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Abstract

This research proposes a generic methodology for dimensionality reduction upon time–frequency representations
applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant
and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable
selection, with a second stage of redundancy reduction using methods based on linear transformations. The study
addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the
most relevant time–frequency points, whereas the second one selects the most relevant frequency bands. The first
methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the
capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to
evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals
with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even
when these two databases contain samples with different degrees of complexity and a wide variety of characterizing
patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%. The results open the
possibility to extrapolate the methodology to the study of other biosignals.

Introduction
Biosignal recordings are useful to extract information
about the functional state of the human organism. For this
reason, such recordings are widely used to support the
diagnosis, making automatic decision systems important
tools to improve the pathology detection and its evalua-
tion. Nonetheless, since the underlying biological systems
use to have a time dependent response to environmen-
tal excitations, non-stationarity can be considered as an
inherent property of biosignals [1,2]. Moreover, changes
in physiological or pathological conditions may produce
significant variations along time. For instance, the nor-
mal blood flow inside the heart is mainly laminar and
therefore silent; but when the flow becomes turbulent it
causes vibration of surrounding tissues and hence is noisy,
giving rise to murmurs, which can be detected analyz-
ing the phonocardiographic (PCG) recordings. So, PCG
recordings are non-stationary signals that exhibit sudden
frequency changes and transients [3]. In another example,
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the electroencephalographic (EEG) signals represent the
clinical signs of the synchronous activity of the neurons in
the brain, but in case of epileptic seizures, there is a sud-
den and recurrent mal–function of the brain that exhibits
considerable short–term non-stationarities [4] that can be
detected analyzing these recordings.
However, in the aforementioned examples, the con-

ventional analysis in time or frequency domains does
not sufficiently provide relevant information for feature
extraction and classification, limiting an automatic anal-
ysis for diagnostic purposes. Nonetheless, the main diffi-
culty to automatically detect physiological or pathological
conditions lies in the wide variety of patterns that use to
appear in non-stationary conditions. Thus, for example,
the possibility to automatically detect epileptic seizures
from EEG signals is limited by the wide variety of frequen-
cies, amplitudes, spikes, and waves that use to appear [5]
along the time with no precise localization. Likewise, in
PCG signals, murmurs appear overlapped with the cardiac
beat, and sometimes cannot be easily distinguished even
by the human ear [3]. Thereby, the performance of auto-
matic decision support systems strongly depends on an
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adequate choice of those features that accurately parame-
terize the non-stationary behaviors that are present. Thus,
a current challenging problem is to detect a variety of
non-stationary biosignal activities with a low computa-
tional complexity, to provide tools for efficient biosignal
databases management and annotation.
As commented before, it is well known that non-

stationarity conditions give rise to temporal changes in
the spectral content of the biosignals [2]. In this sense,
the literature reports different features for examining
the dynamic properties during transient physiological or
pathological episodes. These features are usually extracted
from the time–frequency (t–f ) representations [1,3,4] of
the signals under analysis. In order to estimate such t–f
representations, both parametric and nonparametric esti-
mations are generally employed. Among the most popular
nonparametric approaches are: short time fourier trans-
form (STFT), wavelet transform (WT); matching pursuit
(MP); Choi-Williams distribution (CWD), Wigner–Ville
distribution (WVD) [2,6]; and among the parametric
models: time–variant autoregressive models, and adaptive
filtering [3,4].
The features that are extracted from t–f representa-

tions are expected to characterize abnormal behaviors
[7]. Previous studies about EEG or PCG have shown
that techniques such as matching pursuit are efficient
for describing the t–f representations with a reduced
number of atoms [8,9]. Nonetheless, a signal decompo-
sition grounded on matching pursuit does not neces-
sarily provide the same number of t–f atoms for each
recording, hence the multidimensional reduction arises
as an additional issue to handle dynamic features of
different lengths. Additionally, two–dimensional time–
frequency/scale approaches, such as the t–f distributions
(linear or quadratic) or even the Wavelet analysis, have
also been widely used in biosignal processing, in partic-
ular for EEG [5,10] and PCG [6,11]. In this sense, an
approach to create optimized quadratic t–f representa-
tions is proposed in [12] by designing kernels that lead
to the maximum separability among classes. Moreover,
recent approaches allow an EEG data representation with
adaptive and sparse decompositions [13].
However, despite the flexibility provided by two–

dimensional t–f representations, and regarding their use
for classification purposes, some issues still remain open.
For instance, the intrinsic dimensionality of t–f repre-
sentations is huge, and thus, the extraction of relevant
and non-redundant features becomes essential for classi-
fication. For this purpose, [5] proposes a straightforward
approach to compute a set of t–f tiles that represent
the fractional energy of the biosignal in a specific fre-
quency band and time window; thus the energy can be
evaluated by a simple measure, like the mean energy in
each tile. Nonetheless, there is a noteworthy unsolved

issue associated with local-based analysis in the tiling
approach, namely the selection of the size of the local rel-
evant regions [2]. As a result, the choice of features over
the t–f representations is highly dependent on the final
application. In this sense, linear decomposition methods
have been also considered to extract features over t–f
planes [1,14], by arranging the t–f matrix in a single
feature vector; however, in this case, it is strongly conve-
nient to fix previously a confined area of relevance over
the t–f representations [3]. Thus, in [15], a t–f region is
selected by a two-dimensional weighting function based
on a mutual information criterion developed to obtain
the maximum separability among classes, so the weighted
space is mapped to a set of one-dimensional features,
although the methodology is restricted to a specific class
of t–f representations.
Therefore, the extraction of relevant information from

bi–dimensional t–f features have been discussed in the
past as a means to improve performance during and after
training in the learning process. Namely, as pointed out
in [16], two main issues have to be solved to obtain an
effective feature selection algorithm: the estimation of the
measure associated with a given relevance function (i.e.,
a measure of distance among t–f planes), and the cal-
culation of the multivariate transformation, which may
maximize the differences among classes pointed out by
the measures of relevance projecting the features onto a
new space [1].
This research proposes a new methodology for dimen-

sionality reduction of t–f based representations. The pro-
posed methodology carries out consecutively a stage of
feature selection with a stage of the linear decomposi-
tion of the time–frequency planes. At the beginning, the
most relevant features (best localized points, or frequency
bands over the t–f representations) are selected by means
of some kind of relevance measure. As a result, both the
irrelevant information and the computational burden of a
later transformation and/or classification stage are signif-
icantly decreased. Then, data are projected into a lower
dimensional subspace using orthogonal transformations.
For the sake of comparison, techniques based on principal
component analysis (PCA) and partial least squares (PLS)
were considered throughout this study as non-supervised
and supervised transformations, respectively.
In order to evaluate the generalization capabilities of the

proposed methodology, it has been evaluated using two
different databases under different classification scenar-
ios: the first uses a database of PCG recordings to detect
heart murmurs; the second uses EEG recordings to detect
epilepsy; and the third differentiates between five different
types of EEG segments.
The article is organized as follows: The first section is

dedicated to an overview of linear decomposition meth-
ods with extension to matrix data; second, the concepts
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of relevance in terms of relevant mappings and the selec-
tion of t–f based features bymeans of relevancemeasures,
are described. Then, comparative results against other t–f
based methods are provided [3,5,6].

Methods
The methodology introduced throughout this article
stands on a prior segmentation of the different signals
with a further characterization by means of a t–f repre-
sentation. Later, the (t–f ) planes are significantly reduced
by means of a feature selection procedure followed by
a linear decomposition. Considered stages are described
next.
For the sake of simplicity, the time-frequency analysis

carried out in this study has estimated using spectrograms
based on the classical STFT [5]. A t–f representation of a
segment of a non-stationary signal can be seen as a matrix
set of features with column and row wise relationships,
holding discriminant information about the underlying
process.
In this sense, consider a set of t–f representations,X =

{X(k) : k = 1, . . . ,K} (comprising K observations), where
each X(k) is associated with one and only one class label
c(k) ∈ N, belonging to the class label set C . The kth t–f
representation is described by its corresponding feature
matrix, X(k) ∈ R

F×T , defined as follows:

X(k) =
[
x(k)
c1 , x

(k)
c2 , . . . , x

(k)
cT

]
=

⎡
⎢⎢⎢⎢⎣
x(k)
r1

x(k)
r2
...

x(k)
rF

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
x(k)
11 x(k)

12 . . . x(k)
1T

x(k)
21 x(k)

22 . . . x(k)
2T

...
...

. . .
...

x(k)
F1 x(k)

F2 . . . x(k)
FT

⎤
⎥⎥⎥⎥⎦ ,

where each column vector x(k)
cj represents the power con-

tent at F frequencies in the time instants j = 1, . . . ,T ,
while each row vector x(k)

ri represents the power change
along T time instants, given the frequency bands i =
1, . . . , F . The real–valued x(k)

ij is the power content at
frequency i and time j.
Nonetheless, the main drawbacks of these arranged

features are their large size and huge quantity of redun-
dant data. Thereby, data reduction methods are required
to accurately parameterize the activity of time–varying
features, but preserving the information contained in
the column and row–wise relationships of the matrix
data [14].

Dimensionality reduction of t–f representations using
linear decomposition approaches
A straightforward dimensionality reduction approach on
input matrix data bymeans of orthogonal transformations
can be carried out by stackingmatrix columns into a single
vector, as follows:

χ (k) =
[
(x(k)

c1 )�, (x(k)
c2 )�, . . . , (x(k)

cT )�
]

χ (k) ∈ R
1×FT

(1)

Thus, to reduce the dimensionality of the input data,
a transformation matrix W ∈ R

FT×p, with p � FT ,
can be defined to map the original feature space R

1×FT

into a reduced feature space R1×p, by means of the linear
operation z(k) = χ (k)W , where z(k) is the transformed fea-
ture vector. The transformationmatrixW can be obtained
using a non-supervised approach such as PCA, or using a
supervised approach such as PLS [17]. The vectorization
approach in Equation (1) will be referred next as vector-
ized PCA/PLS, depending on the specific transformation
used.
On the other hand, given the input feature matrix X(k),

a transformation matrix U ∈ R
q×F can also be used

to reduce the number of rows in the data matrix, i.e.,
Z(k)
r = UX(k), with Z(k)

r ∈ R
q×T . Likewise, a transfor-

mation matrix V ∈ R
T×p can be used to reduce the

number of columns of the data matrix, Z(k)
c = X(k)V , with

Z(k)
c ∈ R

F×p. If both transforms are combined, a further
dimensionality reduction can be achieved as:

Z(k) = UX(k)V (2)

where Z(k) ∈ R
q×p is the matrix of features with a

reduced dimensionality. The estimation of the transfor-
mation matrices U and V is carried out from the data
matrices X(c) and X(r), respectively, which are defined as:

X(c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X(1)�
...

X(k)�
...

X(K)�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; X(r) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X(1)

...
X(k)

...
X(K)

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, the feature vector z(k) is obtained by stacking
the columns of Z(k) into a new single feature vector. As
described in [3], these approaches are termed 2D–PCA
or 2D–PLS [18,19], depending on the orthogonal trans-
formation used to compute the matrices U and V in
Equation (2).

Relevance analysis over t–f based features
According to some measure of evaluation, a relevance
analysis distinguishes those variables which effectively
represent the subjacent physiological phenomena. Such
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variables are named relevant features, whereas the mea-
sure of evaluation is known as relevance measure. In this
sense, a variable selection tries to reject those variables
whose contribution for representing a target is none or
negligible (irrelevant features), as well as those that have
repeated information (redundant features).
The notion of relevance can be cast into a supervised

framework by considering that for each one of the xij
features belonging to the feature subset, the relevance
function ρ is defined as follows [1]:

{
ρ : RF×T × K → R

F×T

(X ,C , xij) �→ ρ(X ,C , xij) ∈ R
+ (3)

where the relevance function ρ should satisfy the follow-
ing properties:

– Non-negativity: i.e., ρ(X ,C , xij) ≥ 0.
– Nullity: the function ρ(X ,C , xij) is null if the feature

xij has not relevance at all.
– Non-redundancy: if x′

ij = αxij + ς , where the
real–valued α 	= 0 and ς is some noise with mean
zero and unit variance, then
|ρ(X ,C , xij) − ρ(X ,C , x′

ij)| → 0.

The evaluation of ρ(X ,C , xij) is called relevance weight,
and the main assumption is that the largest weight is
associated with the most relevant feature. So, when the
whole set of features is considered, a relevance matrix
R =[ ρij ∈ R

+] can be built. Also, to measure the con-
tribution of each frequency band, a simple average can be
accomplished as, i.e.,

ρrF = E{ρij : ∀j}, ρrF ∈ R
1×F .

Then, the variable selection process is carried out by
selecting those xij features or those xrF frequency bands
whose relevance values, ρij or ρrF , are over a certain
threshold η ∈ R

+. For this purpose, the following mea-
sures of relevance can be assessed as evaluation criteria
[20]:

a. Linear correlation, given by:

ρlc(xij|c)=

∣∣∣∣∣∣∣
E{(x(k)

ij − xij)(c(k) − c) : ∀k}√
E{(x(k)

ij − xij) : ∀k}2E{(c(k) − c) : ∀k}2

∣∣∣∣∣∣∣,
(4)

where xij = E{x(k)
ij : ∀k} is the value measured for xij

averaged for the kth object, k = 1, . . . ,K , and
c = E{c(k) : ∀k}. Likewise, c(k) is the label of the kth
object given to X(k). The notation E{· : ∀λ} stands for
the expectation operator over the variable λ.

b. Symmetrical uncertainty, which is a measure of
uncertainty of a random variable, based on the
information-theoretical concept of entropy, given by:

ρsu(xij|c) = H{x(k)
ij : ∀k} − H{x(k)

ij |c(k) : ∀k}
H{x(k)

ij : ∀k} − H{c(k) : ∀k}
(5)

being H{· : ∀λ} the entropy operator over the
variable λ, defined as:

H{x(k)
ij : ∀k}=−

∑
k

P(x(k)
ij ) logP(x(k)

ij ), ∀k = 1, . . . ,K .

(6)

Likewise, the conditional entropy operator is given
by:

H{x(k)
ij |c(k) : ∀k} = −

∑
k

P(c(k))
∑
k

P(x(k)
ij |c(k))

× logP(x(k)
ij |c(k)), ∀k = 1, . . . ,K ,

(7)

where P(x(k)
ij ) and P(c(k)) are the probability

distribution functions (PDF) of the features of
interest and the labels, respectively; and P(x(k)

ij |c(k)) is
the conditional PDF. For computing these functions,
histogram-driven estimators were used, and the
sums on Equations (6) and (7) were carried out along
the histogram bins. However, if the number of
recordings is lower of certain threshold, another kind
of estimators, as kernel based could be used.

Selection of the most informative areas from t–f
representations
Once the relevance measure is properly determined, the
selection of the features (t–f points or frequency bands),
is carried out by choosing those variables with a relevance
that exceeds a given threshold η, termed as ˆX(k) or ˆχ (k) in
its vectorized form. Due to the large size of the vectors,
the threshold is varied as a function of the total number
of features in hand, i.e., the higher the number of selected
features, the lower the relevance threshold η. Nonetheless,
handling the t–f representations requires special atten-
tion since the features considered are no longer organized
as vectors. With this restriction in mind, two different
approaches are proposed:

i) The first one consists on the evaluation of the
relevance for each point of the t–f representation,
and then selecting the set of the most relevant to
appraise a reduced feature vector that later will be
transformed by conventional one dimensional (1–D)
linear decomposition methods. This approach is
described in Algorithm 1 and will be referred later as
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1D–PCA and 1D–PLS (depending on the
transformation technique used).

ii) The second consists on evaluating the relevance of
the time-varying spectral components of the t–f
representation, and then selecting the most relevant
frequency bands to appraise a t–f based feature
matrix, which will be further reduced using a two
dimensional (2–D) matrix-based approach. This
approach is described in Algorithm 2 and will be
referred later as 2D–PCA and 2D–PLS (depending
on the transformation technique used).

Algorithm 1 Selection of t–f based features using relevance
measures and dimensionality reduction (1–D approach)
Input: t–f dataset {X(1),X(2), . . . ,X(K)}, relevance thresh-
old η.

Output: Reduced feature vector set {z(1), z(2), . . . , z(K)}.
1. Estimate the relevance measure ρ(xij|c) of the t–f

points, using some of the relevance measures defined
in Equations (4) or (5).

2. Select the most relevant t–f variables

for k = 1 to K do
X̂

(k) =
{
x(k)
ij ∀i, j : ρ(xij|c) ≥ η

}
end for

3. Convert t–f matrices into vectors

for k = 1 to K do
χ (k) = vec(X̂

(k)
) =[

(x̂(k)
c1 )�, (x̂(k)

c2 )�, . . . , (x̂(k)
cT )�

]
end for

4. Compute the transformation matrix V of 1D–PCA
or 1D–PLS using the relevant feature vector set
{χ (1),χ (2), . . . ,χ (K)}.

5. Transform the feature vectors χ (k) into the reduced
feature vector z(k), as

for k = 1 to K do
z(k) = χ (k)V

end for

Algorithm 2 Frequency band selection from t–f
representations using relevance measures and
dimensionality reduction by matricial approach (2–D
approach)
Input: t–f matrix dataset {X(1),X(2), . . . ,X(K)}, relevance
threshold η.

Output: Reduced feature vector set {z(1), z(2), . . . , z(K)}.
1. Estimate the relevance measure ρ(xij|c) of the t–f

points, building the relevance map R:

R =

⎡
⎢⎢⎢⎣

ρ(x11|c) ρ(x12|c) . . . ρ(x1T |c)
ρ(x21|c) ρ(x22|c) . . . ρ(x2T |c)

...
...

. . .
...

ρ(xF1|c) ρ(xF2|c) . . . ρ(xFT |c)

⎤
⎥⎥⎥⎦

2. Compute the average relevance value on the
frequency range, as

ρrF = E{ρij : ∀j}
3. Select the most relevant frequency bands

for k = 1 to K do
X̂

(k) =
{
x(k)
rF ∀r : ρrF ≥ η

}
end for

4. Compute the transformation matrices U and V of
2D–PCA (or 2D–PLS, respectively), using the
reduced t–f matrices set {X̂(1)

, X̂
(2)

, . . . , X̂
(K)}.

5. Transform the reduced t–f matrices X̂
(k)

into the
reduced feature vector z(k), as

for k = 1 to K do
Z(k) = UX̂(k)V
z(k) = vec(Z(k))

end for

A schematic representation of each approach for the
selection of relevant t–f features is shown in Figure 1.
The approach described in Algorithm 1 is described
in Figure 1A, while Figure 1B explains the procedure
described in Algorithm 2.
Table 1 summarizes the eight different combinations

accomplished for the proposed approaches, including the
algorithm, the transformation and the relevance measure
used in each case.

Experimental set–up
The approach used to adjust the proposed feature extrac-
tion method for the discrimination of non-stationary
biosignals is shown in Figure 2. The methodology is
divided into three consecutive steps: (i) Estimation of the
t–f representation; (ii) Feature selection, which encloses
the selection of the relevant variables and a data transfor-
mation by linear decomposition methods; and, (iii) Clas-
sification, where a simple ǩ-nearest neighbors (ǩ–NN)
classifier was used.

Database acquisition and preprocessing
The method proposed was tested using two non-
stationary databases of biosignal recordings, each com-
prising pathologies with different degrees of complexity
and a wide variety of characterizing patterns. These two
databases hold separately EEG and PCG recordings. For
the PCG database the unit used for classification is a
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Figure 1 Proposed approaches. Graphical representation of both approaches considered for the selection of the relevant variables from matricial
data.

heart beat, whereas for the EGG database the unit is a
segment of 23.6 s. Their main characteristics are sum-
marized in Table 2, where K stands for the number of
segments stored in each database, KC is the number of
segments per class, fs is the sampling frequency, Nbits is
the number of bits of quantization and l is the length of
each recording. For the PCG database, because the differ-
ence of the heart beats longitude after the segmentation

Table 1 Summary of the proposed approaches

Algorithm Transformation Relevance measure

Method 1 Algorithm 1 1D–PCA ρlc

Method 2 Algorithm 1 1D–PCA ρsu

Method 3 Algorithm 1 1D–PLS ρlc

Method 4 Algorithm 1 1D–PLS ρsu

Method 5 Algorithm 2 2D–PCA ρlc

Method 6 Algorithm 2 2D–PCA ρsu

Method 7 Algorithm 2 2D–PLS ρlc

Method 8 Algorithm 2 2D–PLS ρsu

step, a zero-padding length-normalization process was
done, according to the length of the longest record-
ing. For the EEG database, since discontinuities between
the end and the beginning of a time series are known
to cause spurious spectral frequency components, seg-
ments of 4396 samples were at first cut out of the
recordings. Within these longer intervals, the beginning
of each of the final segments of l = 4096 samples
was the chosen in such a way that the amplitude dif-
ferences of consecutive data points, and the slopes at
the end and the beginning of the time series had the
same sign [21]. Finally, for both databases, after the seg-
mentation step, an amplitude normalization process was
carried out. Some additional details of each database are
given next.

PCG database
This collection is made up of 45 adult subjects, who gave
their informed consent approved by an ethical committee,
and underwent a medical examination. A diagnosis was
carried out for each patient and the severity of the valve
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Figure 2Methodology. Experimental outline, and methods subject to investigation.

lesion was evaluated by cardiologists according to clini-
cal routine. A set of 26 patients were labeled as normal,
while 19 were tagged as pathological with evidence of
systolic and diastolic murmurs caused by valve disorders.
Furthermore, eight phonocardiographic recordings cor-
responding to the four traditional focuses of auscultation
were taken per patient in the phase of postexpiratory and
postinspiratory apnea. Every recording lasted 12 s approx-
imately, and was obtained from the patient standing in
dorsal decubitus position. Next, after visual and audio
inspection by cardiologists, some of the eight signals
were removed because of artifacts and undesired noise.

An electronic stethoscope (WelchAllyn Meditron
model) was used to acquire the PCG simultaneously
with a standard 3-lead electrocardiographic (EKG) (since
the QRS complex is clearly determined, DII deriva-
tion is synchronized as a time reference). Both signals
were sampled with 44.1 kHz rate and amplitude resolu-
tion of 16 bits. Preprocessing was carried out including
downsampling at 4000Hz, amplitude normalization and
inter–beat segmentation, as described in [3]. Finally,
after the segmentation process, the database holds 548
heartbeats in total: 274 with murmurs, and 274 that were
labeled as normal. The selection of the 548 beats used

Table 2 Summary of the characteristics of the database

Database K Classes KC (class) fs [Hz] Nbits l

PCG 548 2 274 (normal), 274 (murmur) 4000 16 4800

EEG 500 3 100 (Z), 100 (O), 100 (N), 100 (F), 100 (S) 173.6 12 4096
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for training and validation was carried out by expert
cardiologists related to the most representative beats
of normal and pathological patients (with murmurs)
without having into account the number of heart beats
provided for each patient. The database belongs to both
Universidad Nacional de Colombia and Universidad de
Caldas. Recording was carried out taking into account
the rules fixed by the Research Ethics Committee of the
Universidad de Caldas which provides guidelines and
supervision during those procedures involving human
beings.

EEG database
The EEG signals correspond to 29 patients with medically
intractable focal epilepsies. They were recorded by the
Department of Epileptology of the University of Bonn,
by means of intracranially implanted electrodes [21]. All
EEG signals were recorded with an acquisition system
of 128 channels, using average common reference. Data
were digitized at 173.61Hz, with 12 bits of resolution.
The database comprises five sets (denoted as Z, O, N,
F, S) composed of 100 single channel EEG segments of
23.6 s and 4096 time-points, which were selected and
extracted after visual inspection from continuous multi-
channel EEG to avoid artifacts (e.g., muscular activity or
eye movements). Datasets Z and O consist of segments
taken from scalp EEG recordings of five healthy subjects
using the standard 10–20 electrode placement. Volun-
teers were awake, relaxed with their eyes open (Z) and
eyes closed (O), respectively. Datasets N, F, and S were
selected from presurgical diagnosed EEG recordings. The
signals were selected from five patients who achieved a
complete control of the epileptic episodes after the dis-
section of one of the hippocampal formations, which was
correctly diagnosed as the epileptogenic zone. Segments
of set F were recorded in the epileptogenic zone, and
segments of Nx in the hippocampal zone on the opposite
side of the brain. While sets N and F only contain activity
measured on inter–ictal intervals, set S only contains

recordings with ictal activity. In this set, all segments
were selected from every recording place exhibiting ictal
activity.

Estimation of the t–f representations
According to [5,6] and for the sake of simplicity, the time-
frequency analysis has been carried out by a quadratic t–f
representation, such as the spectrogram. This representa-
tion, based on a classical Fourier Transform, introduces
a time localization concept by using a tapering window
function of short duration going along the signal, and
adding a time dimension. Particularly, the analysis is per-
formed within a range of 0 to 83Hz and 0 to 2 kHz for EEG
and PCG recordings, respectively. Therefore, the spectro-
gram is computed by using, as tapering function, Gaussian
windows with lengths of 2.9 and 0.05 s for EEG and PCG
recordings, respectively, with 50% of overlapping. For
both databases, the spectrograms are computed by using
a resolution of 512 points. To illustrate the difficulty of
the problems addressed, Figures 3 and 4 show some EEG
and PCG recordings belonging to normal and patholog-
ical classes, along with their respective spectrograms. It
can be seen that there are some normal segments whose
patterns resemble like pathological ones, and vice–versa.

Evaluation of the classification performance
In order to test the aforementioned approaches, three
different scenarios of the evaluation were proposed:

i. Scenario 1. Murmur detection of PCG signals. The
PCG recordings were arranged into two classes
(normal and pathological).

ii. Scenario 2. Classification of EEG signals into three
categories. The EEG segments were sorted into three
different classes. Z and O types of EEG segments
were combined into a single class; N and F types were
also combined into a single class; and type S was the
third class. This scenario with only three categories is
close to the real medical applications. Following this
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Figure 3 Examples. Examples of PCG recordings labeled as normal (A) and heart murmur (B), respectively.
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Figure 4 EEG examples. Examples of EEG recordings labeled as normal (Z,O), interictal (N,F) and ictal (S), respectively.

criterion the database was split in: normal (i.e., types
Z and O) containing 200 recordings, seizure free (i.e.,
types N and F) with 200 recordings, and seizure (i.e.,
type S) with 100 recordings.

iii. Scenario 3. Classification of EEG signals into five
different categories. In this scenario each type of EEG
segments (Z, O, N, F, S) was considered as a single
class, each containing 100 recordings.

The evaluation of the classification accuracy of each
method was carried out using a simple ǩ–NN classi-
fier evaluated following a cross-validation scheme [22].
Several reasons justify the use of this classifier: it is
straightforward to implement; it generally leads to good
recognition performance thanks to the nonlinearity of
its decision boundaries; and its complexity is assumed
to be independent of the number of classes. The cross–
validation approach used to evaluate the performance of
the methodology consists of the division of each dataset
into 10 folds containing different recordings, and an even

quantity of records from each class. Nine of these folds
were used for training and the remaining one for valida-
tion purposes. The methods enumerated in Table 1 were
applied to the training folds, and the resulting feature
spaces were used to train the ǩ–NN classifier. Then, the
relevant measures, the transformation matrices, and the
classifier obtained during the training phase were used to
categorize the recordings of the validation fold. This pro-
cedure was repeated changing the training and validation
folds, until the 10 folds were used.
For the scenario 1, with only two classes, the classifica-

tion performance was measured bymeans of the accuracy,
sensitivity and specificity figures of merit, defined by:

Accuracy (%) = nC
nT

× 100;

Sensitivity (%) = nTP
nTP + nFN

× 100;

Specificity (%) = nTN
nTN + nFP

× 100
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where nC is the number of correctly classified patterns,
nT is the total number of patterns used to feed the clas-
sifier, nTP is the number of true positives (objective class
accurately classified), nFN is the number of false negatives
(objective class classified as control class), nTN is the num-
ber of true negatives (control class accurately classified),
and nFP is the number of false positives (control class clas-
sified as objective class). In this study, the pathological
classes correspond to the objective class, while the nor-
mal classes correspond to the control class. The accuracy,
sensitivity and specificity are calculated for each valida-
tion fold and the mean and standard deviation were used
as figures of merit.
For the multi–class classification problems (scenarios

2 and 3), the sensitivity and specificity were computed
taking each class as the target and the remaining ones as
the control classes.

Results
This section analyzes the tuning of the parameters that
characterize the methods proposed: the number of neigh-
bors of the ǩ–NN classifier, the number of components
used by the linear decomposition approaches, and the rel-
evance threshold. For the sake of comparison the mean
and the standard deviation of the accuracy obtained for
the different methods were computed. For those configu-
rations that provided the best accuracy, the sensitivity and
the specificity were also computed.
The tuning of the proposed methods was carried out

for the PCG database using the scenario 1, whereas for
the EEG database the procedure was carried out using the

scenario 2; finally, with the best configurations obtained
for the scenario 2, the scenario 3 was tested.

Tuning of the ǩ–NN based classifier
By stepwise increasing the number of neighbors, ǩ, the
optimal value was determined as the one which pro-
vided the highest accuracy. The procedure was done for
each algorithm, by using all the t–f representations avail-
able in each scenario, and the relevance threshold was
selected as η = 100% (i.e., no relevance criterion was
introduced). Additionally, the number of components for
PCA/PLS (n for the 1D methods, nr and nc for the 2D
methods) were selected based on the number of com-
ponents that describes the 90% of the total variability of
the dataset.
Figures 5A,B show the accuracy using the point

selection methods described in Algorithm 1, while
Figures 5C,D show the results for the methods based on
the selection of frequency bands described in Algorithm 2.
In the framework of the scenario 1, Figure 5A shows

that applying Algorithm 2 to the PCG data, the accu-
racy of the classifier decreases as the number of neigh-
bors increases. Moreover, the standard deviation is lower
for intermediate values and becomes larger as the num-
ber of neighbors increases. In the context of the sce-
nario 2, Figure 5B shows similar conclusions for EEG
signals.
Similar trends appear using the method based on the

selection of frequency bands (Algorithm 2). Figures 5C,D
show that the performance decreases as the number
of neighbors increases for the PCG and EEG databases

1 3 5 7 9 11 13 15 17 19
80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Number of neighbors
1 3 5 7 9 11 13 15 17 19

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Number of neighbors

1 3 5 7 9 11 13 15 17 19
80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Number of neighbors
1 3 5 7 9 11 13 15 17 19

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Number of neighbors

A B

C D

1D−PCA
1D−PLS

2D−−PCA
2D−−PLS

1D−PCA
1D−PLS

1D−PCA
1D−PLS

2D−−PCA
2D−−PLS

Figure 5 Tuning of the ǩ–NN classifier. Accuracy of the classifier versus number of neighbors.
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(scenarios 1 and 2). Note that the results using
Algorithm 2 are more stable than with Algorithm 1. These
results reflect the overall structure of the feature spaces
obtained.
Accordingly, for both Algorithms, the optimal number

of neighbors was fixed as ǩ = 1 for the PCG database,
and ǩ = 3 for the EEG database. After the feature
selection stage, the decision boundary among classes is
expected to be clearer than when no relevance measures
are used. Thus, after the relevance analysis, the number
of neighbors ǩ of the classifier could be tuned in a higher
value, however, the initial estimation (no relevance) is an
admissible approximation.

Selection of the relevant features
The variable selection was carried out choosing the most
relevant features according to the proposed measures of
relevance: linear correlation, ρlc, and symmetrical uncer-
tainty, ρsu. The training sets of the t–f representations
for the PCG and EEG signals were used to compute

point–wise relevance measures, yielding to a relevance
matrix, which is a dependence measure of each t–f point
with its respective label. As a result, a global measure
of the degree of dependence is accomplished. Therefore,
the amount of features is selected according to a uni-
versal threshold fixed a priori over the relevance map,
which shows the t–f areas or frequency bands with higher
relation to the phenomena under study. Additionally, as
explained above, the threshold is varied as a function
of the total number of features in hand, i.e., the higher
the number of selected features, the lower the relevance
threshold.
Figure 6 shows the results of each relevance mea-

sure for the scenarios 1 and 2. In particular, the rel-
evance measures, shown in Figures 6A,B for the PCG
database (scenario 1), demonstrate that a large span of the
time–frequency range is poorly relevant. Only some small
areas that are clearly defined can be regarded as highly
relevant. The relevance measures based on linear cor-
relation and symmetrical uncertainty select those time
instants in the systole and diastole, where normal heart
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Figure 6 Relevance maps. Relevance of the time–frequency plane and frequency axis obtained for EEG and PCG databases.
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murmurs should be present. Regarding the EEG database,
in the context of the scenario 2, Figures 6C,D demonstrate
that the most relevant zones are in the low frequency
bands (0–40Hz). This result is more comprehensible
for the symmetrical uncertainty relevance measure, and
stands in the fact that epilepsy is directly related with low
frequency components [5].
In order to find the most relevant features, the relevance

measures estimated were reshaped as vectors and later
sorted from highest to lowest values. For both databases,
the relevance vectors sorted using the relevance measures
considered are shown at the bottom of each subfigure
in Figure 6. In the case of the t–f point selection, and
using the methodology described in Algorithm 1, the vari-
ables were selected according to their relevance, select-
ing those with a value over a certain threshold η. Such
threshold should be adjusted to optimize the accuracy of
the classifier.
Regarding to the selection of the frequency bands

described in Algorithm 2, the relevance measures were
averaged over the time axis. As a result, a vector corre-
sponding to the relevance of the frequency axis is calcu-
lated. The values of relevance, ρrFlc and ρrFsu , correspond-
ing to the frequency axis for both databases are shown in
the left plots of each subfigure in Figure 6. Thus, the fre-
quency bands were selected according to their relevance.
In order to assess the effectiveness of each relevance

measure, and using the accuracy of the classifier as a
figure of merit, the number of relevant features selected
was increased as a percentage of the total number of
variables. The percentages were varied from 5 to 100%
with steps of 5%. This test was carried out for both

relevance measures (linear correlation and symmetri-
cal uncertainty), both methods of dimensionality reduc-
tion (PCA and PLS), and for scenarios 1 and 2 (PCG:
Figures 7A,B; EEG: Figures 7C,D) using Algorithm 1.
For both scenarios, the most stable measure is based
on the symmetrical uncertainty, demonstrating that it is
possible to accurately classify the PCG and EEG signals
using around the 15% of the information given by each
t–f representation.
A similar test was carried out for the Algorithm 2,

varying the threshold of the relevance of the frequency
axis and selecting the most relevant frequency bands.
The percentages were varied from 5 to 100% with steps
of 5%. The results are shown in Figure 8: Figures 8A,B
correspond to the scenario 1, whereas Figures 8C,D cor-
respond to the scenario 2. For both scenarios, there is
a small and constant performance drop as the number
of relevant features diminishes. Once again, symmetri-
cal uncertainty provided more stable and selective results,
giving high accuracy rates using a very small portion of the
t–f representation.

Data transformation by linear decomposition methods
After selecting the most relevant variables, the data set
obtained (comprising the most relevant variables) was
further reduced using the linear transformation methods
commented before. The amount of latent components n
for 1D–PCA (methods 1 and 2) and 1D–PLS (methods 3
and 4), as well as the number of time nc and frequency
nr components for 2D–PCA (methods 5 and 6) and 2D–
PLS (methods 7 and 8), was selected according to the
maximum classification rate obtained.
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Figure 7 Tuning relevant features 1D. Classifier accuracy vs. number of relevant variables for 1D methods. (A), (B): scenario 1; (C), (D): scenario 2.
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Figure 8 Tuning relevant features 2D. Classifier accuracy versus number of relevant variables for 2D methods. (A), (B): scenario 1; (C), (D):
scenario 2.

For the point–wise approach given in Algorithm 1,
Figures 9A,D illustrate the classifier accuracy when the
number of components of the linear decompositionmeth-
ods (PCA and PLS) changes. In the framework of the
scenario 1, for the case of PCG signals, Figure 9A shows
that using PCA, a good accuracy is achieved with a num-
ber of components over n = 12, whereas n = 21 for
PLS. In the context of the scenario 2, for the EEG signals,
the results shown in Figure 9D demonstrate that, in both
approaches, the performance tends to be steady for a rel-
atively small number of components around n = 13, for
PLS, and n = 25 for PCA.
Figures 9B,C,E,F show the performance of the clas-

sifier vs. the number of column and row components
of the 2D methods used in Algorithm 2. Figures 9B,E
show the classifier outcomes using the 2D–PCAmethods,
while Figures 9C,D show the results using the 2D–PLS
methods proposed.
In the scenario 1, the number of row and column com-

ponents of the t–f representation of PCG signals must be
augmented to achieve a stable behavior. In the case of EEG
signals used in the scenario 2, both methods provided a
stable behavior as the number of components in rows and
columns increased. Furthermore, the accuracy increased
with a small number of column components, whereas it
got stable as the number of row components augmented.
Since the column components are related to the temporal
activity, and the row components are associated with the
spectral variability, the behavior exhibited by the EEG sig-
nals can be interpreted as a smooth temporal activity with

a higher spectral variability, while in PCG both temporal
and spectral activities present a large variability.

Summary of results
For the scenarios 1 and 2, Tables 3 and 4 summarize the
values of the parameters that provided the best perfor-
mance for the methods under study. Both tables show
the sizes of the original datasets, the number of neigh-
bors of the ǩ–NN classifier, the relevance threshold ρmin,
the number of relevant variables selected nrel, the dimen-
sion of the feature space obtained n, the number of row
and column components of the 2D linear decomposition
methods, nr and nc, and the figures of merit of the clas-
sification. The results are presented with the mean and
standard deviation of the accuracy, sensitivity and speci-
ficity. The tables allow to directly compare the approaches
used to reduce the dimensionality (PCA, PLS, 2D–PCA,
and 2D–PLS) and the relevance measures (linear cor-
relation, and symmetrical uncertainty) for each kind of
signal and for the eight methods presented in this article
(Table 1). Besides, for the sake of comparison, as pro-
posed in [14], the performance is also presented using
no relevance analysis, as well as for the tiling approach
of the t–f based feature extraction method described in
[5], where nr and nc stand for the number of time and
frequency partitions, respectively. In the case of the EEG
database (scenarios 2 and 3), the splitting in the frequency
domain was carried out according to the δ (0.4–4Hz), θ

(4–8Hz), α (8–12Hz), β (12–30Hz), and γ (> 30Hz)
bands, whereas for the PCG database (scenario 1), the
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Figure 9 Tuning number of components. Accuracy of the classifier versus number of components for the methods considered. (A), (B), (C):
scenario 1; (D), (E), (F): scenario 2.

number of splits in both time and frequency axes was fixed
empirically.
Finally, the scenario 3 was tested for the methods 4

and 5, since they demonstrated to be the best approaches
under study. This scenario presents a more complex clas-
sification task involving five different classes. The results
obtained are summarized in Table 5 in comparison with
the approach found in [5].

Discussion
Several tests were carried out to assess the behavior of the
proposed methodologies described in Algorithms 1 and 2.
Two different kinds of signals with different stochastic
behaviors were tested: PCG signals, with a well defined
temporal structure and well localized events; and EEG
signals, whose stochastic structure is unfixed. The rele-
vance measures clearly reflected the particular stochastic
behavior of each kind of signal.
Figure 6 demonstrates that, for EEG signals, the

information content is distributed along the time axis,
whereas it is well localized in the case of PCG signals.
The relevance analysis also demonstrates the presence of

informative and non informative frequency bands. The
selectivity of each relevance measure is different and also
depends on the specific signal, as it is shown in Figure 6.
In the scenario 1, for PCG signals, the symmetrical

uncertainty is the most selective relevance measure; lin-
ear correlation provided some peaks of relevance, but in
general is very disperse. This is also reflected as a faster
decrease of the performance (Figure 7A) for the linear
correlation measure, and a more sustained performance
with the symmetrical uncertainty (Figure 7B). Since the
values of the relevance measures are very low in a large
span of the time–frequency plane of PCG signals, a large
amount of points can be interpreted as uninformative.
Moreover, there is a zone with a lower accuracy after a
peak of performance around 20 to 30% of the relevant
features. Regarding the 2D methodology, the symmetrical
uncertainty is the most stable measure, since its drop
of performance is very low. Nevertheless, the method
based on linear correlation reveals a similar performance.
The larger stability of the symmetrical uncertainty can
be explained because it spans larger time–frequency
areas, including high frequency components. Therefore,
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Table 3 Best performance obtained for themethodologies studied using the PCG database (scenario 1)

Original size of the t–f representation: 512 × 480= 245760. Number of neighbors: 1

Methodology ρmin nrel n = (nc × nr) Accuracy (%) Sensitivity (%) Specificity (%)

PCA with NA NA 18 = (9 × 2) 92.52 ± 2.32 92.70 ± 6.21 92.30 ± 3.69

tiling [5]

PLS with NA NA 18 = (9 × 2) 93.80 ± 2.85 94.52 ± 5.48 93.02 ± 4.78

tiling [5]

Vectorized NA NA NA 91.22 ± 2.76 90.50 ± 2.60 91.88 ± 6.51

PCA [14]

Vectorized NA NA NA 94.89 ± 2.24 94.55 ± 3.05 95.25 ± 4.24

PLS [14]

Algorithm 2 + NA NA NA 99.28 ± 1.52 99.64 ± 1.13 98.90 ± 2.48

2D–PCA

(no relevance)

Algorithm 2 + NA NA NA 99.28 ± 1.52 99.64 ± 1.13 98.90 ± 2.48

2D–PLS

(no relevance)

Method 1 45% 110592 27 93.07 ± 3.50 92.72 ± 4.18 93.43 ± 4.10

Method 2 15% 36864 12 96.72 ± 2.06 95.62 ± 3.76 97.78 ± 3.98

Method 3 40% 98304 26 98.18 ± 1.49 98.20 ± 2.54 98.16 ± 2.61

Method 4 15% 36864 21 98.72 ± 1.23 98.90 ± 1.77 98.53 ± 1.90

Method 5 40% 97920 21 = (7× 3) 97.09 ± 2.12 97.43 ± 3.00 96.72 ± 2.04

Method 6 10% 24576 70 = (10× 7) 99.28 ± 1.25 99.64 ± 1.13 98.92 ± 1.75

Method 7 40% 97920 60 = (12× 5) 97.46 ± 1.94 98.17 ± 2.56 96.72 ± 2.69

Method 8 10% 24576 70 = (10× 7) 99.64 ± 0.76 99.64 ± 1.13 99.63 ± 1.17

according to the previous results using the Algorithms 1
and 2, the best relevance measure is the symmetrical
uncertainty, given its selectivity and effectiveness for
provided feature selection, and its stability in the accuracy.
In the scenario 2, for EEG signals, the behavior for

both relevance measures is quite similar. The relevance
measure based on the symmetrical uncertainty is the
most selective, which is reflected in a more sustained
accuracy rate (Figure 7D), compared with the fast dec-
lination of the performance shown in Figure 7C, where
the linear correlation relevance measure is considered.
Regarding to the 2D methods, the linear correlation and
the symmetrical uncertainty showed the highest values
of relevance for the lower frequency bands. Regarding
the linear decomposition methods, 1D-PLS and 2D-PLS
methods demonstrate, in general, the best performance,
exhibiting a difference with respect to PCA around 2 or
3 points of accuracy. However, PCA tends to stabilize the
performance of the classifier with a lower quantity of com-
ponents, both in the 1D and 2D versions. In any case,
the performance of the 1D-PLS and 2D-PLS methods
converges with a few amount of components and remains
stable.

For the scenario 2, using the 1D methodology (meth-
ods 1 to 4), the EEG data needed a small amount of
features to achieve high performance rates. Also, the num-
ber of temporal components of the 2D methodology is
very low, which means that the stochastic activity is eas-
ier to parameterize using the 2D approaches. On the other
hand, PCG signals need more components in both 1D
and 2D approaches, given that local events and specific
stochastic behaviors that these signals exhibit must be
modeled.
Additionally, as shown in Tables 3 and 4, it can be seen

that the proposed methodologies perform better (about
3–4 points, in terms of accuracy) than recent approaches
discussed in the literature [5,14]. These results were
expected due to the capabilities of both approaches to cap-
ture the most informative relevant points or bands over
the t–f planes, which additionally brings computational
stability to the dimensionality reduction process. The
Algorithm 2 with no relevance criterion (η = 100%) pro-
vide similar performance to the best approaches (methods
7 and 8), however the feature selection stage based on
relevance measures (linear correlation and symmetrical
uncertainty) allows to reduce the computational burden
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Table 4 Results for the EEG database (scenario 2)

Original size of the t–f representation: 512 × 500 = 256000. Number of neighbors: 3

Methodology ρmin nrel n = (nc × nr) Accuracy (%) Sensitivity (%) Specificity (%)

PCA with NA NA 15=(3 × 5) 94.00 ± 3.65 (ZO) 94.50 ± 4.38 95.67 ± 4.17

Tiling [5] (NF) 98.50 ± 2.42 95.67 ± 3.17

(S) 84.00 ± 10.75 99.00 ± 1.29

PLS with NA NA 15=(3 × 5) 93.60 ± 3.37 (ZO) 94.00 ± 4.59 95.67 ± 4.17

Tiling [5] (NF) 98.50 ± 2.42 95.33 ± 2.81

(S) 83.00 ± 10.59 98.75 ± 1.32

Vectorized NA NA NA 93.40 ± 4.12 (ZO) 97.00 ± 4.22 94.00 ± 2.63

PCA [14] (NF) 93.50 ± 4.12 97.00 ± 3.31

(S) 86.00 ± 16.47 98.50 ± 2.11

Vectorized NA NA NA 96.00 ± 2.98 (ZO) 100.00 ± 0.00 95.33 ± 3.58

PLS [14] (NF) 95.50 ± 4.97 98.00 ± 2.81

(S) 89.00 ± 11.01 100.00 ± 0.00

Algorithm 2 + NA NA NA 98.00 ± 1.88 (ZO) 100.00 ± 0.00 98.66 ± 2.33

2D–PCA (NF) 99.00 ± 2.10 98.00 ± 2.33

(no relevance) (S) 92.00 ± 7.88 100.00 ± 0.00

Algorithm 2 + NA NA NA 98.20 ± 1.13 (ZO) 100.00 ± 0.00 98.33 ± 2.35

2D–PLS (NF) 99.00 ± 2.10 98.66 ± 1.72

(no relevance) (S) 93.00 ± 4.83 100.00 ± 0.00

Method 1 50% 128000 20 94.40 ± 2.95 (ZO) 99.00 ± 2.11 94.00 ± 4.10

(NF) 91.50 ± 6.69 97.00 ± 4.29

(S) 91.00 ± 11.97 99.75 ± 0.79

Method 2 15% 38400 25 94.80 ± 3.29 (ZO) 95.00 ± 4.71 95.00 ± 4.23

(NF) 95.00 ± 3.33 97.33 ± 2.63

(S) 94.00 ± 8.43 99.25 ± 1.21

Method 3 15% 38400 9 97.80 ± 1.14 (ZO) 98.00 ± 2.58 99.33 ± 1.41

(NF) 98.00 ± 2.58 98.00 ± 1.72

(S) 97.00 ± 4.83 99.25 ± 1.21

Method 4 10% 25600 13 98.20 ± 1.99 (ZO) 98.50 ± 2.42 99.00 ± 2.25

(NF) 98.50 ± 3.37 98.00 ± 1.72

(S) 97.00 ± 4.83 100.00 ± 0.00

Method 5 50% 128000 425=(17 × 25) 98.80 ± 1.03 (ZO) 100.00 ± 0.00 99.00 ± 1.61

(NF) 99.00 ± 2.11 99.33 ± 1.49

(S) 96.00 ± 5.16 99.75 ± 0.79

Method 6 45% 115200 442=(17 × 26) 98.40 ± 1.26 (ZO) 100.00 ± 0.00 99.33 ± 1.41

(NF) 99.00 ± 2.11 98.33 ± 2.36

(S) 94.00 ± 6.99 99.75 ± 0.79

Method 7 45% 115200 42=(3 × 14) 98.60 ± 0.97 (ZO) 100.00 ± 0.00 99.00 ± 1.61

(NF) 98.00 ± 2.58 99.33 ± 1.41

(S) 97.00 ± 4.83 99.50 ± 1.05

Method 8 40% 102400 784=(28 × 28) 98.80 ± 1.03 (ZO) 100.00 ± 0.00 99.33 ± 1.41

(NF) 99.50 ± 1.58 98.67 ± 1.72

(S) 95.00 ± 5.27 100.00 ± 0.00

Best performance obtained for the methodologies studied using the EEG database (scenario 2).
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Table 5 Results for the five class problemwith the EEG
database (scenario 3)

Methodology Accuracy (%) Sensitivity (%) Specificity (%)

Tiling + PLS [5] 79.40 ± 7.00 Z 71.00 ± 16.33 93.00 ± 3.07

O 83.00 ± 11.60 94.75 ± 3.81

N 85.00 ± 13.54 92.25 ± 4.16

F 73.00 ± 14.94 95.00 ± 3.54

S 85.00 ± 8.50 99.25 ± 1.21

Method 4 91.00 ± 1.94 Z 93.00 ± 6.75 97.00 ± 2.58

O 94.00 ± 6.99 99.25 ± 1.21

N 94.00 ± 5.16 95.00 ± 2.64

F 77.00 ± 9.49 98.00 ± 2.30

S 97.00 ± 4.83 99.50 ± 1.05

Method 8 94.40 ± 3.75 Z 99.00 ± 3.16 98.25 ± 2.06

O 95.00 ± 7.07 99.50 ± 1.58

N 96.00 ± 5.16 97.00 ± 1.58

F 88.00 ± 10.33 98.50 ± 1.75

S 94.00 ± 6.99 99.75 ± 0.79

of the process, because the size of the matrices is further
reduced before the dimensionality reduction process.
Regarding the scenario 3, the results obtained with

methods 4 and 8 outperformed those using the algorithm
in [5] (up to 10 classification points). Nevertheless, the
band selection methodology described in Algorithm 2
(method 8) is more suitable to discriminate among the
different classes.
The values that gave the best accuracy rates for each

database and for each methodology (1D and 2D) are sum-
marized in Table 6 (methods 4 and 8). The percentage of
reduction is computed as the ratio of features removed
with the total number of features. This measure is com-
puted for the first stage of variable selection by relevance
analysis (% Reduc. 1) as well as for the second stage of
linear transformation by PCA or PLS (% Reduc. 2).
The feature selection stage allows an effective selec-

tion of the most relevant features. In accordance with the
results shown in Table 6 for the scenario 1, an accuracy

of 99.64% was obtained with only 10% of the features
extracted from the PCG signals; and for the EEG database,
accuracies of 98.80 and 94.40% were obtained for the
scenarios 2 and 3, respectively, by using 40% of the t–f
features.
On the other hand, the methodology of Algorithm 1

needed a lower quantity of components, which is reflected
in a lower feature space dimensionality; but Algorithm 2
allows larger matrices with almost the same performance.
In the case of the 1D methodology (methods 1 to 4), and
for data matrices of size (F ·T)×K , it is necessary to com-
pute transformation matrices of size (F · F) × n, while for
the 2Dmethodology (methods 5 to 8), two transformation
matrices of F × nr and T × nc are needed while working
with two data matrices of size T × (F ·K) and F × (T ·K).

Conclusions
This research proposes a new and promising approach
for feature selection over t–f based features that can
be applied to non-stationary biosignal classification. The
results obtained showed a high performance under differ-
ent scenarios and demonstrated that the accuracy is stable
for EEG and PCG signals, giving evidence of the general-
ization capabilities of the proposed methodology for dif-
ferent signals with diverse non-stationary behaviors. The
results open the possibility to extrapolate the methodol-
ogy to the study of other biosignals.
The method directly deals with highly redundant and

irrelevant data contained in the bi-dimensional t–f rep-
resentations, combining a first stage of irrelevant data
removal by variable selection using a relevance measure,
with a second stage of redundancy reduction by lin-
ear transformation methods. Under these premises, two
methodologies have been derived: the first one aimed
to find the most relevant t–f points; the second one
devised to select the frequency bands with a higher
relevance. Each methodology needs a particular linear
decomposition approach: in the first case, PCA and PLS
methods were used, whereas, in the second approach, a
to the matrix-data based generalization these methods
was used.

Table 6 Summary of best performance rates for each database

Methodology t–f nrel %Reduc. 1 n = (nc × nr) %Reduc. 2 Accuracy

representation

size

PCG - Method 4 245760, 36864 85% 21 94.30% 98.20 ± 1.99%

Scenario 1 Method 8 (512 × 480) 24576 90% 70 = (10 × 7) 71.52% 99.64 ± 0.66%

EEG - Method 4 256000, 25600 90% 13 99.99% 98.20 ± 1.99%

Scenario 2 Method 8 (512 × 500) 102400 60% 784 = (28 × 28) 70% 98.72 ± 1.23%

EEG - Method 4 256000, 25600 90% 13 99.99% 91.00 ± 1.94%

Scenario 3 Method 8 (512 × 500) 102400 60% 784 = (28 × 28) 70% 94.40 ± 3.75%
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Although this work uses the spectrograms, the pro-
posed approaches can be applied to other kind of
real-valued t–f representations, such as time-frequency
distributions, wavelet transforms, and matching pursuit,
among others.
The relevance analysis was evaluated using two super-

vised measures: linear correlation and symmetrical uncer-
tainty. Under the same premises, the application of these
measures demonstrated a significant improvement in
comparison with the case when no relevance measure
was used. Besides, the relevance measure based on the
symmetrical uncertainty provided a better performance,
allowing an effective selection of the most relevant vari-
ables, thus diminishing the computational burden of the
linear decomposition methods and of the classifier. In
addition, the relevance analysis serves itself as an interpre-
tation tool, giving information about those t–f patterns
closer related to abnormalities and pathological behavior.
On the other hand, it was found that the use of a super-

vised method (such as PLS) clearly improved the perfor-
mance of the classifier. Moreover, the performance of the
1D and 2D versions was found almost similar. Although
the 1D methodology needs a lower quantity of compo-
nents, which is reflected in a lower feature space dimen-
sionality, the 2D methodology allows to take into account
the dynamic information of each spectral component over
the t–f planes, which was reflected in more stable results.
As a future study, the introduction of the relevance

measure directly into the linear decomposition method
should be evaluated; so a relevance and a redundancy
analysis could be carried out in the same step, but prob-
ably at the expense of a larger computational burden
and memory requirements. Additionally, the use of other
linear or nonlinear decomposition techniques, such as
linear discriminant analysis or local linear embedding
should be evaluated. Moreover, the use of other rele-
vance measures such as mutual information might also
be considered, since it is an effective criterion for feature
selection algorithms.
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