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Abstract

Craniofacial reconstruction from skull has deeply been investigated by computer scientists in the past two decades
because it is important for identification. The dominant methods construct facial surface from the soft tissue thickness
measured at a set of skull landmarks. The quantity and position of the landmarks are very vital for craniofacial
reconstruction, but there is no standard. In addition, it is difficult to accurately locate the landmarks on dense mesh
without manual assistance. In this article, we propose an automatic craniofacial reconstruction method based on a
hierarchical dense deformable model. To construct the model, we collect more than 100 head samples by
computerized tomography scanner. The samples are represented as dense triangle mesh to model face and skull
shape. As the deformable model demands all samples in uniform form, a non-rigid registration algorithm is presented
to align the samples in point-to-point correspondence. Based on the aligned samples, a global deformable model is
constructed, and three local models are constructed from the segmented patches of the eye, nose, and mouth. For a
given skull, the global and local deformable models are matched with it, and the reconstructed facial surface is
obtained by fusing the global and local reconstruction results. To validate our method, a face deformable model is
constructed and the reconstruction results are evaluated in its coefficient domain. The experimental results indicate
that the proposed method has good performance for craniofacial reconstruction.
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Introduction
Craniofacial reconstruction is an efficient method to get
a visual outlook of an individual in the case of only skull
and bone remaining. The traditional plastic methods [1-3]
depend on the time-consuming manual work of artists.
The reconstruction result is generally determined by
the experience of practitioners. To reduce reconstruction
time and eliminate subjective biases, different computer-
aid craniofacial reconstruction methods have been pro-
posed [4-17]. The state-of-the-art of the computer-aid
craniofacial reconstruction have comprehensively been
reviewed in the surveys [18-21]. The soft tissue thickness
measured on skull is the foundation for craniofacial recon-
struction. To get complete tissue thickness, the head sam-
ples are usually measured by different equipments such
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as computerized tomography (CT), magnetic resonance
imaging and ultrasound scanner. Most computer-aid
craniofacial reconstruction methods fit a selected facial
template to the target skull according to the average
soft tissue thickness at the skull landmarks [4-8]. Others
deform a reference skull to match the remaining skull
according to the skull feature such as anthropologic points
[9], lines [10], and other features [11]. Applying an extrap-
olation of the skull deformation to the face template, the
reconstructed face will be achieved.
The selection of the template or reference is vital for

accurate craniofacial reconstruction. In general, a generic
or a specific craniofacial template with similar shape
attributes is chosen. But it is difficult to get suitable ref-
erence for every dry skull because of the diversity of skull
and face modality. In addition, as the complex deforma-
tion between the reference and the target skull, the warp-
ing methods should intensively be studied to get accurate
reconstruction result. So many deformation methods are
proposed to model the non-rigid shape deformation of
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skull and face, such as radial basis functions (RBF) [22,23],
or more exactly, a thin plate spline (TPS)-based defor-
mation [12,24,25] for its smoothness. Instead of using
fixed template, the recently proposed statistical craniofa-
cial reconstruction methods [12-17] construct a type of
deformable model from a set of 3D heads by the prin-
ciple component analysis (PCA) technique. The statistic
deformable model can be regarded as a dynamic tem-
plate for the given skull. The template deformation is a
model fitting procedure driven by the difference between
the input skull and the template, in which the model
parameters are adjusted by optimization method. The
reconstruction result of the deformable model depends
on the diversity of samples in the 3D heads database. If
there are sufficient samples, good reconstruction results
will be achieved. So the statistic method is regarded as
the dominant method with great potential application in
practice.
Essentially, the craniofacial reconstruction is to figure

out the face of unknown skull by the knowledge of skull
and face dependency, which is concretely represented as
the distribution of the tissue thickness on skull. Most
current methods utilize the soft tissue thickness of a set
of skull landmarks for craniofacial reconstruction, but it
is considered not an ideal approach to model the rela-
tionship between face and skull. One reason is that the
statistical soft tissue thickness at a set of sparse landmarks
is far less than enough to reflect the whole distribution
of tissue depth. The other reason is that the quantity
and position of the landmarks are indefinite. Different
landmark sets have been proposed for craniofacial recon-
struction [26-31], though there are definite anatomical
points in biometrics [32,33]. Moreover, it is difficult to
detect the landmarks accurately on the complex surface of
skull without manual interactive work. In order to reflect
the complete tissue thickness distribution and eliminate
the disadvantages of the sparse representations, the meth-
ods which measure tissue depth at all points have been
proposed. In these methods, the face and skull are gen-
erally represented in dense form. For examples, Tu et al.
[34] constructed a face space for craniofacial reconstruc-
tion from the dense skull and face surfaces extracted from
head CT images. Vandermeulen et al. [35] also used dense
representations (implicit surfaces) for both skin and skull
in craniofacial reconstruction. Pei et al. [22] presented
a dense tissue depth image representation for craniofa-
cial reconstruction, namely tissue-map. The dense tissue
depth methods utilize more information of the relation-
ship between skull and face, it generally has better cran-
iofacial reconstruction results. To represent the dense
tissue depth exactly, the dense point registration of skull
or face is usually demanded. Although many registration
methods [12,24,25,36] have been proposed to construct
correspondence between surfaces and point sets, it is still

a challenging problem for further investigation because of
the complex skull mesh with gross errors or outliers.
To the complex skull and face surfaces, the modality

variety is composed of global shape and local detail. How-
ever, most current craniofacial reconstruction systems
generally take the whole face or skull for shape analysis,
while the local feature of skull and face is not emphasized.
The recent research reveals that the local shape model is
better than the global model to represent local shape vari-
ety [37,38]. Inspired by this point, we propose a hierarchi-
cal craniofacial reconstructionmodel which integrates the
global model with several local models to improve cran-
iofacial reconstruction result. To construct the model, the
face and skull samples are represented as dense mesh
and aligned in point-to-point form by a proposed auto-
matic dense registration algorithm, which contributes to
a fully automatic craniofacial reconstruction method. In
addition, to get valid evaluation for the craniofacial recon-
struction results, we transform the reconstructed face into
the coefficient domain of a face deformable model and the
distance in the coefficient space is used as the similarity
measurement. Comparing with the current measurement
methods, such as the mean correspondence point dis-
tance or the Euclidean distance matrix [12], the proposed
measurement is more suitable for face recognition.
The proposed hierarchical craniofacial reconstruction

system is composed of four components, namely, the
data acquisition and preprocessing, the global deformable
model, the local deformable model, and the result eval-
uation (the dashed rectangles shown in Figure 1). In the
data acquisition and preprocessing component, skull and
face data are acquired by CT scanner and the prototypic
data are preprocessed to construct 3D skull and face sur-
faces. To construct the model, all samples are aligned by
a proposed non-rigid dense mesh registration algorithm.
In the global/local deformable model components, the
global/local deformable models are constructed and the
global/local face reconstruction results are obtained by
model-matching procedure. Fusing the global and local
reconstruction results gives the final craniofacial recon-
struction result. In the result evaluation component, the
reconstruction result is evaluated and the validation of the
proposed method is verified. To integrate the four com-
ponents as a whole system, some key problems, such as
the dense mesh registration, the model matching proce-
dure, the mesh segment, and fusion (the small rectangles
shown in Figure 1) should be solved. In the rest of the arti-
cle, we will give the detail of themain components and the
solutions to these key problems.

Data acquisition and preprocessing
In order to construct the craniofacial reconstruction
model, we have constructed a head database from CT
images. The CT images were obtained by a clinical
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Figure 1 The framework of the hierarchical craniofacial reconstruction.

multi-slice CT scanner (Siemens SOMATOM Sensation
16) in the affiliated hospital of Shaanxi University of
Chinese Medicine located in western China. More than
100 patients planned for preoperative osteotomy surgery
gave informed consent to scan the whole head for scien-
tific research. The images of each subject are stored in
DICOM 3.0 with 512 × 512 resolution. To get complete
head data, 250 to 320 slices are captured for different per-
sons. Most of the patients belong to the Han ethnic group
in northern China. In this article, 110 samples are used
for craniofacial reconstruction experiments. There are 48
female and 62 male subjects in the collection. The age
distribution ranges from 20 to 60.
Each prototypic sample in our database consists of a

skull surface and its face surface, which are extracted
from CT images. The point clouds composing of the
outer surfaces of skull and skin are extracted slice by slice
(Figure 2a). For the skull, a three-step method is per-
formed on each slice of CT images. The first step is to find
the contour points of the skull through the Sobel operator
model after filtering out noise. In general, the skull con-
tour has inter and outer sides (Figure 2). In the second
step, a circular scanning is implemented to get a rough
outer contour. The scanning line is radiated from the cen-
ter of the image, toward the four edges of the image, to
find the farthest contour point it encounters. The rough
contour usually contains some points not belonging to
the outer surface, as shown in Figure 2c. In the last step,
these pseudo contour sections are removed and the miss-
ing parts are mended. By setting the max length threshold

L, the section will be deleted if its length is smaller than
L pixels. In our experiment, L is set to be 10. Because
the skull is non-convex, the rough contour may disrupt
in some regions where it should be connected. We adopt
an 8-neighborhood boundary tracing approach to connect
each point of the rough contour if they are disrupted, and
obtain the final contour, as shown in Figure 2d. It is eas-
ier for skin to find the outer contour, as the skin contour
is simple and generally close for all CT images (Figure 2e).
So we only need to find a point in the above second
step to get the outer skin contour, as shown in Figure 2f.
After retrieving the outer contours for skull and skin
from all CT images, the skull and face surfaces can be
represented as triangle meshes by themarching cube algo-
rithm [39]. Usually, the raw skin surface consists of about
220,000 points with 450,000 triangles, while the skull sur-
face contains about 150,000 points with 320,000 triangles,
as shown in Figure 2g–j. It is dense enough to describe the
rich details of skull and face shapes.
To eliminate the inconsistence of position, pose, and

scale caused by data acquisition, all samples are trans-
formed into a uniform coordinate system. The uniform
coordinate system is determined by four skull feature
points, the left and right porion, the left (or right) orbitale
and the glabella, denoted by Lp, Rp, Lo, G. From three
points, Lp, Rp, and Lo, the Frankfurt plane [40] is deter-
mined. The coordinate origin (denoted by O) is produced
from the intersection of the line LpRp and the plane which
contains point G and orthogonally intersects with LpRp.
We take the line ORp as x-axis. The line contains point
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Figure 2 Data acquisition and preprocessing. (a) The head slice captured by CT scanner. (b–d) The skull contour extracting procedure. (e, f) The
skin contour extraction. (g–j) The reconstructed 3D skull and face in point cloud and triangle mesh formation. (k, l) The uniform coordinate system
of the skull and face samples.

O and has the same direction as the normal of the Frank-
furt plane is set as z-axis. y-axis is obtained by the cross
product of z- and x-axis. The scale of the samples is stan-
dardized by setting the distance between Lp and Rp to unit,
i.e., every vertex (x, y, z) of the skull and face is replaced
by ( x

|LpRp| ,
y

|LpRp| ,
z

|LpRp| ). The uniform coordinate systemof
skull and face is shown in Figure 2k,l.

Dense registration for skull and face
The original skull and face meshes have different con-
nectivity with different number of vertices. To investi-
gate the modality variety of skull and face, the original
skull and face samples must be registered before model
construction. For the samples in dense triangle mesh
representation, the registration is to build a point-to-
point correspondence according to the shape features,
such as the tip of nose, the corner of mouth, and the
center of eyes. It is a challenging problem to get accu-
rate registration for dense skull and face meshes because
there exists non-rigid deformations and big-block out-
liers on the complex surfaces. To solve the problem of

point or surface registration with non-rigid deforma-
tion, many methods and algorithms have been presented.
The TPS-RPMmethod [41,42] incorporated TPS into the
framework of iterative closest point (ICP) and adopted
a soft-assign and deterministic annealing optimization to
compute correspondence between two point sets. As all
points of the aligning objects are used to determine the
TPS deformation and a correspondentmatrix with dimen-
sion in quadratic cardinality of the point sets is used to
eliminate outliers, this method is not applicable to the
dense skull and face with big-block outliers. Hutton et al.
[43] proposed an automatic 3D faces registration based
on a dense face model. But in the model construction
procedure, a set of landmarks should be picked up by
manual work. The coherent point drift method [44] for-
mulated the alignment of two point sets as a probability
density estimation problem. The reference point set is rep-
resented as gaussian mixture model centroid and fitted
to the target point set by the expectation maximization
algorithm. This method does not need landmarks, but
it converges slowly for the dense objects with large data
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volume and easily fails for big-block outliers. In this arti-
cle, we present a two-step method to solve the dense
registration of skull and face. The first step is to align
two samples by a non-rigid registration method based
on the TPS transformation [45]. The second step is to
improve the registration of all samples by a group regis-
tration method based on a linear combination model. The
proposed method is implemented automatically and has
good performance for big-block outliers. The whole pro-
cedure of our registration method is shown in Figure 3.
The detail is given in the following sections.

TPS-based non-rigid registration
As the skull and face have complex shape modality with
non-rigid deformation, the traditional rigid registration
methods, for example, the widely used ICP algorithm
[46], are not suitable for this problem. So we adopt non-
rigid registration method to solve the dense registration of
skull and face. The basic idea of the method is shown in
Figure 4, not constructing registration between the refer-
ence and the target directly, we construct an approaching
template for the target skull or face from the non-rigid
deformation of the reference. As the deformed reference
is closer to the target than the reference, it will produce
more accurate alignment. Considering the advantages of
TPS deformation, such as good smoothness constraint,
simple calculation, and the ability to be decomposed into
affine transformation component and non-affine trans-
formation component, we adopt TPS to represent the

non-rigid deformation. There are two steps to make the
registration between the reference and the target. First,
the reference is transformed to the target by TPS deforma-
tion. Then, the point-to-point correspondence is achieved
by the closest point searching procedure of ICP. The detail
of the TPS-based non-rigid registration method is given
in the following.
To begin the registration, the reference skull and face

must be selected. In general, the head with common shape
feature is used as the reference. We select a sample with
complete data as the reference. Considering that the cran-
iofacial reconstruction is mainly determined by the front
part of head, the occipital parts of the reference are man-
ually removed to reduce data volume. The back-removed
reference skull and face are shown in Figure 5a,b. There
are 36,000 and 40,969 vertices with 70,827 and 81,458 tri-
angles on the reference skull and face, respectively. The
other preparing work for the non-rigid registration is to
get the controlling points for TPS transformation. As TPS
is type of interpolation method, generally the TPS defor-
mation depends on a set of correspondent controlling
points on the reference and the target. But it is difficult
to get plenty of correspondent feature points on face and
skull automatically. It generally demands time-consuming
manual work to locate the feature points on skull and
face. To get automatic point registration, we use a ran-
dom method to produce the controlling points for TPS,
in which a mount of controlling points are generated ran-
domly in the reference and its correspondent points on

Figure 3 The procedure of dense mesh registration based on TPS and linear combinationmodel.
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Figure 4 The TPS-based non-rigid registration and the traditional rigid ICP registration.

the target are obtained by ICP closest points searching
method. To get uniform distribution on the 3D surface,
the random controlling points are computed by the far-
thest point sampling method [47]. The random points on
the reference skull and face are shown in Figure 5c,d. As
the correspondence obtained by the closest point search-
ing method for the random points is not exactly the
true correspondence according to skull and face feature,
instead of making one-step transformation from the refer-
ence to target, we do the TPS transformation in a stepwise
procedure. At the same time, to eliminate the influence of
inconsistent correspondence of some points, the random
points on the reference are updated timely. Integrating

this controlling points generating procedure with the TPS
deformation, the selected reference skull and face will
gradually be aligned to the target skull and face.
For convenience, the selected reference skull or

face is denoted by Sref = {Prp|Prp = (xrp, yrp, zrp), p =
1, . . . ,N1}, and the target, the ith sample, is denoted by
Si = {Piq|Piq = (xiq, yiq, ziq), q = 1, . . . ,N2}, where N1
and N2 are the points number of Sref and Si such that
N1 ≤ N2. Then the TPS transformation can be regarded as
a map from Sref to Si, denoted by f (.). The correspondent
random controlling point sets of Sref and Si are denoted
by Mr = {Lrj|Lrj = (x∗

rj, y
∗
rj, z

∗
rj), j = 1, . . . ,M}, Mi =

{Lij|Lij = (x∗
ij, y

∗
ij, z

∗
ij), j = 1, . . . ,M}, where M is the count

Figure 5 The selected reference, the random controlling points for TPS, and the segmented patches for local model. (a,b) The
back-removed reference colored in blue with its whole entities. (c,d) The random controlling points on the reference skull and face. (e–h) The
segmented eye, nose, and mouth patches on the reference and its views in separating form.
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of the controlling points. From the definition of TPS, f (.)
will satisfy the following interpolation conditions:

f (Lrj) = Lij, j = 1, . . . ,M (1)

By TPS theory, the deformation of other non-
controlling points is restricted by the blending energy
function in the following form:

E(f ) =
∫ ∫

R3

∫
IT3 FXF

T
X I3dxdydz (2)

where X = (x, y, z)T , FX = (
∂f
∂x ,

∂f
∂y ,

∂f
∂z )

T and I3 =
(1, 1, 1)T . It is proved that TPS can be decomposed into
affine and non-affine components [45]. This fact is gener-
ally represented as the following formula:

f (P) = Pd + Kw (3)

where P ∈ Sref with the homogeneous coordinate
(1, x, y, z). d is a 4 × 4 affine transformation matrix. K
is the TPS kernel, a 1 × M vector in the form of K =
(K1(P), . . . ,KM(P)), where Kj(P) =‖ P − Lrj ‖, j =
1, . . . ,M. w is a M × 4 warping coefficient matrix repre-
senting the non-affine deformation.
To solve TPS transformation, the matrix d and w must

be determined. There are two solutions to this problem,
namely, the interpolating and non-interpolating methods.
In the interpolating case, formula (1) is satisfied. Putting
formula (3) into (1) and confining w to non-affine trans-
formation, i.e.,M1

′Tw = 0, it leads to a direct solution for
d and w formed by the following matrix relation:(

w
d

)
=

(
K ′ M′

r

M′
r
T 0

) (
Mi

′

0

)
(4)

where M′
r and M′

i are M × 4 matrixes corresponding to
the controlling points sets Mr and Mi in homogeneous
coordinate form. K ′ is a M × M symmetry matrix repre-
senting the spatial relation ofMr with the element kuv =‖
Lru − Lrv ‖, u = 1, . . . ,M, v = 1, . . . ,M. In the non-
interpolating case, formula (1) is not strictly satisfied. The
following energy function can be minimized to find the
optimized answer.

E′(λ,w, d) = 1
M

M∑
j=1

‖ Lij − f (Lrj) ‖ +λ · E(f ) (5)

where λ is the weight to control the blending component,
and given a fixed λ there is a unique minimum for the
energy function. It is conducted that the non-interpolating
solution has a parallel form replacing K ′ in formula (4)
by K ′ + λI. As the correspondent controlling points on
the reference and target acquired by ICP closest points
searching is not exactly correct, the condition in formula
(1) is not satisfied. So the non-interpolating method is
adopted in this article.

Having determined the TPS transformation f (.), the
reference Sref can be deformed by the formula (3). The
deformed reference is denoted by S′

i. Then the corre-
spondence between S′

i and Si can be obtained using ICP
closest point searching. But the closest point searching
procedure of ICP is a time consuming procedure with
computation in O(N1 × N2). To get high efficiency, we
adopt a K-dimensional binary search tree (KD-tree) [48]
to model the target, which is proved having a complexity
withO(N1 × logN2) for the pairwise closest point search-
ing. Considering that the closest point matching based
on the initial TPS deformation is more inaccurate and
the beginning alignment refers to the global correspon-
dence while the later to the local area, a deterministic
annealing strategy is applied in the stepwise TPS-based
registration procedure. At the beginning of the registra-
tion, the points move a little to its deformed points, and
the step size increases gradually when TPS deformation
result becomes desirable. At the same time, the number
of the random points increase from a small initial number
for enhancing the holistic deformation at the beginning,
and the blending weight of TPS in (5) decreases to relax
the global constrains. The following gives the implemen-
tation of the proposed non-rigid TPS-based registration
method.

1. Create KD-tree for the i th sample Si, denote it by Ti;
2. Apply ICP alignment between Sref, Si, then transform

Sref by the rigid transformation of ICP, the
transformed sample is denoted by S′

i;
3. Produce random controlling point setM∗

i with
cardinality of M for S′

i;
4. For each point inM∗

i , search its correspondent point
on Si by querying on Ti, the correspondent point set
is denoted byMi;

5. Determine the TPS transformation f fromM∗
i ,Mi

with blending weight λ;
6. Apply the TPS transformation f on Si′, the deformed

Si′ is denoted by Si′′;
7. Update S′

i by adding a movement to each point
P′ ∈ S′

i:
P′ = P′ + δ(f (P′) − P′), where f (P′) ∈ Si′′ and δ is
the step size;

8. For each P′ ∈ S′
i, search its correspondent point

P′′ ∈ Si by querying on Ti;
9. Update the parameters:

M = M + �M, δ = δ + �δ, λ = λ − �λ, where �M,
�δ and �λ are the pre-assigned increments;

10. If the iterations l < l0 and
1
N1

∑
P′∈S′

i
‖ P′ − P′′ ‖ > ε0, where l0 is the given

maximum loops and ε0 is the given threshold, goto 3;
11. The final correspondence of Sref and Si is achieved

from the equivalent correspondence of S′ and Si,
denote it by S0i .



Hu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:217 Page 8 of 14
http://asp.eurasipjournals.com/content/2012/1/217

In our experiments,M ranges from 1
500 to

1
80 of the point

number of the reference, l0 = 30, ε0 = 10−6, the ini-
tial δ = 0 with �δ = 1

l0 , and the initial λ = 0.01 with
�λ = λ ∗ 0.05.

Group registration by linear combination
It is important to select a closest reference for all samples
to get good alignment, but the fixed reference may greatly
differ with some samples as there is much variety in skull
and face modality. Considering there are enough samples
in our database, we try to improve the above registration
by a group registration method based on a linear combi-
nation model. Instead of using a fixed reference, we utilize
the combination of the above aligned samples to generate
dynamic reference for every samples. As the dynamic ref-
erence is closer to the given sample, aligning the dynamic
reference to the target sample will give better result. Based
on the new correspondence result, we can construct new
dynamic reference by linear combination, which will get
more accurate aligning result. By this iterative procedure,
the registration precise will be improved gradually. In the
following, the iterative registration procedure by linear
combination is described in detail.
If we regard the reference Sref as a N1 × 1 vector in

form of (xr1, yr1, zr1, . . . , xrp, yrp, zrp, . . . , xrN1 , yrN1 , zrN1)
T ,

then from the point-to-point correspondence, the N
aligned samples {S0i |i = 1, . . . ,N} in the first-step can
be formatted as vectors with the same form as Sref,
i.e., S0i = (xi1, yi1, zi1, . . . , xip, yip, zip, . . . , xiN1 , yiN1 , ziN1)

T ,
where the point (xip, yip, zip) ∈ S0i is the correspondent
point of (xrp, yrp, zrp). By this representation, we can get a
new object by the following linear combination:

Snew(a) =
N∑
i=1

aiS0i s.t.
N∑
i=1

ai = 1 (6)

where a = (a1, . . . , aN) is the linear combination coeffi-
cient vector. For each original sample Si, a dynamic refer-
ence S∗

i can be determined by the following minimizing
formula:

S∗
i =

N∑
i=1

a∗
i S

0
i s.t. a∗ = argmina ‖ Si − Snew(a) ‖

(7)

where ‖ . ‖ defined as the vector module representing the
difference between two samples. The overall difference for
all samples is defined as Eg = 1

N
∑N

i=1 ‖ Si − S∗
i ‖. The

following is the detail of the registration method.

1. Align Sref to each sample Si by TPS-based method
and get the primary aligning result S0i ;

2. Produce the dynamic reference S∗
i for each Si by

linear combination;

3. Align the dynamic reference S∗
i to Si by TPS-based

method and get the aligning result S1i ;
4. If the iterations are less than the given maximum

loops and the global difference Eg is great than the
given threshold, update S0i by S

0
i = S1i and goto 2;

5. Get the final aligning result from {S1i }.

The constructionof the hierarchical deformable
model
After computing dense correspondence, we can model all
skulls and faces as the formation of the reference vec-
tors by the point-to-point correspondence. If the triangle
meshes of the reference skull and face are also applied on
the correspondence points of the target, then all skulls and
faces will have same mesh structure with same number of
vertices. For convenience, we represent the ith head sam-
ple as a high dimension vector composed of skull and face
vectors in the following form:

Hi =
(
Si
Fi

)
i = 1, . . . ,N (8)

where Si = (xSi1, y
S
i1, z

S
i1, . . . , x

S
im, y

S
im, z

S
im)T and Fi =

(xFi1, y
F
i1, z

F
i1, . . . , x

F
in, y

F
in, z

F
in)

T are the vectors of the ith skull
and face with dimensions of 3m and 3n, respectively.
Similar to the dynamic reference construction in the

above section, the linear combination of the aligned head
samples {Hi|i = 1, . . . ,N}will produce new skull and face.
Given an unknown skull, the closest combination skull can
be achieved by themodelmatching procedure. Extrapolat-
ing the combination of the skull vectors to the face vectors
in the model will get a reconstructed face for the given
skull. The detail of the model matching will be given in
the next section. As the prototypic skull and face samples
have high dimension data with large redundance, PCA is
applied to construct the following deformable model:

Hmodel(α) = H +
N ′∑
i=1

αihi (9)

where H = 1
N

∑N
i=1 Hi , {hi|i = 1, . . . ,N ′} are the former

N ′ components corresponding to the eigenvalues {σi|i =
1, . . . ,N ′} of the covariance matrix of the subtracting vec-
tors {Hi − H|i = 1, . . . ,N} in descending order. N ′ is
determined by 98% of the cumulative eigenvalues of the
variance. The combination coefficient α = (α1, . . . , αN ′)
is the parameter for the deformable model. To generate a
plausible face, the probability of α is constrained by the
following formula:

P(α) ∼ exp

⎡
⎣−1

2

N ′∑
i=1

(
αi
σi

)2
⎤
⎦ (10)

The model in (9) is the global model referring to the
modality of whole skull and face. To characterize the local



Hu et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:217 Page 9 of 14
http://asp.eurasipjournals.com/content/2012/1/217

shape variety, we construct several local deformable mod-
els with respect to the main organs of face, the eye, nose,
and mouth. The first step for constructing the local mod-
els is to segment the organs. It is difficult to get an ideal
automatic segment for different skull and face. As our
samples have been aligned, getting the segments of the
reference, the segments of other samples can be obtained
from the correspondence of points. So we segment the
local patches of the reference by hand. The segmented
local patches of the reference are shown in Figure 4e–h.
Based on the segmented data, the localmodels can be con-
structed by the similar method of the global model. The
hierarchical deformable model is constructed by integrat-
ing the local models with the global model.

Craniofacial reconstruction
For a given skull, the craniofacial reconstruction is a
model matching procedure, in which the coefficients of
the deformable model are adjusted iteratively and the
model combination skull approaches to the given skull
gradually. To measure the difference between the model
combination skull Smd(α) and the given skull, after assign-
ing the initial values for the combination coefficients, we
align Smd(α) to the given skull by the TPS-based registra-
tion. From the obtained correspondence, we format the
given skull as a vector Sgv in the same form as Smd(α).
So the difference between the given skull Sgv and the
model combination skull Smd(α) can be represented as the
square module of the subtracting vector as following form:

E(α) = ‖ Smd(α) − Sgv ‖2
= (Smd(α) − Sgv)T (Smd(α) − Sgv) (11)

Regarding this definition as the cost function, the recon-
struction problem can be solved by an optimization
method. It is denoted that the model combination skull
Smd(α) will change as the combination coefficients updat-
ing in the optimization procedure. So the registration
between Smd(α) and Sgv is implemented every 20 loops
to ensure the error in 11 computed in correct correspon-
dence with the updated Sgv. To solve the optimization, we
adopt a gradient descent algorithm to resolve the opti-
mization problem. The core of the method is to find the
gradient descent direction of E(α) about α, which is equal
to the negative derivative of E(α). From 11, the partial
derivative of E(α) can be formed as follows:

E∂ (α)

∂α
=

(
S∂
md(α)

∂α

)T

(Smd(α) − Sgv) + (Smd(α) − Sgv)T

×
(
S∂
md(α)

∂α

)
(12)

From formula 12, the partial derivative of E(α) depends
on S∂

md(α)

∂α
, which can be deduced from formula 9 as the

form S∂
md(α)

∂α
= ∂(S+sαT )

∂α
= ∂(sαT )

∂α
, where S is the skull part

of H, s = (s1 . . . si . . . sN ′) and si is the skull part of hi. For

a αi, ∂(sαT )
∂αi

= ∂(
∑N ′

i=1 αisi)
∂αi

= si. Putting it into 12 we get the
following partial derivative computation for αi:

E∂(α)

∂αi
= sTi (Smd(α) − Sgv) + (Smd(α) − Sgv)T si (13)

As the vectors si, S, and Sgv on the above formulas
have the dimension same as the dimension of the ref-
erence skull vector, it is time-consuming to implement
the optimization of the gradient descent algorithm with
the high dimension in 3m. To reduce computation, we
extract a random sub-vectors of these vectors to replace
them on the above equations. That is a subset indices
{i0, . . . , im′ } are selected randomly from the continuous
indices {1, . . . ,m} in each gradient descent iteration. As
m′ 	 m, the computation is greatly reduced. As the
indices of the vector element is correspondent to the
points on the skull, this method is equivalent to select
a subset of random points, representing the model and
given skull for similarity error computation. So the similar
random point selection approach used in the TPS-based
non-rigid registration can be applied here to get the ran-
dom sub-vector. Considering that the model deformation
scale is smaller than the deformation between the ref-
erence and the target in data registration, and the local
deformation dominates in the model matching, we use
more quantity of random points in the model matching
procedure. In our experiment, a subset with 1

20 indices of
the model skull vector is selected to implement the model
matching computation. The maximal iteration is set to
500 for the global model and 1000 for the local models. To
avoid the influences of noise andmake use of the contribu-
tion of every points, this random subset is updated at each
iteration. However, this will lead instability for the error
in 11 at the beginning tens of iterations, but it behaves
steadily in the later iterations and converges to a minimal
value. We have tested different sizes of random subsets
in the model matching experiment, smaller size than the
assigned number generally cannot get satisfied precision
and even not convergent. While more points added in
the subset, the improvement for the model matching is
insignificant. By this model matching procedure, the best
matched model skull will be obtained. Then the recon-
structed face can be calculated by the combination of the
face part of hi in 9 with the same coefficients as the model
skull.
Similar to the matching procedure of the global model,

the local deformable models are also matched to the given
skull. In general, the local deformable models have better
reconstruction results in the local areas than the global
model. But the matching procedure of the local models
is independent of the global model. As a result, the local
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reconstruction results generally are not consistent with
the global result, especially at the boundary (shown in
Figure 6a). To get a whole smooth reconstruction result,
the fusion problem of the local and global results must
be solved. We take two steps to integrate the global and
local reconstruction meshes. For the global mesh F and
the sub-mesh Fsub, the local meshes are set onto the
global mesh in proper position using translation and rota-
tion transformation R∗, T∗, where R∗, T∗ are determined
by minimizing the average distance of the correspon-
dent points of the sub-mesh and the global mesh, i.e.,
(R∗,T∗) = argminR,T

∑
P0∈Fsub ‖ RP0 + T − P1 ‖, where

P1 ∈ F is the correspondent points of P0. The first step
fusion result is shown in Figure 6b. Second, the incon-
sistence at the boundary is removed by a mesh stitching
algorithm, in which both the points on the sub-mesh and
the global mesh near the boundary are deformed to an
interspaced position by interpolation method. The detail
of the mesh interpolation is shown in Figure 6d. For the
sub-mesh boundary B0 and a point P0 ∈ B0, we can get
the correspondent contour (denoted by B1) on the global
mesh and the correspondent point P1 ∈ B1 of P0 by the
above segmentation of the reference. Then the interpolat-
ing point P2 is calculated by P2 = (P0+P1)

2 . Given a scale l0,
the boundary B0 will shrink into interior with l0 step and
get a contour B′

0 which is indicated by a point Q0 ∈ B′
0 in

Figure 6d, while the counter B1 shrink oppositely on the
global mesh and get a contour B′

1 which is indicated by a
pointQ1 ∈ B′

1 in Figure 6d. The stitchingmethod is to find
a pair of interpolation functions f0, f1 have the following
conditions:

f0(Q0) = Q0,Q0 ∈ B′
0 f0(P0) = P2, P0 ∈ B0

f1(Q1) = Q1,Q1 ∈ B′
1 f1(P1) = P2,Q1 ∈ B1 (14)

There are many interpolation methods can be used to
meet the above conditions, such as RBF function. For
convenience, we adopt the above TPS to solve the interpo-

lation. Having determined the interpolation functions, the
final fusion result (Figure 6c) can be achieved by applying
f0 to the points between the contours B0,B′

0 on the sub-
mesh and f1 to the points between the contours B1,B′

1 on
the global mesh.

Experimental results and discussion
Based on the dense aligned face and skull samples, a hier-
archical deformable model is constructed for craniofacial
reconstruction, which includes a global model and three
local models, namely, the eye, nose, and mouth model.
To validate the craniofacial reconstruction method, we
implement a leave-one-out craniofacial reconstruction
experiment, in which each skull is used as the test skull
for craniofacial reconstruction, and the rest skulls and
faces are used as the samples to build the hierarchical
deformable model. Both the global and the local mod-
els are matched to all tests. The final facial surfaces of
the tests are reconstructed by the model matching and
mesh stitching procedure. Some craniofacial reconstruc-
tion results and its actual faces are shown in Figure 7.
The reconstructed faces of the hierarchical model are

evaluated by comparing with their actual faces. First, the
traditional measurement method is adopted for the evalu-
ation, which adopts the average distance of correspondent
points as the similarity measurement between 3D faces.
We denote this method by ADCP. In ADCP method, the
average reconstruction error of 110 tests are 0.01101 and
0.00998 for the global model and the hierarchical model
with standard deviation 0.00297 and 0.00353, respectively.
As the actual scale of our samples and the model has
lost in the data preprocessing and coordinates uniforming
procedure, we set the average distance between left and
right porions to 15 cm according to the Chinese National
Standard for Human Dimensions of Chinese Adult [49].
Then the average absolute error of correspondent points
for the global and hierarchical model is 1.65 and 1.50mm.
Comparing with the results in [12,15], the result is accept-
able considering that some important properties, such

Figure 6 The mesh fusion of the global and local reconstruction results. (a) Before fusion. (b) After the first fusion step. (c) The final fusion
result. (d) The mesh interpolation procedure.
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Figure 7 Some craniofacial reconstruction results. The actual faces are shown in columns 1, 3; the reconstructed faces are shown in columns 2, 4.

as Body Mass Index (BMI), age, and gender, are not
integrated into the model. The distribution of the aver-
age reconstruction error for every tests are shown as
histogram in Figure 8. From the histogram, it is figured
out that there are more tests with error less than 1.5mm
for the hierarchical model. The distribution of the aver-
age reconstruction error for every points of the 110 tests
is also computed and the results are displayed on the
reference face in Figure 9. The figure shows that the hier-
archical model have better reconstruction results than the
single global model, especially in the areas related to the
local models. It is concluded that using the local mod-
els is beneficial to the improvement of the reconstruction
accuracy.
Although ADCP is the dominant method for craniofa-

cial reconstruction evaluation, it is not an ideal method
considering that the aim of the craniofacial reconstruction
is identification through face recognition. In general, the
dense faces have very large quantity of points, the distance

changing on local area usually brings little changes to the
average. As a result, the ADCP method is not sensitive
to local shape change. But the local feature is important
for face recognition, such as the width of mouth and the
height of nose. The other drawback of ADCP is that every
points have same weightiness in the distance computa-
tion, though the points on different facial position have
different effect for face recognition. To get proper evalu-
ation for the craniofacial reconstruction result, we define
a similarity measurement for reconstructed face inspired
the ideas of face recognition, which uses the distance in
the coefficient domain of a face deformable model as the
measurement. The method is denoted by DCD. Similar to
the above deformable model, the face deformable model
is constructed from the aligned faces as follows:

Fmodel(β) = F +
k∑

i=1
βifi (15)
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Figure 8 The histogram of the average reconstruction error of the global and hierarchical model for 110 tests.

where F is the average face, {fi|i = 1, . . . , k} are the former
k components. When two faces F1, F2 are compared, their
model coefficients β1, β2 are computed by the model-
matching procedure. Then the difference between F1 and
F2 is measured by the distance between β1, β2 in the
coefficients space.
To get DCD measurement, 110 aligned faces are used

to construct the face deformable model. Then the actual
faces and the reconstructed faces of the global and hier-
archical models are represented by the coefficients of the
face model. The DCD distance between the reconstructed
faces and its actual faces are calculated. The average
reconstruction error of 110 tests are 0.1906 and 0.1837 for
the global model and the hierarchicalmodel with standard
deviation 0.0516 and 0.0539, respectively. It is shown that
the hierarchical model has better reconstruction results
in DCD measurement method. To some extent, the dis-
tance in the coefficients domain does not correlate to the
distance of correspondent points. To explore the relation-

ship between the presented DCD method and ADCP, we
do a face recognition experiment, in which the closest real
face to the reconstructed faces of the global and hierarchi-
cal model is calculated in DCD and ADCPmeasurements,
respectively. The cumulative recognition curves of the
reconstruction results are shown in Figure 10. It shows
that the face recognition results is great different for the
two measurements. The cumulative recognition rate in
DCD method is greater than that in ADCP method. And
the hierarchical model generally has better recognition
rate than the global model. These observations do not
assuredly support that DCD is more suitable for evaluat-
ing the reconstructed faces thanADCP. But it is concluded
that DCD has good tolerance to the reconstruction error
in face recognition application. As DCD is a distance mea-
surement in the facial shape space which is constructed
from a set of original samples. Gathering sufficient face
samples, the DCD method may reflect the real measure-
ment of the face space.

Figure 9 The distribution of the average reconstruction error for every points on the reference face of the 110 tests. (a) The result of the
global model. (b) The result of the hierarchical model.
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Figure 10 Cumulative recognition curves of the reconstruction results of the global and hierarchical model in ADCP and DCDmethods.

Conclusion
We proposed a hierarchical dense deformable model for
automatic craniofacial reconstruction. The feature of pro-
posed model is that the skull and face are represented
as dense mesh without landmarks. The advantage of this
representation is that the dense meshes contain more
meta-data for exploring the intrinsic relation between
skull and face. In addition, the presented non-rigid dense
meshes registration and the model matching procedure
can be implemented automatically, which contributes to
the fully automatic craniofacial reconstruction method.
The craniofacial reconstruction experiments show that
the hierarchical model has better reconstruction results
than the single global model. The craniofacial reconstruc-
tion evaluation problem is also explored in this article.
We present an evaluation method based on a deformable
facial model. By comparing with the average distance of
correspondent points method in face recognition experi-
ment, the evaluationmethodmay be the potential method
for identification in the application of craniofacial recon-
struction. In the future work, we plan to capture more
head scans to increase the plenty of the samples, which
is important for the model deformable capacity. Based on
the abundant samples, the personal properties, such as
gender, age, and BMI, are considered integrating with the
hierarchical dense deformable model. The reconstruction
result will be improved if these properties information
are properly utilized. In addition, it is worthy of explor-
ing ideal evaluation methods for the results of craniofacial
reconstruction.
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