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Abstract

In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC
algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its
real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also
proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation
experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction
of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector
hydrophone array in lake trails show the engineering practicability of two new algorithms.
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1.Background
Compared to traditional acoustic pressure sensor, the
acoustic vector sensor can measure both the scalar
acoustic pressure and the acoustic particle velocity vec-
tor at a certain point of the acoustic field. So it possesses
higher direction sensitivity and can acquire more meas-
urement information [1-3]. By taking advantage of the
extra information, vector sensors arrays are able to im-
prove the direction-of-arrival (DOA) estimation per-
formance without increasing array aperture size.
Nehorai and Paldi have developed the measurement
model of the acoustic vector sensor array for dealing
with narrowband sources [4], many methods such as
MUSIC algorithms have been proposed for applying
acoustic vector sensor array to DOA estimation problems
[5-8].
Root-MUSIC algorithm is a polynomial form of

MUSIC algorithm [7,8]. This algorithm adopts the roots
of a polynomial to replace the search for spatial spectrum
in MUSIC algorithm, reducing the calculation amount
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and improving estimation performance. Nevertheless, it is
mainly applied to acoustic pressure sensor array.
Combining the Micro Electronic Mechanical Systems

(MEMS) technology with design of vector hydrophone,
it can break the performance limitation of existing
hydrophone. A novel biomimetic MEMS vector hydro-
phone has been developed by Xue and co-authous
(Figure 1), and has been measured for index [9-12].
In this paper, a self-adapting root-MUSIC algorithm

and its real-valued formulation for acoustic vector sen-
sor array are proposed. Furthermore, the comparison of
performance between this algorithm and MUSIC algo-
rithm has been made by simulation method. Finally, the
engineering practicability has been tested according to
the experimental data of MEMS vector hydrophone
array in lake trials.

2. Signal model of acoustic vector sensor array
Consider N far-field narrowband signals incident on an
uniform line array of M acoustic vector sensors along
the x-axis in space, from directions θ = [θ1, θ2,⋯, θN]

T,
the received signal vector of the array can be expressed as

Z tð Þ ¼ A θð ÞS tð Þ þNv tð Þ; ð1Þ

where Z(t) is the 3M × 1 snapshot data vector of the
array, S(t) is the N ×1 vector of the signal, Nv (t) is the
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Figure 1 MEMS vector hydrophone.
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3M × 1 vector of the Gaussian noise data vector, and
the noise and the signal are independent, A(θ) is the
steering vector matrix of the acoustic vector sensor
array.

A θð Þ ¼ a θ1ð Þ; a θ2ð Þ;⋯; a θNð Þ½ �
¼ a1 θ1ð Þ⊗u1; a2 θ2ð Þ⊗u2;⋯; aN θNð Þ⊗uN½ �; ð2Þ

where ak θkð Þ ¼ 1; e�jβk ; e�j2βk ;⋯; e�j M�1ð Þk
� �T

is the
acoustic pressure corresponding of the kth signal, βk ¼
2π
λ d sinθk , in which d is the inter-element spacing, and
λ is the wavelength corresponding to the maximum fre-
quency of signals. uk = [1, cos θk, sin θk]

T is the direction
vector of the kth signal, and the notation ⊗ denotes
the Kronecker product.
So the covariance matrix for the array received signal

is given by

R ¼ E Z tð ÞZH tð Þ� �
¼ AE S tð ÞSH tð Þ� �

AH þ E N tð ÞNH tð Þ� �
¼ ARSAH þ σ2I; ð3Þ

where RS is the signal covariance matrix, σ2 is the energy
of Gaussian white noise, I is the normalized noise co-
variance matrix, and ( ⋅ )H stands for complex conjugate
transpose.
From the theory of subspace decomposition, the eigen-

decomposition is

R ¼ USΣSUH
S þUNΣNUH

N ; ð4Þ

where US is the signal subspace spanned by eigenvectors
corresponding to major eigenvalues of matrix R, UN is
the noise subspace spanned by eigenvectors correspond-
ing to small eigenvalues of matrix R.
In practical calculation, the received data are finite, so
the covariance matrix R can be estimated as

R̂ ¼ 1
L

XL
i¼1

Z tð ÞZH tð Þ; ð5Þ

where L is the number of snapshots.

3. Self-adapting root-MUSIC algorithm for vector
sensor array
The basic idea of self-adapting root-MUSIC algorithm is:
firstly weight summation for three-way signal of vector
sensor, select the self-adaptive lead orientation, then
construct polynomial by noise subspace, and finally esti-
mate DOA of signals by finding the roots of polynomial.

Selection of lead orientation vector
Weight 1, cos φ, sin φ to the output signal pi(t),vix(t),
viy(t) of ith vector sensor respectively, and make sum

yi tð Þ ¼ pi tð Þ þ vix tð Þ cosφþ viy tð Þ sinφ; ð6Þ

then the average power is P i(φ) = E[|yi(t)|
2].

The function of weight corresponds to make electronic
rotary for the output of the vector sensor, the direction
φ which reflects the maximum energy is the signal direc-
tion [13].
P i(φ) is the output of spatial spectrum of ith vector

sensor with φ relevant, reflects the energy distribution in
space. It is the equivalent of a spatial filter, and can im-
plement the signal and noise separation based on the
orientation difference of the signal and interference.
The vector form of (6) for vector sensor array can be

written as

Y ¼ W⋅Z;

where W = diag[1, cos φ, sin φ,⋯, 1, cos φ, sin φ].
Take

P φð Þ ¼ 1
M

XM
i¼1

Pi φð Þ; ð7Þ

where P(φ) is spatial spectrum of array. The lead orien-
tation φ0 can be obtained from the maximum of P(φ) for
φ ∈ [0, 2π].
The lead orientation vector can be received as

u ¼ 1; cosφ0; sinφ0½ �T ; ð8Þ

where u is also known as self-adaptive lead vector.
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Construction of the polynomial
Define the polynomial

f zð Þ ¼ zM�1FT 1=zð ÞUNUH
NF zð Þ; ð9Þ

where F(z) = [1, z,⋯, zM − 1]T⊗ u, z = exp(jβ), β = (2π/λ)d
sin θ, and θ is the azimuth angle of the signals to be
estimated.
Let

B ¼
b11 b12 ⋯ b1M
b21 b22 ⋯ b2M
⋮ ⋮ ⋱ ⋮
bM1 bM2 ⋯ bMM

0
BB@

1
CCA ¼ UNUH

N ; ð10Þ

where bij (i, j = 1, 2,⋯,M) are 3 × 3 symmetry sub-
matrix.
Then

f zð Þ ¼ zM�1FT 1=zð ÞBF zð Þ ¼ ubM1uH

þ zu
X2
i¼1

biþM�2;iuT þ⋯þ zM�1u
XM
i¼1

bi;iuT

þ zMu
XM�1

i¼1

bi;iþ1uTþ⋯þ z2M�3u
X2
i¼1

bi;iþM�2uT

þ z2M�2ub1MuT¼
XM
k¼1

u
Xk
i¼1

biþM�k;iuT

 !
zk�1

þ
XM�1

k¼1

u
XM�k

i¼1

bi;iþku
T

 !
zMþk�1; ð11Þ

So the order of the polynomial f(z)is 2(M − 1), it has
(M − 1) pair roots which every two conjugate with each
another. and there are N roots which lie on the unit circle,

zi ¼ exp jβi
� �

; i ¼ 1; 2;⋯;N :

In practical calculation, considering the error of co-
variance matrix, the N roots ẑ i nearest to the unit circle
can be estimated as the DOAs of the signals.

θ̂ i ¼ arcsin
λ

2πd
arg ẑ if g

� �
; i ¼ 1; 2;⋯;N : ð12Þ

To sum up, the self-adapting root-MUSIC algorithm
can be formulated as the following six-step procedure:
Step 1: Compute R by (3), and the estimate is given by

(5).
Step 2: Obtain UN from the eigendecomposition of R

by (4).
Step 3: Compute the lead vector u by (8).
Step 4: Construct the polynomial f(z) by (11).
Step 5: Find the root of the polynomial f(z), and select

the roots ẑ i that are nearest to the unit circle as being
the roots corresponding to the DOA estimates.

Step 6: Receive θ̂ i to the DOA estimates by (12).
4. RV-Root-MUSIC algorithm
In the above method, the computational complexity will
be reduced greatly if making eigendecomposition for a
real-valued matrix instead of complex covariance matrix
R[14]. The specific process is as follows:
Define

J3M ¼ JM⊗I3; ð13Þ
where JM is the M ×M exchange matrix with ones on its
antidiagonal and zeros elsewhere, and I3 is a 3 × 3 iden-
tity matrix.
Import the Forward-Backward(FB) smoothing matrix

RFB as[15],

R FB ¼ 1
2

Rþ J3MR�J3Mð Þ; ð14Þ

where ( ⋅ )* stands for complex conjugate.
The real-valued covariance matrix C can be obtained

by

C ¼ PHR FBP; ð15Þ
where P =Q⊗ I3 is a sparse matrix with real-valued
conversion [14], and matrix Q can be chosen for arrays
with an even and odd number of sensors respectively by
(16) and (17).

Q2n ¼
1ffiffiffi
2

p In jIn
Jn �jJn

� �
; ð16Þ

Q2nþ1 ¼
1ffiffiffi
2

p
In 0 jIn
0T

ffiffiffi
2

p
0T

Jn 0 �jJn

0
@

1
A; ð17Þ

where 0 is the n × 1zero vector.
It is proved that C is a real-valued covariance matrix

as follows.
Because of Q* = JQ,JQ* =QandJH = J, then

PH J3MR�J3MP ¼ Q⊗I3ð ÞH JM⊗I3ð ÞR� JM⊗I3ð Þ Q⊗I3ð Þ
¼ QH⊗I3
� �

JM⊗I3ð ÞR� JM⊗I3ð Þ Q⊗I3ð Þ
¼ QH JM
� �

⊗I3
� �

R� JMQð Þ⊗I3½ �
¼ Q�ð ÞH⊗I3
h i

R� Q�⊗I3½ �
¼ Q⊗I3ð Þ�½ �HR� Q⊗I3½ ��

¼ P�ð ÞHR�P� ¼ PHRP
� ��

; ð18Þ

So,

C ¼ PHR FBP ¼ 1
2

PHRPþ PH J3MR
�J3MP

� �
¼ Re PHRP

� �
; ð19Þ

where Re(⋅) is the real part operator.



Figure 3 The curve between RMSE and SNR of three methods.
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Let the eigendecompositions of the matrix C be
defined in a standard way

C ¼ ESΛSEH
S þ ENΛNEH

N ; ð20Þ

Similarly to (9), the real-valued root-MUSIC polynomial
can be used

f zð Þ ¼ zM�1FT 1=zð ÞENEH
NF zð Þ; ð21Þ

The computational complexity of self-adapting root-
MUSIC algorithm and its real-valued formulation is
discussed as follows.
The mainly difference between two methods is that

the processing of the covariance matrix. Firstly, the
reconstruction of covariance matrix R by (14) and (15)
is necessary for RV-Root-MUSIC algorithm, Since the
array covariance matrixR is a 3M × 3M complex
matrix, the matrix Ccan be constructed using 2 ⋅ (3M)3 real
multiplications and (3M)2(3M − 1) real additions by (19).
Secondly, the velocity of convergence for eigendecom-

position of the complex matrix C and the real matrix R
is O(n3). simultaneously, the noise subspace of the com-
plex matrix R is also complex, and the noise subspace of
the real matrix C is also real.
Finally, the polynomial f(z) can be constructed via

complex matrix R using 4[(3M)2(3M −N) + (3M)2 + 3M]
real multiplications and 3[(3M)2(3M −N − 1) + (3M + 1)
(3M − 1)] real additions by (9), but the polynomial f(z)
can be constructed via real matrix C using [(3M)2

(3M −N) + (3M)2 + 3M] real multiplications and [(3M)2

(3M −N − 1) + (3M + 1)(3M − 1)] real additions by (21),
so it is possible that the computational complexity for
real matrix Ccan be reduced up to 75% real
Figure 2 DOA estimation of self-adapting root-MUSIC
algorithm.
multiplications and 66.7% real additions compared to
the complex matrix R.
From the above analysis, the computational complexity

of the RV-Root-MUSIC algorithm is significantly lower
than the self-adapting root-MUSIC algorithm thanks
to the eigendecomposition of the real-valued matrix C
instead of that of the complex matrix R. On the other
hand, due to the inherent forward-backward averaging
effect by (14), RV-Root-MUSIC algorithm can separate
two completely coherent sources and provides improved
estimates for correlated signals. This will be validated in
the last experiment of lake trials.

5. Simulation experiment
To verify the performance of the proposed self-adapting
root-MUSIC algorithm and RV-Root-MUSIC algorithm,
simulation experiments are carried out in the following.
The experiment employs the uniform linear array

composed of four vector sensors, receives a signal with
the frequency being 1kHz and the angle of incidence
being 30°, in which inter-element spacing is half wavelength
and the adding noise is Gaussian white noise, and assumes
the Signal-to-Noise (SNR) being 0dB and the number of
snapshots being 200. The DOA estimation using self-
adapting root-MUSIC algorithm is shown in Figure 2,
Figure 4 Field experiment.



Table 1 The DOA estimation result of different frequency
signal using two methods

Signal
frequency

Average of DOA
estimation of MUSIC

algorithm(°)

Average of DOA estimation
of self-adapting root-MUSIC

algorithm(°)

331Hz 90.2768 90.0377

800Hz 89.7857 89.8085

1kHz 89.8571 89.8598

1.5kHz 89.8636 89.4449

3kHz 89.6324 89.7719
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where the notation “*” stands for all roots of polynomial,
“o” for the DOA estimation, and “-” for the unit circle.
From Figure 2, it can be seen that the DOA of signal can
be correctly estimated using self-adapting root-MUSIC
algorithm.
In addition, the performance between the proposed

self-adapting root-MUSIC algorithm, the RV-Root-MUSIC
algorithm and the traditional MUSIC algorithm is
compared. In Figure 3, the root mean square error
(RMSE) using 500 independent Monte Carlo trials for
each SNR is shown when SNR changes from − 20dB
to 20dB. The proposed self-adapting root-MUSIC
algorithm and the RV-Root-MUSIC algorithm have
identical performance, and they have better performance
for low SNRs and almost the same estimation perform-
ance for high SNRs with MUSIC algorithm.
Finally, In the above simulation conditions, the statis-

tics for computing time of two algorithms has been
made, and it is shown that the integrated computing
time of the RV-Root-MUSIC algorithm is average less
Figure 5 Time-bearing display of signal with 1.5kHz.
about 23% than the self-adapting root-MUSIC algorithm
by comparing two methods. Certainly, the computing
time of the RV-Root-MUSIC algorithm can be reduced
more with the increase of the number of array elements.

6. Lake trials
The test experiment has been made in the Fenhe lake
(Figure 4). The line array has been composed of two
MEMS vector hydrophone with inter-element spacing
being 0.5 m, and it has been fixed underwater 10 m
at the side of the ship. The array’s compass could
take real-time measurement for its pose to keep the
array’s horizontality. Three experiments have been
made respectively.

Experiment 1
The acoustic emission transducer has been placed in the
direction with 90° of the array, launched 331Hz, 800Hz,
1kHz, 1.5kHz,3kHz continuous single-frequency signal re-
spectively, the DOA has been estimated for receiving data,
once per second. Table 1 is the average result of DOA esti-
mation in different frequency signal using MUSIC algo-
rithm and self-adapting root-MUSIC algorithm, Figure 5
is the time-bearing display of a single-frequency signal
with 1.5kHz using two methods. The result shows the
better performance of two methods.

Experiment 2
The experiment used a motor boat for moving target,
which run from about 10° to about 160° position, tested
track time is about 160s. Broadband noise which motor
boat radiate has been narrowband filtered as 800Hz
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for the center frequency, once per second. Figure 6
shows the time-bearing display of target ship using
MUSIC algorithm, conventional beam-forming method
(which is also known as Bartlett beam-forming for acous-
tic vector sensor array) and self-adapting root-MUSIC al-
gorithm respectively, the results are basically consistent
with the actual trajectory of motor boat.

Experiment 3
The experiment used motor boat and emission trans-
ducer for two acoustic sources. The acoustic emission
transducer has been placed in the direction with 180° of
the array, launched 800Hz continuous single-frequency
signal, simultaneously, the motor boat run from about
10° to about 180° position, tested track time is about
108s. Broadband noise which motor boat radiate has
Figure 6 Time-bearing display of motor boat.
been narrowband filtered as 800Hz for the center fre-
quency, once per second.
Here, these two sources can be seen the coherent signals.

First the real-valued covariance matrix C is homologous
used to replace the complex matrix R in MUSIC algorithm
and conventional beam-forming method, and then the
time-bearing display of two sources using three methods
respectively can be seen in Figure 7. The MUSIC algo-
rithm can be more clearly distinguish between these two
sources at the outset, but there will be some ambiguity
when two sources approached (Figure 7(a)), and conven-
tional beam-forming method is completely unable to dis-
tinguish (Figure 7(b)), but the RV-Root-MUSIC algorithm
can clearly distinguish (Figure 7(c)), the results are basically
consistent with the actual trajectory of motor boat and
emission transducer.



Figure 7 Time-bearing display of motor boat and emission transducer.

Wang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:228 Page 7 of 8
http://asp.eurasipjournals.com/content/2012/1/228
7. Conclusions
The results of simulation experiment show the higher
DOA estimation accuracy and lower RMSE of the new
self-adapting root-MUSIC algorithm and the RV-Root-
MUSIC algorithm than the traditional MUSIC algo-
rithm, and the results in lake trails show the engineering
practicability of two new algorithms, it can be verified
that the performance of RV-Root-MUSIC algorithm
distinguishing the coherent signals.
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