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Abstract

technique.

In this study, a new method of blind audio source separation (BASS) of monaural musical harmonic notes is presented.
The input (mixed notes) signal is processed using a flexible analysis and synthesis algorithm (complex wavelet
additive synthesis, CWAS), which is based on the complex continuous wavelet transform. When the harmonics from
two or more sources overlap in a certain frequency band (or group of bands), a new technique based on amplitude
similarity criteria is used to obtain an approximation to the original partial information. The aim is to show that the
CWAS algorithm can be a powerful tool in BASS. Compared with other existing techniques, the main advantages of
the proposed algorithm are its accuracy in the instantaneous phase estimation, its synthesis capability and that the
only input information needed is the mixed signal itself. A set of synthetically mixed monaural isolated notes have
been analyzed using this method, in eight different experiments: the same instrument playing two notes within the
same octave and two harmonically related notes (5th and 12th intervals), two different musical instruments playing
5th and 12th intervals, two different instruments playing non-harmonic notes, major and minor chords played by the
same musical instrument, three different instruments playing non-harmonically related notes and finally the mixture
of a inharmonic instrument (piano) and one harmonic instrument. The results obtained show the strength of the

Introduction

Blind audio source separation (BASS) has been receiving
increasing attention in recent years. The BASS techniques
try to recover source signals from a mixture, when the
mixing process is unknown. Blind means that very lit-
tle information is needed to carry out the separation,
although it is in fact absolutely necessary to make assump-
tions about the statistical nature of the sources or the
mixing process itself.

In the most general case, see Figure 1, separation will
deal with N sources and M mixtures (microphones). The
number of mixtures defines each particular case, and for
each situation the literature provides several methods of
separation. Probably due to the absence of interesting
problems in the over-determined case, which has prop-
erly been solved, the most extensively studied case is
undetermined separation, where N > M (N > M does
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not always imply poorer results). For example, in stereo
separation (through the DUET algorithm [1] and other
time-frequency masking evolutions [2-4]), the delay and
attenuation between the left and right channel informa-
tion can be used to discriminate the sources present and
some kind of scene situation [5].

In other applications, when a monaural solution is
needed (i.e., when M = 1), the mathematical indetermi-
nation of the mixture significantly increases the difficulties
of the task. Hence, monaural separation is probably the
most difficult challenge for BASS, but even in this case,
the human auditory system itself can somehow segregate
the acoustic signal into separate streams [6]. Several tech-
niques for solving the BASS problem in general (and the
monaural separation in particular) have been developed.

Psychoacoustic studies, such as computational auditory
scene analysis [7,8], inspired by auditory scene analysis [6],
attempts to explain the mentioned capability of the human
auditory system in selective attention. Psychoacoustic also
suggests that temporal and spectral coherence between
sources can be used to discriminate between them [9].

© 2012 Ponce de Ledn and Beltran; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 The general BASS task, with N mixed sources and M sensors.

Within the statistical techniques, independent component
analysis (ICA) [10,11] assumes statistical independence
among sources, while independent subspace analysis [12]
extends ICA to single-channel source separation. Sparse
decomposition [13] assumes that a source is a weighted
sum of bases from an overcomplete set, considering that
most of these bases are inactive most of the time [14],
that is, their relative weights are presumed to be mostly
zero. Non-negative matrix factorization [15,16] attempts
to find a mixing matrix (with sparse weights [17,18]) and
a source matrix with non-negative elements so that the
reconstruction error is minimized.

Finally, sinusoidal modeling techniques assume that
every sound is a linear combination of sinusoids (partials)
with time-varying frequencies, amplitudes, and phases.
Therefore, sound separation requires a reliable estima-
tion of these parameters for each source present in the
mixture [19-21], or some a priori knowledge, i.e., rough
pitch estimates of each source [22,23]. One of the most
important applications is monaural speech enhancement
and separation [24]. These are generally based on some
analysis of speech or interference and subsequent speech
amplification or noise reduction. Most authors have used
STFT to analyze the mixed signal in order to obtain its
main sinusoidal components or partials. Auditory-based
representations [25] can also be used.

One of the most important and difficult problems to
solve in the separation of pitched musical sounds is
overlapping harmonics, that is, when frequencies of two
harmonics are approximately the same. The problem of
overlapping harmonics has been studied during the past
decades [26], but it is only in recent years that there
has been a significant increase in research on this topic.
Given that the information in overlapped regions is unre-
liable, several recent systems have attempted to utilize
the information from neighboring non-overlapped har-
monics. Some systems assume that the spectral envelope
of the instrument sounds is smooth [27-29]; hence, the

amplitude of an overlapped harmonic can be estimated
from the amplitudes of non-overlapped harmonics from
the same source, via weighted sum [20], or interpolation
[21,27]. The spectral smoothness approximation is often
violated in real instrument recordings. A different approx-
imation is known as the common amplitude modulation
(CAM) [22], which assumes that the amplitude envelopes
of different harmonics from the same source tend to be
similar. The authors of [30] propose an alternate tech-
nique for harmonic envelope estimation, called harmonic
temporal envelope similarity (HTES). They use the infor-
mation from the non-overlapped harmonics of notes of
a given instrument, wherever they occur in a recording,
to create a model of the instrument which can be used
to reconstruct the harmonic envelopes for overlapped
harmonics, allowing separation of completely overlapped
notes. Another option is the average harmonic structure
(AHS) model [31] which, given the number of sources,
creates a harmonic structure model for each present
source, using these models to separate notes showing
overlapping harmonics.

In this study, we use an experimentally less restrictive
version of the CAM assumption within a sinusoidal model
generated using a complex band pass filtering of the signal.
Non-overlapping harmonics are obtained using a binary
masking approach obtained from the complex wavelet
additive synthesis (CWAS) algorithm [32], which is based
on the complex continuous wavelet transform (CCWT).
The main advantage of the proposed technique is the
capability of synthesis of the CWAS algorithm. Using the
CWAS wavelet coefficients, it is possible to synthesize
an output signal which differs negligibly (numerically and
acoustically) from the original input signal. Hence, the
non-overlapped partials can be obtained with accuracy.
The separated amplitudes of overlapping harmonics are
reconstructed proportionally from the non-overlapping
harmonics, following energy criteria in a least-squares
framework. This way, it is possible to relax the phase



Ponce de Ledn and Beltrdn EURASIP Journal on Advances in Signal Processing 2012, 2012:223

http://asp.eurasipjournals.com/content/2012/1/223

restrictions, and the instantaneous phase for each over-
lapping source can also be constructed from the phase
of non-overlapping partials. At its current stage, the pro-
posed technique can be used to separate two or more
musical instruments, each one playing a single note.

The rest of the article is divided as follows. “Complex
bandpass filtering” section provides a brief introduction
to the CCWT and the CWAS algorithms, including the
interpretation of their results and the additive synthe-
sis process. The proposed separation algorithm and its
main blocks (as the fundamental frequency estimation)
will be presented in “Separation algorithm ” section, with
a detailed example. The numerical results of the differ-
ent experiments and tests are shown in “Experimental
results” section. Finally, the main conclusions and current
and future lines of work are presented in “Conclusions”
section.

Complex bandpass filtering

The CCWT

The CCWT can be defined in several ways [33]. For a
certain input signal x(¢), it can be written as

+00

Wa(a, b) = / X(O)W) , (D)dt (1)

—00
where * is the complex conjugate and ¥, ;,(¢) is the mother
wavelet, frequency scaled by a factor a and temporally
shifted by a factor b:

—b
W, p(t) = %\v (t : ) 2)

In our case, we will choose a complex analyzing wavelet,
(specifically the Morlet wavelet). The Morlet wavelet is a
complex exponential modulated by a Gaussian of width
24/2/0, centered in the frequency wo/a. Its Fourier trans-
form is

2 (awfwo)z

Valw)=Ce 7 (3)

where C is a normalization constant which can be cal-
culated independently of the input signal in order to
conserve the energy of the transform [34].

A general audio signal (and in particular a monocompo-
nent signal) can be modeled as

x(t) = A() cos[ ¢ (D)] (4)

From the module and the argument of the complex
wavelet coefficients of Equation (1) [32] it is possible to
obtain a complex function, which can be written as

p(t) ~ A@)d*®) (5)

This result can locally be applied to every detected par-
tial of the analyzed signal, providing a model of the audio

Page3of 16

signal close to its canonical pair. The output (synthetic)
signal is the real part of p(¢) (the real part of the additive
synthesis of the detected partials in the general case). This
synthetic signal remains very close to the original input
signal x(¢) in numerical and acoustical terms [32].

The CWAS algorithm

In the CWAS algorithm [32], a complex mother wavelet
allows us to analyze the complex coefficients of Equation
(1), stored in a matrix (the CWT matrix), in module
and phase, obtaining directly the instantaneous amplitude
and the instantaneous phase of each detected component
[34,35]. A single parameter, the number of divisions per
octave D (a vector with as many dimensions as octaves
present in the signal’s spectrum), controls the frequency
resolution of the analysis.

Figure 2 (bottom left) depicts the module of the complex
wavelet coefficients (also called the wavelet spectrogram)
of the mixture of a tenor trombone playing a C5 note and a
trumpet playing a D5 vibrato. In the figure, the dark zones
are associated with the main trajectories of information
(each one related with a partial).

The addition in the time axis of the module of the
wavelet coefficients represents the scalogram of the sig-
nal. The scalogram presents a certain number of peaks,
each one related to a detected component of the signal.
We found that the quality of the resynthesis significantly
improves by extending the definition of partial not exclu-
sively to the scalogram peaks, but to their regions of
influence. So, in our model, a partial contains all the infor-
mation situated between an upper and a lower frequency
limits (the region of influence of a certain peak). These
regions of influence can be seen in Figure 3, which shows
the scalogram of a guitar playing an E4 note (330 Hz). Each
maximum of the scalogram is marked with a black point.
The associated upper and lower frequency limits for each
partial are marked with red stars. They are located at the
minimum point between adjacent maxima.

For a certain peak i of the scalogram, its complex par-
tial function P; can be defined as the summation of the
complex wavelet coefficients obtained through Equation
(1) between its related frequency limits [32]. Hence, we
can write

miup

Py= DY Wiam,t) Vi=1,...,n (6)

M=,

where Wy(a,,;,t) are the wavelet coefficients Wy(a,, t),
related with the ith peak (partial).

Studying the complex-valued function P;(¢) in module
and phase, we can obtain the instantaneous amplitude
A;(¢) and the instantaneous phase ®;(¢) of each detected
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Figure 2 Left: The wavelet spectrogram, that is, the module of the CCWT coefficients (module of the CWT matrix). The dark zones are the
different detected partials. Right: Scalogram. The analyzed signal is the mixture of a tenor trombone playing a C5 note and a trumpet playing a D5

vibrato.

partial. The instantaneous frequency of the partial can be
written [36] as

1 d[®;(1)]
- = L] 7
fum® = 55 @)

The global contribution of P;(¢) to the scalogram of x(¢)
can be approximated by

li
Ei=Y_ |IPitw) (8)

m=1

where ¢, is the mth sample of the temporal duration of
the partial i (whose length is [;, in samples). Obviously, E;
is a measure of the energy of the partial.

As Equation (5) is true for every detected partial of the
signal, the original signal x(¢) can be obtained through a
simple additive synthesis method, performing the sum-
mation of the 7 detected partials, as was advanced in the
previous section

x(t) =0 (Z Pi(t)) =Y A®cos[ 2;(0].  (9)
i=1 i=1

The objective of this study is to be able to use this infor-
mation to somehow separate a signal composed of two or
more mixed notes into the original isolated sources. The
only input of the system is the mixed signal (no additional
data is needed).

Scalogram. Signal: Guitar E4.
Assignation of partial bands
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Figure 3 Scalogram of a guitar playing an E4. Each peak (black points) is related to a detected partial. Each partial has an upper and lower
frequency (band) limit (red stars), located at the minimum point between two adjacent maxima.
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BASS
The monaural mixed signal x(¢) can be written as

N
x(t) =) si(t)

k=1

(10)

As stated above, BASS attempts to obtain the original
isolated sources si(¢) present in a certain signal x(¢), when
the mixture process is unknown.

As we do not know a priori the number N of sources
present in x(¢), the first problem is to divide the detected
partials into as many different families or categories as
sources, having a minimum error between members of a
class [19]. A first approximation to the BASS task using the
CWAS technique was performed and presented in [37].
There, we used an onset detection algorithm [38] to find a
rough division of the partials, grouping them into the dif-
ferent sources. The main advantage of using the CWAS
algorithm instead of the STFT is its proven ability of high-
quality resynthesis. As explained, the time and frequency
errors in the synthesis of signals using the CWAS algo-
rithm is remarkably small, and the acoustical differences
between the original and synthetic signals are negligible
for most of people [32]. This high fidelity synthesis con-
verts the CWAS algorithm in a very useful tool for source
separation.

In the general case, when there are two or more audio
sources present in the analyzed signal, a certain partial can
be part of one of the sources, it can be shared by two or
more sources, or it can be part of none of them (i.e., inhar-
monic or noisy partials). The algorithm will search for any
fundamental frequency present in the mixed signal, and
each fy will be considered as an indicator of the presence
of a source (see “Multiple f estimation” section). A har-
monic analysis will find the set of partials which belongs to
each source, and the set of overlapping partials (and which
sources are overlapping for each case). Then, the informa-
tion of the isolated partials will be used to reconstruct an
estimation of the contribution from each source to every
overlapping partial, and the separated sources will be gen-
erated by additive synthesis (see “The separation process”
section). This idea was used in [22], but in this study the
only input information is the mixed signal (we do not need
the estimated pitch, because the fj estimator gives us this
information). The quality of the separation (see “Quality
separation measurement” section) will be measured using
the standards proposed in [39].

Separation algorithm

In this section, we will detail the proposed separation
technique, and in particular its two main blocks: the esti-
mation of the fundamental frequencies present in the
mixed signal, and the separation process. A detailed exam-
ple will be developed in parallel, in order to clarify the
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specified separation process. In this example, we will use
a signal chosen arbitrarily from the set of analyzed sig-
nals (see “Experimental results ” Section). In this case, the
separation of a mixture composed of a trumpet playing a
D5 (587 Hz) vibrato and a tenor trombone playing a C5
(523 Hz) note. For this signal, Equation (10) becomes

x(t) = 51(2) +52(0) (11)

The waveform, module of the CWT matrix, and scalo-
gram of this signal can be seen in Figure 2. The numerical
quality separation measurement of this signal can be seen
in the following section. In the example, we will concen-
trate on a single overlapping partial. The isolated original
partials will also be used to test the robustness of the
method.

The main steps of the separation algorithm are summa-
rized below.

From x(¢) — P;(¢) — A;(¢), ®;(t) (CWAS).
From ®;(¢), through Equation (7) — fi(¢).
Estimation of fyr and their harmonic partials Vk.
Separation of overlapping partials.

Additive synthesis — s ().

It is important to remark that, at its actual stage, the sep-
aration process is performed using the information of the
whole signal.

Multiple fy estimation

In this study, we have considered that a musical instru-
ment cannot play more than one note simultaneously
(i.e., we work mainly with monophonic instruments). If
an instrument plays two or more notes simultaneously
(polyphony), the developed algorithm will consider that
each note comes from a different source. With such an
approximation, the present fundamental frequencies fy;,
j = 1,...,N become the natural parameter which will
be used to calculate the number of sources present in the
mixture, and the reliability in the fy estimator acquires
capital importance.

An algorithm of multipitch analysis based on the work
of Klapuri [28,29], specially adapted for the CWAS algo-
rithm, which uses the spectral smoothing technique of
Pérez-Sancho et al. [40] has been developed. Figure 4
shows a block diagram of this algorithm.

The input (mixed) signal is analyzed using the CWAS
algorithm, which provides as results the # complex func-
tions that define the temporal evolution of each detected
partial. Using Equations (7) and (8), the instantaneous
frequencies for each partial (and their respective aver-
age values,f,’ Vj = 1,...,n) and the energy distribution
of the signal are obtained. This information is equiva-
lent to the scalogram of the signal clustered around the
set of detected partials. Only the partials with energy
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Figure 4 Block diagram of the fundamental frequencies estimation algorithm. M/P is the most important (energetic) partial. The output SHP#i
is the set of the harmonic partials corresponding to each detected source (i = 1,..., N). See text for details.

greater than the threshold Ey, = 1% will be considered
in the search of the harmonic sets associated with each
source. From the remaining energy distribution, the most
energetic partial (MIP in Figure 4) is selected, and the
harmonic analysis is computed next.

Starting from the average frequency of the most impor-
tant partial f;, it is assumed that this partial is harmonic of
a certain fundamental frequency fyg, that is

NN

for = Vk=1,2,...,Na (12)

j
=

In this study, we have taken Ny = 10. In other words,
the MIP will be at most the 10th harmonic of its related
fundamental frequency. From the fundamental frequen-
cies so obtained, the set of harmonic frequencies regard-
ing each one is calculated.

fiom = mfok,  ¥m=1,2,..., N (13)

where N is the higher natural such that satisfies Nifox <
fs/2, being f; the sampling rate.

In the next step, for each fi,,, its related partial is
searched. A partial of mean frequency f; is the mth har-
monic of a certain fundamental frequency fy if

Jifim
fok  fok

where 0, is the inharmonicity threshold. Taking 6, = 0.03,
the partials of an inharmonic instrument like the piano are
correctly analyzed.

The decision on which is the fundamental frequency
associated with the current MIP is taken through a weight
function wy calculated for each of the candidates. This
weigh function is proportional to the energy contribution
of its set of partials:

< s (14)

2 Nk

n.
K
W = —= ZEi,k

n
@k i1

(15)

where n, is the total number of harmonics associated
with for and 7, is the number of partials with energy

above the threshold Ey,. E;« is the energy of the ith partial
associated with fy.

The fundamental frequency related to the current MIP
is the one whose weight wy is maximum. The algo-
rithm stores the set of harmonic partials or spectral
pattern, Py = (P14, Pok, ... Py, k}, which includes the
obtained fundamental frequency, and proceeds to apply
the spectral smoothing [40] to its energy distribution
Ex = {Evi Exior- - - Eng i}

Ek =Gy *xE; (16)
where G,, = {0.212,0.576,0.212} is a truncated normal-
ized Gaussian window with three components and « is the
convolution product operator. The smoothed energy for
each harmonic partial is calculated as

Eix —Eix ifEjx —Eif >0
T )
’ 0 ifEjx —Eix <0

Substituting these new energy values into its corre-
sponding partials of the original energy distribution, a new
MIP can be obtained. The process is iterated until the
energy of the distribution descends under a threshold or
the maximum number of sources (MNS in Figure 4) has
been reached. In this study, we have limited the number
of sources to MNS =5. Using this technique, it is pos-
sible to obtain the fundamental frequencies even in the
most difficult cases, for example when a fundamental fre-
quency is overlapped with a harmonic corresponding to
other source or in the case of suppressed fundamentals.
Overlapping fundamentals will not be detected using this
technique.

This algorithm has been tested using a set of more
than 200 signals, most of them extracted from the musi-
cal instrument samples of the University of lowa [41].2
Experimental results are shown in Table 1. In this table,
the accuracy of the multipitch analysis is shown in four
categories: Isolated instruments, synthetically generated
mixtures of two and three harmonic instruments and mix-
tures of one harmonic and one inharmonic instrument.
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Table 1 Accuracy results of the fundamental frequency
estimation algorithm

Analyzed Succes. Estim.
signals (#) det. (#) error (%)
1 instr. 106 106 0
2 instr. 75 74 134
TH+1linstr. 4 4 0
3instr. 50 49 2
Total 235 233 0.85

Errors can be due to missed detections, wrong estima-
tions, or false fundamentals.

In the signal of the example (Figure 2), the exact results
given by the fundamental frequency estimator are fy; =
589.25 Hz for the trumpet and fyo = 525.96 Hz for the
trombone. The instantaneous amplitude from these par-
tials is shown in Figure 5. The continuous line comes from
the fundamental partial of the trumpet and the dashed
line from the tenor trombone fundamental. The set of
harmonic partials from each instrument will be shown
later.

The separation process

Once the fundamental frequencies present in the mixed
signal (and the number of sources N) have been obtained,
the separation process begins. A detailed block diagram of
the process is shown in Figure 6.

Analyzing the sets of harmonic partials for each source,
it is easy to distinguish between isolated harmonics (that
is, partials which only belong to a single source) and
overlapping harmonics (partials shared by two or more
sources). The isolated harmonics and the fundamen-
tal partial of each source will be used later to separate
the overlapping partials, through their onset and offset
times, instantaneous envelopes, and phases. The sepa-
rated source is eventually synthesized by the additive syn-
thesis of its related set of partials (isolated and separated).
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The inharmonic limit

Inharmonicity is a phenomenon occurring mainly in string
instruments due to the stiffness of the string and non-rigid
terminations. As a result, every partial has a frequency
that is higher than the corresponding harmonic value. For
example, the inharmonicity equation for a piano can be
written [42] as

= nfov/ 1+ Bn?

where # is the harmonic number and 8 is the inharmonic-
ity parameter. In Equation (18), 8 is assumed constant,
although it can be modeled more accurately by a polyno-
mial up to order 7 [43]. It means that the parameter 8
has different values depending on the partials used to cal-
culate it. Partials situated in the 6-7 octave provide the
optimal result. Using two partials of order m (lower) and
n (higher), it is

§—e¢
ﬁ_8n2—8m2

(18)

(19)

where 8§ = (mf,,/nf,,)? and ¢ is an induced error due to the
physical structure of the piano which cannot be evaluated
[42]. If partials m and # are correctly selected, ¢ ~ 1.
With the inharmonic model of Equation (19), it is pos-
sible to calculate the inharmonicity parameter g for each
detected source, using (when possible) two isolated par-
tials situated in the appropriate octaves. A priori, this
technique includes inharmonic instruments (like piano)
in the proposed model. Unfortunately, the obtention of
the parameter B8 do not improve significantly the quality
separation measurements evaluated in the tests.

Assumptions

In order to obtain the envelopes and phases of an over-
lapping partial related to each source, we will assume two
approximations. The first one is a slightly less restric-
tive version of the CAM principle, which asserts that
the amplitude envelopes of spectral components from the
same source are correlated [22].

Fundamental partials. Envelopes.
Signal: Trumpet D5 + Tenor Trombone C5

Amplitude
o
[

o
o
=

T

Time (s)

Figure 5 Envelopes of the fundamental partials. Continuous line, trumpet fundamental. Dashed line, tenor trombone fundamental.

25 3 35 - 45
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e The amplitudes (envelopes) of two harmonics P; and
P,, with similar energy E1 = E,, both belonging to
the same source, have a high correlation coefficient.

As long as this approximation is true, we will have better
separation results. As we are using the global signal infor-
mation, the correlation coefficient between the strongest
harmonic (and/or the fundamental partial) and the other
harmonics decreases as the amplitude/energy differences
between the involved partials increase [22]. Hence, the
choice for the reconstruction of non-overlapping harmon-
ics whose presence is energetically similar to the energy
of the overlapping harmonic suggests that the correlation
factor between the involved partials will be higher. In fact,
as the correlation between high-energy partials tends also
to be high, while the errors related with this assumption
in lower energy partials tend to be energetically negligi-
ble, in most cases the quality measurement parameters
have a high value, and the acoustic differences between the
original and the separated source are acceptable.

The second approximation is

e The instantaneous phases of the pth and the gth
harmonic partials belonging to the same source are
approximately proportional with ratio p/q, except an
initial phase gap, ¢o. That is

$a(t) ~ §¢1<t> + Ao (20)

where A¢y = 0 means that the initial phases of the
involved partials are equal, that is, ¢op, = ¢o4.

We have found that in our model of the audio signal and
even knowing the envelopes of the original overlapping
harmonics, a difference in the initial phase Agy = 1073
is enough to make impossible an adequate reconstruction
of the mixed partial. Each partial has an aleatory initial
phase (i.e., there is not a relation between ¢g, and ¢q,).
However, as the instantaneous frequency of the mixed
harmonics can be retrieved with accuracy independently
of the value of the initial phase, the original and the syn-
thetically mixed partials (using the separated contribution
from each source) present similar sounds (provided that
the first assumption is true).

Reconstruction process and additive synthesis

As mentioned above, in the proposed technique we use
the information of the isolated partials to reconstruct the
information of the overlapping partials. The output of the
multipitch estimation algorithm is the harmonic set cor-
responding to each source present in the mixture. With
this information, it is easy to distinguish between the iso-
lated partials (partials belonging to a single given source)
and the shared partials. For each overlapping partial, it is
immediate to know the interfering sources. We can write

P =P | e

In the example of the tenor trombone and the trum-
pet mixture, Figure 2, the instantaneous amplitudes of the
isolated partials are shown in Figure 7. The instantaneous
amplitudes of the fundamental partials are depicted in
bold lines.

Using the information of the isolated partials and
through an onset detection algorithm [38], it is easy to
detect the beginning and the end of each present note.
This information is necessary to avoid the artifacts and/or
noise caused by the mixture process which tends to appear
before and after active notes. This noise is acoustically
annoying and makes worse the numerical quality separa-
tion measurement results.

Consider a certain mixed partial P, of mean frequency
fm- The mixed partial can be written as follows

Py(t) = A9 =3 " Py, ()
Sk

— ZASk (t)ei[qbsk(t)]

Sk

(21)

(22)

where P, (t) are the original harmonics which overlap in
the mixed partial. In Equation (22), the only accessible
information is the instantaneous amplitude and phase of
the mixed partial, that is, A,,(¢) and ¢, (¢). The aim is to
recover each Ay, (¢) and ¢, (£) as accurately as possible.
To do this, it is necessary to select a partial belong-
ing to each overlapping source si in order to separate the
different contributions to P,,. From each isolated set of
partials PikSO corresponding to the interfering sources, we
will search for a partial j with an energy E; as similar to
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Isolated harmonics. Envelopes. Signal: Trumpet D5 + Tenor Trombone C5
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Figure 7 Envelopes of the isolated set of harmonics from each source (dotted lines). The fundamental envelopes are marked with bold lines.
Continuous trace, trumpet; dashed line, tenor trombone.

the energy of Py, as possible, and with a mean frequency
J; as close to f;;, as possible. If A(E;,;,) = |Ej — Eju| and
Afim) = [E — ful, these conditions can be written as

Py win = argmin(AE; ;)| pep= (23)

and

Pk,win = argmin(Afj,mﬂpjepgso) (24)

The energy condition, Equation (23), is calculated in the
first place. Only in doubtful cases, the frequency condition
of Equation (24) is evaluated. However, both conditions
often lead to the same winner. For the purposes of simplic-
ity, let P,k denote the selected (winner) isolated partials of
each source k. This can be written

Pui(t) = Ay ()9O vk (25)

If f,x is the mean frequency of the winner partial of the
k source, it is easy to see that

Jwk _ Pk

S qk
for some pi, qx in IN.
In fact, the same ratio p/qr can be used to recon-
struct the corresponding instantaneous frequency for
each interfering source with high accuracy. In Figure 8, the
instantaneous frequencies of the original (interfering) par-
tials and the estimated instantaneous frequency of each
separated contribution are shown, for a certain case of

(26)

overlapping partial. In this figure, the original instanta-
neous frequencies are depicted in blue, and the recon-
structed instantaneous frequencies in red. Note the accu-
racy in the estimation of each instantaneous frequency.
The blue line corresponding to the tenor trombone is
shorter due to the signal duration.

Hence, it is possible to use Equation (20) to recon-
struct the phases ¢, of the separated partials for each
overlapping source.

Unlike other works [22,23], to reconstruct the envelope
of the partials separated it is assumed that the instanta-
neous amplitude of the mixed partial A,,(¢) is directly a
linear combination of the amplitudes of the interacting
components A,x(t) (hence, unlike other existing tech-
niques [22,23], the phases of the winner partials are not
taken into account in this process). Therefore,

Ap(t) =Y axAui(t) Yt (27)
Sk

The solution of Equation (27) that minimizes the error
in the sum is equivalent to the least-squares solution in the
presence of known covariance of the system.

Axa=>b (28)
where A is a matrix which contains the envelopes of each

selected (winner) partial described by Equations (23) and
(24), a is the mixture vector and b = A, (¢).
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Separation results. Instantaneous frequency.
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Figure 8 Comparison between the original (isolated) instantaneous frequencies and the estimated (separated) instantaneous
frequencies. (a) Results for the trumpet source (continuous blue line, the original fins; red dotted line, the estimated one). (b) Results for the tenor

trombone source.

Once found oy, pi, and gi for each source k, the over-
lapping partial can be written as

Pa®) = " A a5

Sk

(29)

and the separated contributions of each present source are
of course

[%pui0)]

Py (t) = ax Ay ()¢ (30)

Once each separated partial is obtained using the
technique described, it is added to its corresponding
source. This iterative process eventually results in the
separated sources.

Figures 9 and 10 show the wavelet spectrograms and
scalograms (obtained from the CWAS algorithm) cor-
responding to the isolated signals (tenor trombone and
trumpet, respectively) and their related separated sources.
From the spectrograms (module of the CWT matrix), it
can be observed that most of the harmonic information
has properly been recovered. This conclusion is reinforced
using the scalogram information. Note that the harmonic
reconstruction produces an artificial scalogram (red line)
harmonically coincident with the original scalogram
(blue line).

In the figures, the separated wavelet spectrogram shows
that only the harmonic partials have been recovered.

(a) Module of the CWT matrix: Tenor trombone C5 (b) Scalograms (C) Module of the CWT matrix 32 Separated Tenor trombone C5
s : 12203 .
000
4000 ¢
-~ — 2000} =
td 2 | C 2
7| = z - z
§ H & H
| : f{
'.2\ Ong w9 [
[] Sep. vource
° 02 o4 08 (1] 1 12 14 18 18 4020 0 20 40 € ° 02 o4 os o8 1 12 14 18 18
Tiene (s) Energy (0B) Tine (3)
Figure 9 Spectrograms of the tenor trombone signals. (a) Wavelet spectrogram of the original (isolated) tenor trombone. (b) Blue line: Original
scalogram. Red line: Scalogram of the separated source. (¢) Wavelet spectrogram of the separated source.
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Figure 10 Spectrograms of the trumpet signals. (a) Wavelet spectrogram of the original (isolated) trumpet. (b) Blue line: Original scalogram. Red
line: Scalogram of the separated source. (€) Wavelet spectrogram of the separated source.
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When the inharmonic partials carry important (non
noisy) information, the synthetic signal can sound some-
what different (as happened with the possible envelope
errors in the high-frequency partials).

The values of the standard quality measurement param-
eters for this example and the rest of the analyzed sig-
nals will be detailed in “Summarizing: graphical results”
section.

Main characteristics, advantages, and limitations

The reconstruction of overlapping partials causes that
there is no information wrongly assigned to the separated
sources using this technique, except the existing interfer-
ence in the set of isolated partials. This means that the
interference terms in the separation process will be in gen-
eral negligible. This result will be numerically confirmed
in “Experimental results ” section.

The advantages of this separation process are mainly
two. First, the process of separation of overlapping har-
monics (multi-pitch estimation, calculus of the best linear
combination for reconstruction, additive synthesis) is not
computationally expensive. In fact, the obtention of the
wavelet coefficients and their separation into partials uses
much more computation time. The second advantage of
this process is that the separation is completely blind. That
is, we do not need any a priori characteristic of the input
signal, neither the pitch contour of the original sources
nor the relative energy, number of present sources, etc.

One of the most important limitations of this method
is that is not valid for separating completely overlap-
ping notes. Although the detailed algorithm of estimation
of fundamental frequencies is capable of detecting over-
lapping fundamentals, in such a case the set of isolated
partials of the overlapped source would be essentially
empty, and therefore no isolated information would be
available to carry out the reconstruction of phases and
amplitudes of the corresponding source. To solve this
problem (assuming the separation of musical themes of
longer duration), it is possible to use models of the instru-
ments present in the mixture, or previously separated

notes from the same source. These ideas are the basis of
HTES and AHS techniques (see “Introduction” section).

On the other hand, as was advanced in “Introduction”
section, at its current stage, the proposed technique can be
used to separate two or more musical instruments, each
one playing a single note. The final quality of the sep-
aration depends of the number of mixed sources. This
is due to the accuracy of the estimation of fundamental
frequencies, and to the use of isolated partials to recon-
struct the overlapping harmonics. The higher the number
of sources, the lower the number of isolated harmonics
and the poorer the final musical timbre of the separated
sources.

Experimental results

The analyzed set of signals includes approximately 100 sig-
nals with two sources and 60 signals with three sources.
All the analyzed signals are real recordings of musical
instruments, most of them extracted from [41]. The final
set of musical instruments includes flute, clarinet, sax,
trombone, trumpet, oboe, bassoon, horn, tuba, violin,
viola, guitar, and piano.

All the analyzed signals have been sub-sampled to
f 22050 Hz, then synthetically mixed. The num-
ber of divisions per octave D and all the thresholds
used in the CWAS and the separation algorithms are
the same for all the analyzed signals. Specifically, D =
{16; 32; 64; 128; 128; 100; 100; 100; 100}, 6=0.03, Exn=1%.
Observe that the number of divisions per octave depends
on the octave, so we have a variable resolution.

We have developed eight experiments with two and
three synthetically mixed sources. In each experiment, we
have analyzed 20 signals. These experiments are listed
in Table 2. In the next paragraphs, we will explain these
experiments. Graphical and numerical results are given in
“Summarizing: graphical results” section.

Experiment 1: harmonic and inharmonic instruments
In the first experiment, we have mixed a inharmonic
instrument (piano) with one harmonic instrument.
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Table 2 List of BASS experiments developed

Experiment Sources Instruments Experiment

(#) (#) involved characteristics

1 2 Different 1 Harm.+1 Inharm.
2 2 Same Same octave

3 2 Same 5th & 12th intervals
4 2 Different 5th & 12th intervals
5 2 Different Inharmonic notes
6 3 Same Major chord

7 3 Same Minor chord

8 3 Different Inharmonic notes

Numerical data are presented in the first column of
Figures 11, 12, and 13. The numerical separation results
are not as good as results of Experiment 5, which is oth-
erwise similar to this one (acoustically the situation is
better). It is probably due to the uncertainty in the obten-
tion of the inharmonicity parameter, 8 [43] (see “The
inharmonic limit” section).

Experiment 2: single instrument, same octave

In the second test, two musical instruments (Alto Sax and
Flute, respectively) were taken randomly from the origi-
nal database. We have generated a total of 11 signals with
each instrument, with two notes of the fourth octave (con-
sidering A4 = 440Hz) played by the same instrument.
One of the notes is always a C#4 (277 Hz), the other note
corresponds to the same octave (C4, D4, D#4, etc.). The
experimental values of SDR, SIR, and SAR are presented
in the second column of Figures 11, 12, and 13.

Experiment 3: single instrument, harmonic-related notes

In the third experiment, we mixed two harmonic note
intervals from the same instrument. The used harmonic
relationsare: C — G, D —A,E—B,F—-C,G—D,A —E,
and A# — F from the same or different octave. That is, 5th
and 12th intervals. We have generated three sets of sig-
nals, each one corresponding to one musical instrument
(concretely, Alto Sax, Flute and Bb Clarinet), and seven
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mixtures from each one. Numerical results of this exper-
iment are shown in the third column of Figures 11, 12,
and 13.

Experiment 4: two instruments, harmonic-related notes

In the next experiment, we have mixed in 20 signals
the same harmonic intervals of the previous experiment,
this time executed by different musical instruments: Alto
sax, guitar, bassoon, Bb and Ee clarinets, horn, oboe,
and flute. The experimental values of the quality separa-
tion measurement are presented in the fourth column of
Figures 11, 12, and 13.

Experiment 5: two instruments, inharmonic notes

In this experiment, each analyzed signal contains the mix-
ture of two aleatory chosen musical instruments playing
aleatory (non-harmonically related) notes. The experi-
mental values of the quality separation parameters are
presented in the fifth column of Figures 11, 12, and 13.

Experiment 6: one instrument, major chord

A major chord is the mixture of three notes, concretely
C — E — G. We have generated 20 of these chords, played
by the same musical instrument, concretely Bassoon, Alto
Sax, Bb Clarinet, Flute and Trumpet. Numerical data are
presented in the sixth column of Figures 11, 12, and 13.

Experiment 7: one instrument, minor chord

A minor chord is the mixture of A — C — E notes. We
have analyzed 20 signals, each one played by a single musi-
cal instrument: Bassoon, Bb Clarinet, Horn, Oboe, and
Trumpet. The SDR, SIR, and SAR values for this experi-
ment are depicted in the seventh column of Figures 11, 12,
and 13.

Experiment 8: three instruments, inharmonic notes

Finally, 20 signals with three aleatory instruments play-
ing aleatory (non-harmonically related) notes have been
analyzed. These signals are randomly distributed from
octaves 2 to 6, and 10 of the signals present widely
separated notes. The experimental values of the quality

Quality seperation measurement. Experimental results: SDR
35 T T r
30 v v
25+ =
P A4
2o W "
g 15} T —— Y ----------- : v b 4 "
- Jaes] IR S - S (S S 2=y, A SRS i
10 a A s} - B A
A A
L i A
ST £ £#3 Es4 E85 E#6 87 E#s
Experiments
Figure 11 Experimental results of the SDR parameter for the eight separation experiments.
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Figure 12 Experimental results of the SIR parameter for the eight separation experiments.

separation measurement parameters are presented in the
last column of Figures 11, 12, and 13.

Quality separation measurement

We will assume that the errors committed in the sepa-
ration process can have three different origins: they can
be due to interference between sources, to distortions
inserted in the separated signal, and to artifacts intro-
duced by the separation algorithm itself.

We have used three standard parameters to test the
final quality of the separation results using the proposed
method related to these distortions. These parameters
are the signal-to-interference-ratio, (SIR), the signal-to-
distortion-ratio, SDR, and the signal-to-artifacts-ratio,
SAR [39,44,45]:

SIR = 101081 (Dintrr) (31)

SDR = 1010g;g (Dgr ) (32)
and

SAR = 10log;, (Dajif) (33)

where Dinterf, Diotal, and Dy are energy ratios involving
the separated signals and the target (isolated, supposed
known) signals. The quality separation measurements

of the next sections have been obtained within the
MATLAB® toolbox BSS_EVAL, developed by Févotte,
Gribonval, and Vincent and distributed online under the
GNU Public License [44].

Summarizing: graphical results

As advanced before, in Figures 11, 12, and 13, we show the
numerical results of the detailed tests. In Figure 11, the
experimental values of the SDR parameter for each exper-
iment are presented. In Figure 12, we have depicted the
obtained SIR values. Finally, in Figure 13, the experimental
values of the SAR parameter are shown.

In Figure 11, marked with squares, the SDR mean result
for each test; with triangles, the maximum and minimum
value of the parameter. These results show significant dif-
ferences in the quality separation measurements for the
experiments of separation involving two sources. In the
case of experiments with three sources, the differences are
smaller.

In Figure 12, the SIR mean result for each test is marked
with circles; with triangles, the maximum and minimum
value of the parameter. As can be seen in the figure, the
experimental values of SIR present less variations than in
the previous case. It means that the proposed technique
does not present significative tendency to high interfer-
ence terms.

Quality seperation measurement. Experimental results: SAR
35 T T T T T
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Figure 13 Experimental results of the SAR parameter for the eight separation experiments.
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Finally, in Figure 13, the SAR results for each test are
marked with stars. The maxima and minima of the experi-
ments are depicted with triangles. The conclusions are the
same that in Figure 11.

If we consider globally the whole set of signals with
two mixed sources, the mean values of the quality sepa-
ration measurement parameters can be used in some way
to measure the final quality of the separation. These val-
ues (represented in Figures 11, 12, and 13 with horizontal
dashed-dotted lines) are

e SDRy; ~ 16.07 dB.
e SIRy; ~ 58.85dB.
e SARy ~ 16.08 dB.

The average of the standard parameters in the case
of three mixed sources (horizontal dashed lines in
Figures 11, 12, and 13) are

e SDR3; ~ 12.81dB.
e SIRs, ~52.03dB.
o SARs, ~ 12.82dB.

These results are consistent with the increasing num-
ber of sources in the mixture. Under the same degree of
precision in the frequency axis, the higher the number of
sources, the lower the separation between partials and the
higher the probability of interference (lower SIR). Hence,
the final distortions and artifacts tend to increase.

Conclusions

In this study, a BASS technique for monaural musical
notes has been presented. There are two main differences
between the proposed algorithm and the existing ones:
first of all, the time—frequency analysis tool is not based on
the STFT but in the CCWT, which offers a highly coher-
ent model of the audio signal in both time and frequency
domains. This tool allows us to obtain with great accu-
racy the instantaneous evolution (in time and frequency)
of the isolated harmonics, easily assignable to the sources
present in the mixture. Second, the separation algorithm
only needs the mixed signal as input, no additional infor-
mation is needed. The overlapping partials can entirely be
reconstructed from the isolated partials searching for the
best linear combination which minimizes the amplitude
error in the mixture process, assuming the CAM princi-
ple. Using non-overlapping partials with similar energy to
the overlapping partials, if the overlapping partial has high
energy, the correlation factor tends to be high, and if the
energy is low, errors associated with the low correlation
are usually acceptable. The phase reconstruction is not
as important as in other techniques, obtaining separated
sources which have both high-quality separation measure-
ment values and high-acoustic resemblance with respect
to the original signals.
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At its actual stage, the proposed technique can be used
to separate two or more (monophonic) sources playing a
single (and no proportional) note each. As the polyphony
of the mixture signal increases, the acoustic performance
of the separated signals tend to show a less resemblance
timbre with respect to the original signals, because the set
of isolated partials is decreasing in number of elements
and therefore, in the reconstruction, the information used
is smaller and less varied. Regarding the results of numer-
ical quality, the SDR and SAR parameters descend with
respect to the shown results from polyphony 5, while the
SIR parameter, although it has a clear downward trend,
remains high.

To develop a complete source separation algorithm,
several improvements are needed.

First, it is necessary to implement this technique into
an algorithm frame-to-frame to address the separation of
long duration signals. The fundamental frequency, onset,
and offset estimation algorithms presented in “Separation
algorithm” section and [38] are able to work dynamically,
obtaining the parameters of pitch, starting, and ending
time of each note present in the mixture.

There are several useful techniques to properly assign
each separated note to its corresponding source. For
example, to use a rough estimation of the pitches of the
mixture [22] or the score of the analyzed signal. Other
possibility is to develop an algorithm of timbre classifica-
tion. This method has the advantage of maintaining the
blindness of the system, but the drawback of a poten-
tial loss of generality. Both methods could also be used
to solve the limitation of the presented technique for the
separation of polyphonic instruments.

Finally, as discussed briefly in “Main characteristics,
advantages, and limitations” section, the appearance of
completely overlapping notes is statistically inevitable in
real recordings. This problem (one of the core problems in
BASS) must be addressed to develop a complete separa-
tion algorithm. Therefore, future challenges remain to be
tackled.

Endnotes

2Each original archive consists of a certain number of
notes. Each note is approximately 2-s long and is imme-
diately preceded and followed by ambient silence. The
instruments are recorded in an anechoic chamber. Some
instruments are recorded with and without vibrato. All
samples are in mono, 16bit, 44.1kHz, AIFF format.
Resampled at 16bits, 22.05kHz, wav format, excerpts
consist of isolated notes. Some of these notes have syn-
thetically been mixed. "We will suppose A¢y = 0 in
Equation (20), but in fact an aleatory initial phase can be
inserted without any significant difference in either the
numeric or in the acoustical results.
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