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Abstract

Designing an automatic modulation classifier (AMC) for high frequency (HF) band is a research challenge. This is
due to the recent observation that noise distribution in HF band is changing over time. Existing AMCs are often
designed for one type of noise distribution, e.g., additive white Gaussian noise. This means their performance is
severely compromised in the presence of HF noise. Therefore, an AMC capable of mitigating the time-varying
nature of HF noise is required. This article presents a robust AMC method for the classification of FSK, PSK, OQPSK,
QAM, and amplitude-phase shift keying modulations in presence of HF noise using feature-based methods. Here,
extracted features are insensitive to symbol synchronization and carrier frequency and phase offsets. The proposed
AMC method is simple to implement as it uses decision-tree approach with pre-computed thresholds for signal
classification. In addition, it is capable to classify type and order of modulation in both Gaussian and non-Gaussian
environments.
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Introduction
State-of-the-art digital communications and signal pro-
cessing techniques have caused a major resurgence in
high frequency (HF) communication systems by redu-
cing equipment size, improving communication reliabil-
ity, and shortening the deployment time. Therefore,
these systems provide a cost effective and versatile solu-
tion for long-haul communications which can be used in
a wide variety of civilian and military scenarios, e.g.,
nation-wide emergency communication during natural
disaster, war-zone communications, electronic surveil-
lance, remote area monitoring, etc. Numerous scenario-
specific standardized waveforms exist for HF radios
depending on the required data rate and available
transmit bandwidth [1]. An HF radio capable of com-
municating using all the standardized waveforms is de-
sirable as it brings interoperability, flexibility, and cost
efficiency. A software-defined radio (SDR) allows an
HF radio to communicate using multiple standards. An
automatic modulation classifier (AMC) is an essential
part of a multi-standard communication system as it
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allows blind detection of the modulation schemes
present in the received signal. However, designing an
AMC for HF systems is not a trivial task, as the trans-
mit signal is severely distorted due to ionospheric
effects, multipath propagation, and non-Gaussian time-
varying noise [2-4]. The non-Gaussian and time-varying
nature of HF noise is a recent observation [3]. It has
been noted in [4] that the HF noise follows Gaussian
(G) or Bi-kappa (BK) distributions depending on day
time. A BK distribution function is defined mathemat-
ically as [3]
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where σ and k are the shaping parameter and tuning
factor, respectively. Practical values of these parameters
are σ = 46, k = 1.1 and σ = 20, k=1 [3].
Till now, designing AMC algorithms in presence of

non-Gaussian noise has not received sufficient attention.
The reason is that Gaussianity assumption often matches
the observed statistical characteristics of channel noise.
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However, for HF channel the case is different as the noise
is better described by a model fluctuating between G and
BK distributions. Therefore, this new noise model must
be considered during the development of an AMC for
HF band. Existing AMC methods (that assume G noise
only) are grouped into two categories: likelihood based
(LB) and feature based (FB) methods. LB methods have
two steps: calculating the likelihood function of the
received signal for all candidate modulations, and then
using maximum likelihood ratio test for decision-making
[5]. In FB methods, features are first extracted from the
received signal and then applied to a classifier in order to
recognize the modulation type and possibly its order.
Figure 1 shows the block diagram of FB methods in an

SDR. The front-end of SDR is the signal detection block
which identifies a signal transmission [6]. This block is
followed by an AMC which contains a feature extractor
and a classifier.An overwhelming number of proposed
features exist in AMC literature. Some of the most
popular features include instantaneous amplitude, phase,
and frequency [7-9], statistical features such as higher
order moments and cumulants [10-13], wavelets [14-18],
spectral peaks [19], etc. The classifier block makes use
of extracted features to identify signal modulation by ap-
plying a fixed threshold, or alternatively using a pattern
recognition technique, such as artificial neural networks
[20-22] or support vector machines [18]. If the feature
set is carefully selected, FB methods are more robust
and offer low processing complexity. For more details
about AMC methods with a comprehensive literature re-
view, the reader is referred to [5,23].
Attempts to classify signals in HF noise have been

reported in the literature. In [24-26], entropic distance
feature has been exploited for a classification of constant
envelope digital signals, such as PSK and FSK modula-
tions. In [26], this feature has been further explored for
signals propagating via multiple ionospheric modes with
co-channel interference and non-Gaussian noise for dif-
ferent types of PSK and FSK modulations. The basic idea
Intercepted signal
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Figure 1 AMC-based receiver architecture using FB methods.
of entropic distance is to compress the received signal
using a compression algorithm and use the compression
ratio as entropy measure of the received signal of an un-
known modulation type. Therefore, normalized entropic
distance can be used to classify different modulation
schemes. It is also demonstrated in [24,26] that entropic
distance is a useful feature in separating narrow band as
well as wide band FSK modulations. Its robustness
against parameters variations such as quantization reso-
lution, signal length, and compression algorithm is also
verified.
Motivated by the observations noted in [4], effect of

BK distribution on AMC design has been investigated in
[27,28]. The results in [27] show that the performance of
an AMC algorithm designed for G noise model signifi-
cantly deteriorates in presence of BK noise, specifically
at low signal-to-noise ratio (SNR). In addition, the inves-
tigation in [28] shows that it is possible to design fea-
tures that are reasonably robust in presence of HF noise.
The objective in this article is to develop a new deci-

sion tree-based AMC algorithm well-suited for the clas-
sification of most popular single carrier modulations
used in HF communication systems, i.e., 2FSK, 4FSK,
8FSK, 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, 64QAM,
16 amplitude-phase shift keying (APSK), and 32APSK
[1]. APSK is a digital modulation scheme that can be
considered as a class of QAM in which symbols are al-
ways placed on equidistant concentric circles in the con-
stellation diagram. This modulation scheme is known to
have fewer problems with nonlinear amplifiers due to its
constellation shape [29].
To achieve the above objective, the following features

are considered: the maximum value of power spectral
density (PSD) of normalized-centered instantaneous
amplitude, the maximum value of magnitude of discrete
fourier transform (DFT) of kth power of received signal
(Γk), and number of points in pre-defined ranges of par-
titioned signal constellation magnitude. The first feature
is well known in the literature [7-9]. The second feature
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Modulation
tion Process

M Demodulator

Demodulated
signal



Alharbi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:238 Page 3 of 14
http://asp.eurasipjournals.com/content/2012/1/238
with k = 2, 4 has previously been proposed in [30] for
blind estimation of frequency offset of PSK and QAM
signals and in [31] for the classification of MPSK modu-
lations. The third feature is new; it is based on counting
the number of points of the magnitude of received signal
constellation in a certain predefined range. This feature
has a desirable property in that its value remains almost
constant even when the noise model gets changed from
Gaussian distribution to BK distribution. Another im-
portant property of this feature is its low computational
cost, as it only requires addition and comparison opera-
tions. It is worth noting that all three features are in-
sensitive to symbol synchronization and carrier
frequency and phase offsets.
The rest of the article is organized as follows. A uni-

fied mathematical model for all the modulation schemes
under consideration is presented in Section 2. The pro-
posed AMC and its computational complexity are
detailed out in Section 3. Simulation results are pre-
sented and discussed in Section 4. Finally, conclusions
are drawn in Section 5.

Signal model
The general form of received signal encompassing all
modulation schemes under consideration is given by
[32]

r tð Þ ¼ Re αej2πϕej2△ftC tð Þej2πfc t�t0ð Þ
n o

þ n tð Þ ð2Þ

where C(t) is the complex envelope of the modulated
signal, n(t) is a band-limited noise, fc is the carrier fre-
quency, α is the channel amplitude, ϕ is the phase offset,
Δf is the carrier frequency offset, and Re{.} denotes the
real part. The complex envelope is characterized by the
constellation points Ci, signal power P, and pulse shaping
function p(t). For N symbols with periodicity T, the gen-
eral form of the complex envelope can be expressed as

C tð Þ ¼ ΣN
i¼1Cip t � iTð Þ ð3Þ

In practice, p(t) is often root-raised cosine with roll-off
factor (ρ) ranging between 0.2 and 0.5 [33-36]. For FSK
modulation, rectangular pulse shape is commonly used
[1]. The constellation points of digital modulation of
Table 1 Constellation points of digital modulation schemes

Modulation Constellation point

MPSK Ci ∈ exp(−j2πm/M), m

MQAM Ci ¼ aK þ jbk ; ak ; bk ∈

OQPSK Ci ∈ 4PSK staggered to

MFSK Ci ∈ cos 2πfm
fs

n
� �

þ

MAPSK Ci ∈ r exp � j2πm
Ms

� �
;w
order M considered in this article are given in Table 1
(in Table 1, fs is the sampling frequency and Nf is the
number of samples within one MFSK symbol duration);
see also [9].
The noise term is often constructed by passing the

BK/G noise through a band-limiting filter [9]. The band-
width of this filter is set to 3 kHz for HF channel [37].
This filter is used in practice to minimize the transmis-
sion bandwidth. The SNR at the output of band-limiting
filter is adjusted to the desired value by multiplying the
noise term by a scaling factor, β. That is [9]

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
N0

10
�SNR==20

r
ð4Þ

where N0 is the noise power and SNR is in dB.

The proposed AMC
The proposed AMC features
The proposed features and classification mechanism are
described next. The presentation in this section is sup-
ported by simulation results conducted with parameters
as described in Table 2, and averaged over 100 inde-
pendent realizations. The frequency offset is set at 100
Hz and roll-off factor ρ = 0.35. If different, results are
presented for both G and BK noise models, otherwise
results of BK noise model are only displayed.

The maximum value of PSD of normalized-centered
instantaneous amplitude
This feature is expressed mathematically as [9]

γmax ¼
max DFT acn nð Þð Þj j2

Ns
ð5Þ

where Ns is the number of samples, acn(n) = a(n)/ma −
1, a(n) is the absolute value of the analytic form of the
received signal, and ma is its sample mean. This feature
classifies PSK modulations as one group, and FSK and
OQPSK modulations as another group. Figure 2 shows
feature values against SNR (in dB) for PSK, FSK, and
OQPSK signals. The figure also shows the mean value of
feature (solid line) ± its standard deviation (dotted line).
This will help in determining the bounds for feature
variation. Note that we only display bounds (mean ± its
= 0, 1,., M − 1
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Table 2 Simulation parameters

Parameter Value

Carrier frequency fc = 24 kHZ

Symbol rate rs = 2400 Hz

Sampling rate fs = 19.2 kHz

Number of symbols N = 512

Total number of samples Ns = 4096
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standard deviation) for the modulations that are critical
for determining the thresholds. For the sake of clarity,
the same color has been used for both the bound and
the mean that belong to a particular modulation. As
Figure 2 shows, the final classification of the modula-
tions is achieved using a pre-computed threshold which
separates PSK from FSK and OQPSK modulations.

The maximum value of DFT magnitude of the kth power of
analytic form of received signal
This feature is defined as follows [30,31].

Γk ¼
max DFT a ið Þk

� ���� ���2
Ns

ð6Þ

Three values of parameter k are used in this article,
i.e., k = 1, 2, and 4. The three FSK modulation orders
are classified using Γ1. Since the input signal power is
equally distributed among all FSK tones, therefore for a
certain fixed duration of the received signal the feature
value is highest for 2FSK and lowest for 8FSK and
OQPSK. As a result, 2FSK, 4FSK, and group of 8FSK
and OQPSK can be discriminated using two threshold
values. The values of this feature against SNR are shown
in Figure 3. Also, the upper and lower bounds for both
thresholds are shown as dotted lines.
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Figure 2 γmax versus SNR for FSK, PSK, and OQPSK signals.
The feature Γk with k = 2 and 4 is utilized to classify
the three individual PSK modulations in two stages. In
the first stage, 2PSK is separated from 4PSK and 8PSK
by using Γ2, whereas in the second stage 4PSK is sepa-
rated from 8PSK modulation by using Γ4. Both Γ2 and Γ4
are compared against two different thresholds. Figures 4
and 5 show the variation of Γ2 and Γ4 against SNR, re-
spectively. It is observed that these features have the
ability to separate PSK modulations at SNR as low as 0
dB. It is also used to classify OQPSK and 8FSK modula-
tions. Figure 6 shows that Γ4 can classify both modula-
tions at SNR = 0 dB.
Finally, feature Γ4 can be further used to separate 16/

64QAM from 16/32APSK and 32QAM modulations.
The threshold for separating the two groups is set to
allow classification starting from around 0 dB by care-
fully taking into consideration the variance of feature
values. Note that the variance of Γ4 for 64QAM is larger
than that of 32QAM as shown in Figure 7.
Number of points of partitioned magnitude of constellation
diagram
QAM/APSK modulation symbols are defined in terms of
phase and amplitude variations and are represented in
the form of a constellation diagram. This diagram is
extracted from the analytic form of the IF signal after
down conversion to the baseband. Many features exist in
literature that exploit different aspects of the constella-
tion diagram for classification of 16, 32, and 64QAM
modulations [38-42]. In this article, a new feature based
on partitioning magnitude of constellation diagram is
proposed. This feature makes use of the observation that
the noise-free normalized constellation points of PSK
and FSK modulations are on the unit circle, whereas the
normalized constellation points of QAM and APSK
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Figure 3 Γ1 versus SNR for the three FSK signals.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500

SNR

2

2PSK
4PSK
8PSK
upper bound
lower bound

L

Figure 4 Γ2 versus SNR for the three PSK signals.
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Figure 5 Γ4 versus SNR for 4PSK and 8PSK signals.
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Figure 6 Γ4 versus SNR for 8FSK and OQPSK signals.
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modulations may lie on, inside, and/or outside the unit
circle. Therefore, this feature is useful in separating near
constant amplitude modulations from amplitude varying
modulations, and also in determining the order of amp-
litude varying modulations.
The first step of proposed feature is to partition the

magnitude of normalized constellation diagram into
seven regions denoted by R1, R2,. . ., R7. Note that the
samples of QAM/APSK signal are normalized by the
standard deviation of the signal amplitude before feature
extraction. Then, the signal is classified by comparing the
number of points in one or more pre-defined regions to
a pre-computed threshold. Table 3 shows the boundaries
of these regions which are determined by examining the
histogram of magnitude of normalized constellation dia-
gram of QAM/APSK modulations. To ensure maximum
separation between different modulations, their respect-
ive histograms are searched for regions in which the
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Figure 7 Γ4 versus SNR for QAM and APSK signals.
number of points differs by large values across different
histograms.
Let Ni (i = 1, 2,. . ., 7) denote the normalized number

of constellation points whose magnitude falls within the
range Ri. The normalization pertaining to Ni is per-
formed with respect to the total number of received sig-
nal samples Ns. Therefore, we can define the following
features.

K1 ¼ N4 þ N5

K2 ¼ N1 þ N2 þ N5

K3 ¼ N6

K4 ¼ N2 þ N7

ð7Þ

Figure 8 shows the variation of feature K1 extracted
from PSK, FSK, QAM, and APSK signals at different
SNR values. The threshold is selected to separate QAM/
APSK from rest of the modulation schemes. It can be
15 20 25
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32QAM
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Table 3 Regions of partitioned magnitude of
constellation diagram

Region Range

Starting point Ending point

R1 0 0.2

R2 0.2 0.3

R3 0.3 0.4

R4 0.4 0.6

R5 0.6 0.8

R6 1.00 1.25

R7 1.6 1.7
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Figure 8 K1 versus SNR for the different FSK/PSK and QAM/APSK sign

0 0.2 0.4 0.6 0.8
0

0.005

0.01

0.015

0.02

0.025

N
or

m
al

iz
ed

 H
is

to
gr

am

Ma

Figure 9 Normalized histograms for constellation points of noiseless
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observed from Figure 8 that with this feature, successful
classification can be obtained at SNR greater than 4 dB.
By virtue of Figure 8, it is also observed that noise statis-
tics dominate the feature K1 at values of SNR less than 4
dB, which makes it impossible to distinguish at this
range one modulation type from another.
Figure 9 shows the normalized histogram of magni-

tude of constellation diagram of 16QAM and 64QAM
signals computed in the absence of noise. Based on this
figure, it is obvious that 16QAM is separable from
64QAM by making use of the feature K2. Figure 10
shows the variation of the feature K2 against SNR, where
it is observed that successful classification can be
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Figure 10 K2 versus SNR for 16QAM and 64QAM signals.
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achieved at approximately 7 dB. 16APSK is separable
from 32QAM/APSK using feature K3 which is identified
by examining the normalized histogram of the constella-
tions of respective modulations displayed in Figure 11.
Figure 12 shows the variation of the feature K3 against
SNR, which shows good prospects of classification
around 3 dB. Finally, 32APSK and 32QAM are separated
using K4. Note that K4 is effective at approximately
SNR = 13 dB as shown in Figure 13.

Structure of the AMC algorithm
The proposed AMC follows a step-by-step approach for
classification of the modulation schemes. A decision is
taken at each step using one of the features which
results in identification of either a type or order of an in-
dividual modulation. There are a total of three main fea-
tures used to classify 12 modulation schemes targeted in
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Figure 11 Normalized histograms for the magnitude of the constellat
this article. The structure of the decision tree is illu-
strated in Figure 14. Each decision node (comparator) is
labeled with the name of the feature. It can be observed
that in the initial stages only modulation types are iden-
tified, and orders of the individual modulation schemes
are determined in later stages.

Computational complexity
The computational complexity of the proposed AMC al-
gorithm determines its suitability for real-time imple-
mentation in practical systems. Here, we consider the
algorithm complexity in terms of number of multiplica-
tions, additions, and comparisons given the sequence
acn(i) or a(i). Table 4 shows these counts expressed in
terms of number of samples Ns. It is of interest to note
that the proposed feature has the least computational
cost as it requires no multiplication operations. By virtue
1 1.2 1.4 1.6 1.8 2
gnitude

 

32QAM
16APSK
32APSK

ion points of noiseless 32QAM, 16APSK, and 32APSK signals.
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Figure 12 K3 versus SNR for 16APSK, 32APSK, and 32QAM signals.
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Figure 14 The flow chart of the proposed AMC algorithm.
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Table 4 Computational complexity of the proposed
algorithm

Feature Number of operations

Complex multiplication Complex addition Comparison

K1 0 Ns – 1 2Ns + 1

K2 0 Ns – 1 3Ns + 1

K3 0 Ns – 1 2Ns + 1

K4 0 Ns – 1 4Ns + 1

Kmax Ns/2log(Ns) + Ns + 1 Ns log(Ns) Ns

Γ1 Ns/2log(Ns) + Ns + 1 Ns log(Ns) Ns

Γ2 Ns/2log(Ns) + 2Ns + 1 Ns log(Ns) Ns

Γ4 Ns/2log(Ns) + 4Ns + 1 Ns log(Ns) Ns
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of Table 4, it is not difficult to conclude that the compu-
tational complexity is upper bounded by Ns/2log(Ns) +
4Ns + 1 multiplications, Nslog(Ns) additions and 4Ns + 1
comparisons, which is very attractive for real-time im-
plementation. Note that Table 4 shows the maximum
possible addition operations for the proposed feature Kl.
In reality, far fewer additions are needed.
Results
This section presents results that show the overall per-
formance of the proposed AMC algorithm in the pres-
ence of either G or BK noise for classifying the type and
order of a particular modulation. Features described in
Section 3 are extracted from the signal under consider-
ation and utilized in the proposed AMC scheme accord-
ing to Figure 14. Simulation results are presented at
different values of SNR using parameters’ values given in
Table 2. The performance is measured in terms of
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Figure 15 Performance of the proposed AMC algorithm pertaining to
noises.
probability of correct classification (Pcc) averaged over
100 independent trials.
Figures 15 and 16 show the classification rate of

QAM/APSK signals, where it is observed that 16QAM
and 32APSK have the lowest values. Specifically,
16QAM and 32APSK have Pcc > 0.9 at SNR = 12 dB and
SNR = 13 dB, respectively. On the other hand, 64QAM
has shown almost constant performance with respect to
SNR. This is intuitively not surprising as the steps per-
taining to 64QAM classification first test the received
signal against the hypothesis of being 32QAM/32APSK
or 16APSK. If not true, then the signal is tested against
the hypothesis of being 16QAM; otherwise it is declared
64QAM. That is, as the SNR decreases, the likelihood of
correct classification is always in favor of 64QAM. Simi-
lar conclusion can be drawn for 32QAM.
Figure 17 shows the classification rate of FSK and

OQPSK modulations in the presence of G/BK noise,
where Pcc > 0.9 is attained for both noise models at ap-
proximately SNR = 7 dB. Similar performance has been
observed for PSK with Pcc = 1 at SNR = 8 dB, as shown
in Figure 18.
The average probability of correct classification (Pca)

over all 12 modulation schemes is shown in Figures 19,
20, and 21 for different noise distributions, roll-off fac-
tor, and frequency offsets, respectively. It is observed
that change of noise model or frequency offset has al-
most no significant effect on the classification rate. In
addition, the proposed AMC method shows acceptable
performance with practical values of roll-off factor.
Figure 22 shows Pca of the proposed AMC algorithm

at two different symbol rates: 1200 and 2400 Hz using
the same thresholds computed at 2400 Hz. The result
shows slight discrepancies between the performances
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Figure 16 Performance of the proposed AMC algorithm pertaining to the classification of QAM modulations in presence of G and BK
noises.
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using the two data rates. Note that as the data rate
decreases, the number of symbols involved in features’
computations also decreases for fixed values of Ns and fs.
Changing the sampling rate also affects the algorithm in
a similar manner to the effect of changing the symbol
rate. In fact, the main influencing factor is the number
of samples per symbol. The proposed AMC algorithm
makes use of a fixed window of size Ns received samples.
Increasing (deceasing) the sampling rate means fewer
(more) symbols are packed into the Ns samples window.
Therefore, it can be inferred from Figure 22 the effect of
changing the sampling rate for fixed values of Ns. By
virtue of Figure 22, it is evident that for optimum
0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S

P
cc

Figure 17 Performance of the proposed AMC algorithm pertaining to
G and BK noises.
results, thresholds need to be fine-tuned if the sampling
rate gets changed.

Conclusions
In this article, a new features-based decision tree AMC
algorithm is developed for the classification of most
popular single carrier modulations used in HF communi-
cations systems, i.e., 2FSK, 4FSK, 8FSK, 2PSK, 4PSK,
8PSK, 16QAM, 32QAM, 64QAM, 16APSK, and
32APSK. Towards this objective, three features are
employed that include PSD and DFT of kth power of
received signal. A new constellation-based feature for the
classification of QAM and APSK signals is also proposed.
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Figure 20 Average Pcc with values of roll-off factor 0.25, 0.35, and 0.45.
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In practice, the received signal is often corrupted by
HF noise whose statistical characteristics have PDF best
described by a model that fluctuates between G and BK
distributions; in addition the received signal may have
frequency, phase, and symbol synchronization errors.
Extensive simulations results have shown that the pro-
posed features are insensitive to noise model variation
or synchronization errors.
The proposed AMC method has an advantage of

being simple to implement as it uses decision-tree with
pre-computed thresholds for signal classification. In
addition, it is capable to classify type and order of
modulation in band-limited HF noise environment at
relatively low SNR.
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