k − l)δ(m − n)IM , where δ(·) is the Kronecker
delta function. The AWGN is zero-mean with
E[w(k)(m)w(l)(n)∗]= δ(k − l)δ(m − n)σ 2

wIM . In
addition, the source signal is uncorrelated with the
AWGN w(j)(n), i.e., E[ x(k)(m)w(j)(n)∗]= 0M×M ,
∀ m, n, j, k.

(ii) The channel impulse response matrix H =[H(0)T
H(1)T . . .H(L)T ]T ∈ C

J(L+1)×K is full column rank,
i.e., rank (H) = K .

3 Semiblind channel estimation and equalization
This section develops the proposed method under
assumptions (i) and (ii). Section 3.1 first derives the
estimation method. Section 3.2 then discusses the pre-
coding design to combat the effect of finite-sample esti-
mation errors. Section 3.3 investigates the equalization
performance of the precoding method using PEP anal-
ysis. Section 3.4 provides further discussion about the
proposed method.
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3.1 The estimation method
Under assumption (i), the autocorrelation matrix of y(n)

in (2.4) is shown as follows:

R = E[ y(n)y(n)∗]
= D(P ⊗ IK )(P∗ ⊗ IK )D∗ + σ 2

wIJM (3.1)
= D(PP∗ ⊗ IK )D∗ + σ 2

wIJM
= D(G ⊗ IK )D∗ + σ 2

wIJM.

Since P is a circulant matrix, G = PP∗ ∈ R
M×M is also a

circulant matrix [16] with g =[ g1 g2 . . . gM]T being its
first column. Let J ∈ R

M×M be a circulant matrix with the
first column equal to [ 0 1 0 . . . 0 0]T ∈ R

M. Thus,G can
be expressed as

G =[ g Jg J2g . . . JM−1g] . (3.2)

Using (3.2), (3.1) can be expressed as

R = D
(
[ g Jg J2g . . . JM−1g]⊗IK

)
D∗ + σ 2

wIJM
= [

D(g ⊗ IK ) D(Jg ⊗ IK ) D(J2g ⊗ IK ) . . . D(JM−1g

⊗IK )]D∗ + σ 2
wIJM

=

⎡⎢⎢⎢⎣
g1D(1) gMD(1) . . . g2D(1)
g2D(2) g1D(2) . . . g3D(2)

...
...

. . .
...

gMD(M) gM−1D(M) . . . g1D(M)

⎤⎥⎥⎥⎦D∗ + σ 2
wIJM

(3.3)

=

⎡⎢⎢⎢⎣
g1D(1)D(1)∗ gMD(1)D(2)∗ . . . g2D(1)D(M)∗
g2D(2)D(1)∗ g1D(2)D(2)∗ . . . g3D(2)D(M)∗

...
...

. . .
...

gMD(M)D(1)∗ gM−1D(M)D(2)∗ . . . g1D(M)D(M)∗

⎤⎥⎥⎥⎦
+ σ 2

wIJM .

Note that the autocorrelation matrix R in (3.3) is
a noise-perturbated matrix involving the coefficients
g1, g2, . . . , gM, and the outer-productmatricesD(m)D(n)∗,
∀m, n = 1, 2, . . . ,M. Dividing each submatrix in R
by the corresponding coefficient yields the matrices
D(m)D(m)∗+ σ 2

w
g1 IJ andD(m)D(n)∗ form, n = 1, 2, . . . ,M,

m �= n. Those matrices are then used to form the follow-
ing matrix

QF = DFD∗
F + σ 2

w
g1

IJM, (3.4)

where DF =[D(1)T D(2)T . . . D(M)T ]T ∈ C
JM×K

is the channel frequency response matrix. Note that QF

is the outer product of DF plus a diagonal matrix σ 2
w
g1 IJM

due to noise. If the noise components imposed on QF
can be eliminated, then we can obtain the outer-product
matrix DFD∗

F . Next, we can take eigen-decomposition of
this outer-product matrix to obtain an estimate D̂F of
DF . However, taking eigen-decomposition of such a large

size (JM × JM) of matrix DFD∗
F involves more computa-

tions and usually renders a less accurate result, especially
whenM, the number of subcarriers, is large. To avoid this
drawback, we want to use (3.4) to obtain another matrix
HH∗, which is the outer product of the channel impulse
response matrix H =[H(0)T H(1)T . . . H(L)T ]T ∈
C
J(L+1)×K . The size of HH∗ is J(L + 1) × J(L + 1), which

is smaller than the size of DFD∗
F .
a Hence, taking eigen-

decomposition of HH∗ to obtain an estimate Ĥ of H
requires less computational load.
To obtainHH∗ from (3.4), we first define anM× (L+1)

matrix F1 = F(:, 1 : L + 1), which is the matrix containing
the first (L+ 1) columns of F. In addition, the relationship
between the channel frequency response matrix DF and
channel impulse response matrix H can be described as
follows:

DF = √
M(F1 ⊗ IJ )H. (3.5)

With the aid of (3.5) and (3.4), we obtain the following
matrixQH :

QH = 1
M

(F∗
1 ⊗ IJ )QF(F1 ⊗ IJ )

= 1
M

(F∗
1 ⊗ IJ )(DFD∗

F + σ 2
w
g1

IJM)(F1 ⊗ IJ ) (3.6)

= 1
M

(F∗
1 ⊗ IJ )DFD∗

F(F1 ⊗ IJ )

+ 1
M

(F∗
1 ⊗ IJ )

σ 2
w
g1

IJM(F1 ⊗ IJ )

= HH∗ + σ 2
w

Mg1
IJ(L+1).

Since the matrix H is of full column rank by assump-
tion (ii), the rank of HH∗ is K . This implies that the
associated smallest J(L + 1) − K eigenvalues of QH in
(3.6) are equal to the scaled-noise variance σ 2

w
Mg1 . Hence

in practice, we can estimate the scaled-noise variance as
the average of the smallest J(L + 1) − K eigenvalues of
QH . Then the outer-product matrixHH∗ can be obtained
by substracting σ 2

w
Mg1 IJ(L+1) from QH in (3.6). Finally, tak-

ing eigen-decomposition of the Hermitian and positive
semi-definite matrix HH∗ with rank K yields K positive
eigenvalues and the associated unit-norm eigenvectors,
say, λ1, . . . , λK and d1, . . . ,dK , respectively. We can thus
choose the channel impulse response matrix to be

Ĥ =[
√

λ1d1
√

λ2d2 . . .
√

λKdK ]∈ C
J(L+1)×K ,

(3.7)

up to a unitary matrix ambiguityU ∈ C
K×K , i.e.,H = ĤU,

since ĤĤ∗ = HH∗ = Q. The ambiguity matrix U is
intrinsic to semiblind estimation ofmultiple input systems
using only second-order statistics technique [17]. This
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ambiguity can be resolved using a short pilot sequence
[18].

3.2 Precoding design
In Section 3.1, we obtain QF from the autocorrelation
matrix R. However, in practice, we have R̂ = R + 	R
instead of R, where	R is the error matrix due to the pres-
ence of finite-sample estimation error. As a result, dividing
each submatrix in the autocorrelationmatrix R̂ by the cor-
responding coefficient gm to obtain Q̂F involves an error
term, i.e., Q̂F = QF + 	QF , where 	QF is the error term,
and 	QF((k − 1)J + 1 : kJ , (l− 1)J + 1 : lJ) = 1

gm 	R((k −
1)J + 1 : kJ , (l − 1)J + 1 : lJ) with m = (k − l)M + 1,
∀1 ≤ k, l ≤ M. Here (·)M is the modulo-M operation.
It is obvious that a large value of the corresponding gm
attenuates the error term 	QF , which in turn increases
the accurancy of estimation for Q̂F .
As a result, we need to design the precoding coeffi-

cients p1, p2, . . . , pM to maximize g1, g2, . . . , gM to reduce
the error term. However, this results in a multi-objective
optimization problem which does not seem to easily yield
a tractable way to design. Hence, we present another
feasible approach to design the precoding in the following.
Since no prior information of the distortion 	R can

be obtained in advance, we combine all the M objective
functions into a single cost with the same weight, i.e.,
g = g1 + g2 + · · · + gM, and try to design the precod-
ing to maximize g. In addition, it is easy to verify that
g = (p1+p2+· · ·+pM)2. Then the optimization problem
can be formulated as follows:

maxp1,p2,...,pM (p1 + p2 + · · · + pM)2

subject to
∑M

n=1
p2n = 1. (3.8)

The constraint in (3.8) normalizes the power gain of
each precoded symbol in the precoded vector Px(k)(n)

to 1. Appendix shows that the optimal solution to (3.8) is

p1 = p2 = · · · = pM = 1√
M

. (3.9)

Although (3.9) is the optimal solution for channel estima-
tion, it makes symbol detection impossible because (3.9)
produces a singular matrix P that can not decode the pre-
coded vector Px(k)(n) at the receiver. To make symbol
detection possible after channel estimation, wemodify the
optimal solution (3.9) as the following precoding scheme⎧⎨⎩ p1 =

√
1
M + τ

pn =
√

1
M − τ

M−1 , n = 2, 3, . . . ,M,
(3.10)

to make a nonsingular matrix P, where 0 < τ < M−1
M is

small. The solution in (3.10) is a small perturbation of the
optimal solution in (3.9). In addition, if we increase τ from

0 to M−1
M , then p1 is larger than pn, n = 2, 3, . . . ,M, which

would improve the channel equalization performance. In
the following subsection, we will prove this fact by eval-
uating the equalization performance under the precoding
scheme (3.10).

3.3 Analysis of PEP
One approach to evaluating the equalization performance
is BER analysis, but it is generally quite complex. Hence,
we use PEP analysis, a technology which is widely used
in space-time communications and OFDM systems, to
examine the equalization performance [19-25]. In addi-
tion, to better understand the intrinsic impact of the pre-
coding (3.10) on equalization, we assume that the channel
state information is known at the receivers. This assump-
tion also appears in [26,27] to evaluate the equalization
performance. Now, let us consider the system model (2.4)
with zero-forcing (ZF) equalization and drop the time
index n for notational convenience.
The PEP analysis measures the probability that a symbol

vector x is sent but another x̃ �= x is detected. Let ‖ · ‖
denote the two-norm of a vector. Then by definition, the
PEP conditioned on the channel impulse response matrix
H is given by

Pr[ x → x̃ |H]= Pr[ ‖̂x − x̃‖ < ‖̂x − x‖ |H] , (3.11)

where x̂ = x + (P−1 ⊗ IK )D†v is the estimate of x after
ZF equalization, and D† is the pseudo-inverse of D. Let
d = ‖x − x̃‖ be the distance between x and x̃, and let
e = x̃−x

d be the normalized error vector. Then (3.11) can
be directly simplified to

Pr[ x → x̃ |H]= Pr[u >
d
2

|H] , (3.12)

where u = Re[ v∗(D†)∗(P−T ⊗IK )e] and Re[ ·] denotes the
real part. Since each element in v is a zero-mean circular
Gaussian random variable with variance σ 2

w, the random
variable u is also a zero-mean Gaussian with variance

E[u2] = E[ |Re[ v∗(D†)∗(P−T ⊗ IK )e] |2]

= σ 2
w
2

‖(D†)∗(P−T ⊗ IK )e‖2. (3.13)

Hence, the conditional PEP in (3.12) becomes

Pr[ x → x̃ |H]= Q
(

d√
2σ 2

w‖(D†)∗(P−T ⊗ IK )e‖

)
,

(3.14)
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where Q(·) is the Q-function [28]. Let ‖ · ‖F denote the
Frobenius norm of amatrix. Then by the submultiplicative
property of matrix norms [29], we have

‖(D†)∗(P−T ⊗ IK )e‖ ≤ ‖(D†)∗‖F · ‖P−T ⊗ IK‖F · ‖e‖
= √

K‖(D†)∗‖F · ‖P−T‖F (3.15)

= √
K‖(D†)∗‖F · ‖P−1‖F .

The first equality in (3.15) holds since the two-norm of the
unit vector e is 1, and the second equality holds since the
Frobenius norm of a matrix A equals the Frobenius norm
of AT .
Let us now focus on ‖P−1‖F in (3.15). Since P is a cir-

culant matrix, it can be decomposed as P = F−1DPF, and
the inverse of P can be expressed as P−1 = F−1D−1

P F,
where DP is a diagonal matrix with eigenvalues of P on
its diagonal [16]. For P with coefficients {p1, p2, . . . , pM}
given in (3.10), the first row of P is [ a b b . . . b], where
a =

√
1
M + τ and b =

√
1
M − τ

M−1 . Then the eigenval-
ues of P are given by the DFT of the first row of P [16] to
form the diagonal matrixDP = diag[ a+ (M− 1)b, a−
b, , a − b, . . . , a − b]∈ R

M×M . This leads to

‖P−1‖F = ‖F−1D−1
P F‖F

≤ ‖F−1‖F · ‖D−1
P ‖F · ‖F‖F

= √
M ·

√
[ a+(M−1)b]−2+(M−1)(a−b)−2 · √

M
(3.16)

≤ M
√

(a − b)−2 + (M − 1)(a − b)−2

= M
√
M(a − b)−1.

From (3.15) and (3.16), we know

‖(D†)∗(P−T ⊗ IK )e‖ ≤
√
KM3‖(D†)∗‖F(a − b)−1.

(3.17)

Using (3.17), we know the conditional PEP (3.14) is upper
bounded by

Pr[ x → x̃ |H]≤ Q
(

d(a − b)√
2σ 2

wKM3‖(D†)∗‖F

)
. (3.18)

From (3.18), it is obvious that we can increase a (i.e., p1
or τ ) to decrease the upper bound of PEP, which in turn
reduces the symbol/bit detection error. However, it is easy
to check that increasing τ from 0 to M−1

M would decrease
the value of the objective function g = (p1+p2+· · ·+pM)2

in (3.8), which means the estimation performance dete-
riorates. Hence, there is a tradeoff in the selection of
τ between channel estimation and equalization. In the
work of [4,11], this tradeoff is also observed. We will
give a simulation example to demonstrate this tradeoff in
Section 4.

3.4 Discussion
We now give some further comments about the proposed
method.

(1) Channel identifiability and the case of more transmit-
ters: The channel identifiability condition, rank(H) =
K (assumption (ii)), for the proposed method is the
same as that in methods [11,12,30], but is more
relaxed than the identifiability conditions for meth-
ods [9,10]. If assumption (ii) does not hold, i.e., the
matrix H is rank deficient with rank(H) = W < K ,
then rank(HH∗) = W < K . In this case, we could
only choose W positive eigenvalues and the associ-
ated eigenvectors from HH∗, which can not form the
matrix Ĥ in (3.7) in theory.
In addition, since the size of the channel impulse

response matrix H is J(L + 1) × K , rank(H) = K
implies

J(L + 1) ≥ K , (3.19)

i.e., the product of the number of receivers (J) and the
channel length (L+1) should be no less than the num-
ber of transmitters (K). Hence, the proposed method
is capable of identifying not only the more receivers
case (J ≥ K), but also the more transmitters case
(K > J) as long as (3.19) is fulfilled.

(2) Channel order overestimation: So far we have
assumed that the channel order L is known. If L
is unknown, we can set P, the length of CP, as an
upper bound of L since P ≥ L is required to avoid
interblock interference. With this upper bound L̂ = P
and following the process given in Section 3.1, the
corresponding matrix QH in (3.6) can be similarly
constructed as QH = HovH∗

ov + σ 2
w

Mg1 IJ(L̂+1), where

Hov =[HT 0 . . . 0︸ ︷︷ ︸
(L̂−L) blocks

]T ∈ C
J(L̂+1)×K . Then, similar

to the method given in Section 3.1, we eliminate the
noise contribution imposed onQH to obtainHovH∗

ov.
Note that the last (L̂ − L) block columns and block
rows of HovH∗

ov are zero. Hence, rank(HovH∗
ov) =

K and HovH∗
ov has K positive eigenvalues. Each

of the associated eigenvectors has the form d̂ =
[dT 0 . . . 0]T ∈ C

J(L̂+1) where d ∈ C
J(L+1).

From these K positive eigenvalues and the associated
K eigenvectors, we can estimate Ĥov, and then obtain
the channel impulse response matrix Ĥ from Ĥov up
to a matrix ambiguity.

(3) Algorithm: We now summarize the proposed
approach as the following algorithm:

(1) Collect the received data y(n), and then esti-
mate the autocorrelation matrix R via the
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following time average

R̂ = 1
S

S∑
n=1

y(n)y(n)∗, (3.20)

where S is the number of data blocks.
(2) Use the precoding coefficients in (3.10) to

compute QF from the autocorrelation matrix
of R̂.

(3) Form the matrix QH using (3.6) and QF
obtained from the previous step.

(4) Use the method given in Section 3.1 to
remove the noise components imposed on
QH to obtainHH∗.

(5) Finally, obtain the channel impulse response
matrix H by computing the K largest eigen-
values and the associated eigenvectors of
HH∗.

4 Simulation
In this section, we generate 100 2-input 2-output ran-
dom channels with L = 6 for each simulation (except
simulation 3) to demonstrate the performance of the
proposed method. The number of subcarriers for one
OFDM block is M = 36, and the length of CP is
P = 6. Each channel coefficient in the channel impulse
response matrix is generated according to the indepen-
dent complex-valued Gaussian distribution with zero-
mean and unit variance. The normalized mean-square-
error (NMSE) of the channel impulse response matrix is
defined as NMSE = (1/I)

∑I
i=1 ‖Ĥ(i) − H‖2F · ‖H‖−2

F ,
where I = 100 is the number of independent trials.
Ĥ(i) =[ Ĥ(i)(0)T Ĥ(i)(1)T . . . Ĥ(i)(6)T ]T is the
ith estimate of the channel impulse response matrix H
after removing the unitary matrix ambiguity by the least
squares method [17]. The number of symbol blocks is
S = 100. The input source symbols are quadrature-
phase-shift-keying (QPSK) signals. The channel noise is
zero-mean, temporally and spatially white Gaussian. The
signal-to-noise ratio (SNR) at the output is defined as
SNR = E[‖y(n)−v(n)‖22]

E[‖v(n)‖22]
.

4.1 Simulation 1: the effect of the precoding on channel
estimation and equalization

In this simulation, we use 4 different precoders based on
(3.10) with τ = 0.2, 0.4, 0.6, and 0.8, to illustrate the
effect of the precoding on channel estimation and ZF
equalization. Figure 2 shows that NMSE decreases as SNR
increases for each precoder. In this figure, we also see that
the estimation performs better for smaller τ , which is con-
sistent with the analysis at the end in Section 3.3. Figure 3
shows that the BER improves as τ increases, since the
analysis of PEP shows that a larger τ can lower the upper
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Figure 2 Channel NMSE versus output SNR for different τ .

bound of PEP, which in turn improves symbol/bit detec-
tion at the receiver. From Figures 2 and 3, we know there
is a tradeoff between channel estimation and equalization,
and the selection of τ should depend on the scenarios we
meet.

4.2 Simulation 2: robustness to channel order
overestimation

In this simulation, we use the precoding scheme that sat-
isfies (3.10) with different τ and fix SNR= 10 dB. For each
upper bound L̂ with 0 ≤ (L̂ − L) ≤ 5, we choose P = L̂
and M = 9P for simulation such that the transmission
efficiency is maintained at 90%. Figure 4 shows that the
proposed method is reasonably robust to channel order
overestimation since the NMSE increases slowly for each
τ as (L̂ − L) increases from 0 to 5.
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Figure 3 BER versus output SNR for different τ .
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4.3 Simulation 3: channels with more transmitters than
receivers

In this simulation, we generate 100 3-input 2-output ran-
dom channels with L = 6 to illustrate the performance
of the proposed method for channels with more transmit-
ters than receivers. The precoding scheme is chosen based
on (3.10) with different τ . Figure 5 shows that the NMSE
decreases as SNR increases. This figure also shows that
the proposed method can apply to the channels with more
transmitters than receivers.

4.4 Simulation 4: comparison with existing methods
In this simulation, we compare the ZF equalization perfor-
mances achieved by the proposed method (with τ = 0.8),
one subspace method [9], and three precoding methods
[10-12]. For the precoding matrices in [10-12], the pre-
coding coefficients are {β = 0.432,α = 0.9j, γ = 1.1},
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Figure 5 Channel NMSE versus output SNR (more transmitters
case).

{p = 0.2}, and {α = 0.8, δ = 0.05}, respectively. Figure 6
shows that the proposed method outperforms the three
precoding methods. The reason may be due to no sys-
tematic procedures for the precoding designs are given in
[10-12] to combat against the noise effects and numer-
ical errors; while the proposed method not only works
out a way to remove the noise components, but also
appropriately develops a precoding to combat against the
numerical errors.
Figure 6 also shows that the proposed method per-

forms better than the subspace method in the low-to-
medium SNR region (SNR < 25 dB), and for high SNR,
the subspace method performs better than the proposed
method. Since the subspace method enjoys the so-called
“finite sample convergence” property [22-24], that is, in
the noiseless case (or sufficicently high SNR), the channels
can be almost exactly identified by using a finite number of
samples for autocorrelation estimation, it is expected that
the subspace-based solution can yield improved channel
estimation accuracy and the resultant BER in the high
SNR region, as compared with the proposed method.

5 Conclusions
In this article, we propose a semiblind channel estima-
tionmethod forMIMO–OFDM systems based on circular
precoding. By taking advantage of circular precoding, we
obtain the outer product of the channel impulse response
matrix H from the autocorrelation matrix of the received
data. Then the channel impulse response matrix can be
obtained by computing the positive eigenvalues and the
corresponding eigenvectors of the outer-product matrix
HH∗. We also study the precoding design to combat
the numerical error of estimation for the autocorrela-
tion matrix, and discuss the effects of precoding on
channel estimation and equalization. With the proposed
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Figure 6 Comparison of BER performancewith existingmethods.
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framework, the method is reasonably robust to chan-
nel order overestimation and the identifiability condition
is simply that the channel impulse response matrix has
full column rank. Thanks to the identifiability condition,
the proposed method is applicable to MIMO channels
with more transmitters or more receivers. The simula-
tions in this study also demonstrate the performance of
the proposed method.

Endnote
a Since the CP is actually a copy of the last portion of
s(k)(n) ∈ C

M, the length of CP, P, is less than M (i.e.,
P < M). In general, for transmission efficiency, P is usu-
ally less than or equal to 0.25M. In addition, in Section
2, we know the length of CP is longer than or equal to L
(i.e., L ≤ P) to combat against the channel delay spread.
Hence we have L + 1 < M, which implies the size ofHH∗
is smaller than the size of DFD∗

F .

Appendix
The optimal solution to (3.8)
To find the optimal solution to (3.8), we first formulate
(3.8) as

minp1,p2,...,pM f (p1, p2, . . . , pM)

subject to h(p1, p2, . . . , pM) = 0, (A.1)

where f (p1, p2, . . . , pM) = −(p1 + p2 + · · · + pM)2

and h(p1, p2, . . . , pM) = ∑M
n=1 p2n − 1. Then we form a

Lagrangian function γ as (A.2)

γ (p1, p2, . . . , pM, λ)= f (p1, p2, . . . , pM)+λh(p1, p2, . . . , pM),
(A.2)

where λ is the Lagrange multiplier [31]. The first-order
necessary condition provided from Lagrange’s theorem
says that for a point (p1, p2, . . . , pM) to be a minimizer, the
partial derivatives of the Lagrangian function must satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂γ

∂p1
= −2

∑M

n=1
pn + 2λp1 = 0

∂γ

∂p2
= −2

∑M

n=1
pn + 2λp2 = 0

...
∂γ

∂pM
= −2

∑M

n=1
pn + 2λpM = 0

∂γ

∂λ
=

∑M

n=1
p2n − 1 = 0.

(A.3)

From the firstM equations in (A.3), we know

M∑
n=1

pn = λp1 = λp2 = · · · = λpM. (A.4)

There are two cases for (A.4),
∑M

n=1 pn = 0 and∑M
n=1 pn �= 0. For the first case, it is obvious that the

objective function f = 0. However, it is easy to find a solu-
tion that conforms to the constraint h = 0, for example,
(p1, p2, p3, . . . , pM) = (1, 0, 0, . . . , 0), such that the objec-
tive function f = −1 which is smaller than f = 0. Hence,
the first case can not minimize the objective function.
Thus, it is necessary to focus the second case,

∑M
n=1 pn

�= 0.
For

∑M
n=1 pn �= 0, (A.4) implies λ �= 0 and p1 = p2 =

· · · = pM. Combining (A.4) with the last equation in (A.3)
shows that (p∗

1, p∗
2, . . . , p∗

M, λ∗) = ( 1√
M
, 1√

M
, . . . 1√

M
,M)

is the unique solution to (A.3) for
∑M

n=1 pn �= 0, which
implies (p∗

1, p∗
2, . . . , p∗

M) = ( 1√
M
, 1√

M
, . . . , 1√

M
) is the

unique candidate for being a minimizer. We now want
to verify if (p∗

1, p∗
2, . . . , p∗

M, λ∗) satisfies the second-order
sufficient condition.
According to [31], we form the Hessian matrix

�(p1, p2, . . . , pM, λ) of the Lagrangian function
γ (p1, p2, . . . , pM, λ) at (p∗

1, p∗
2, . . . , p∗

M, λ∗) as

�(p∗
1, p∗

2, . . . , p∗
M , λ∗)=

⎡⎢⎢⎢⎢⎢⎣
4M−2 −2 −2 . . . −2

−2 4M−2 −2 . . . −2
−2 −2 4M−2 . . . −2
...

... . . .
. . .

...
−2 −2 −2 . . . 4M − 2

⎤⎥⎥⎥⎥⎥⎦ .

(A.5)

Let r =[ r1 r2 . . . rM]T be a vector and let
∇h(p∗

1, p∗
2, . . . , p∗

M) =[ 2√
M

2√
M

. . . 2√
M
] be the gradi-

ant of h at (p∗
1, p∗

2, . . . , p∗
M). If we can verify that the

Hessian matrix � in (A.5) is positive definite for all r �= 0
with ∇h(p∗

1, p∗
2, . . . , p∗

M)r = 0, then (p∗
1, p∗

2, . . . , p∗
M) is the

minimizer. To see this, we know

∇h(p∗
1, p∗

2, . . . , p∗
M)r = 0

⇔ r1 + r2 + · · · + rM = 0. (A.6)

Now

rT�(p∗
1, p∗

2, . . . , p∗
M, λ∗)r

= (4Mr21 − 2r1
∑M

i=1
ri) + (4Mr22 − 2r2

∑M

i=1
ri)

+ · · · + (4Mr2M − 2rM
∑M

i=1
ri) (A.7)

= 4M(r21 + r22 + · · · + r2M) > 0, ∀r �= 0.

Note that the second equality in (A.7) holds due
to (A.6). From (A.7), we know the Hessian matrix
�(p∗

1, p∗
2,. . ., p∗

M, λ∗) is positive definite for all r �= 0
with ∇h(p∗

1, p∗
2, . . . , p∗

M)r = 0. Hence, the solution
(p∗

1, p∗
2, . . . , p∗

M) = ( 1√
M
, 1√

M
, . . . , 1√

M
) is the opti-

mal solution to (A.1), and the objective function
f (p∗

1, p∗
2, . . . , p∗

M) = −M.
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