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Abstract

some of the priors.

Source separation is a common task in signal processing and is often analogous to factor analysis. In this study, we
look at a factor analysis model for source separation of multi-spectral image data where prior information about the
sources and their dependencies is quantified as a multivariate Gaussian mixture model with an unknown number of
factors. Variational Bayes techniques for model parameter estimation are used. The development of this methodology
is motivated by the need to bring an efficient solution to the separation of components in the microwave radiation
maps that are being obtained by the satellite mission Planck which has the objective of uncovering cosmic
microwave background radiation. The proposed algorithm successfully incorporates a rich variety of prior information
available to us in this problem in contrast to many previous solutions that assume completely blind separation of the
sources. Results on realistic simulations of Planck maps and on Wilkinson microwave anisotropy probe fifth year
images are shown. The technique suggested is easily applicable to other source separation applications by modifying
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Introduction

The discovery of the cosmic microwave background
(CMB) is a strong evidence for the Big Bang theory of
the formation and development of the universe. Accord-
ing to the theory, the early universe was smaller and hotter
but cooled as it expanded. Once the temperature cooled
to about 3000 K, photons were free to propagate with-
out being scattered off ionized matter; the CMB is an
image of this event and is visible across the entire sky.
Three satellites have been launched to measure the CMB:
the cosmic background explorer, Wilkinson microwave
anisotropy probe (WMAP) and most recently the Planck
surveyor. Planck is the highest resolution data to date, of
the order of 107 pixels across the sky measured at nine
channels.

Unfortunately, the signals measured by these satellites as
shown in Figure 1 contain radiation not only from CMB,
but also contributions from a number of other sources,
namely foreground radiations and extragalactic sources in
addition to antenna receiver noise. Foreground sources
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from our galaxy include synchrotron, dust, and free—free
emission. Therefore, the separation of the CMB signal
from other sources is an important stage in the production
of CMB maps [1].

To date, there have been several attempts to achieve it
in a Bayesian framework using both (a) Gaussian mixture
model (GMM) prior [3], and (b) Markov Random Field
(MREF) prior [4,5]. Full sky maps at low resolution through
MCMC, using masks to reduce the effect of the signal in
the galactic plane, were described in [6]. Some of these are
fully Bayesian source separation methods which are devel-
oped to separate the underlying CMB from the mixed
observed signals of extraterrestrial microwaves made at
several frequencies.

A common assumption among works in the litera-
ture is the independence of the cosmological sources.
Although it is well known that CMB is independent from
the rest of the sources, the galactic sources demonstrate
significant statistical dependence among themselves, as
stated in [1]. Recently, a small number of researchers
have started addressing this problem [7,8]. Various depen-
dent component analysis approaches are compared in [9],
demonstrating their superior performance with respect to
classical ICA.

© 2012 Quirds and Wilson; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Figure 1 Observed WMAP 7 year-data. The data were taken from the NASA WMAP website [2].
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In this study, we present a dependent components
model for source separation of multi-spectral image data,
where prior information about the sources and between-
source dependencies is quantified as a multivariate GMM,
using variational Bayes techniques for model parame-
ter estimation. This article can thus be considered as an
extension of [3], modeling dependencies between-sources
through generalizing the prior to multivariate GMM.

The rest of the article is structured as follows. The
next section gives the model for the mixing problem and
describes the hierarchical Bayesian model that we use,
including the prior we assume for the sources. Section
“Implementing the source separation” describes the vari-
ational Bayes approach we use for the implementation
of the separation. Section “Examples” provides results on
both synthetic Planck and real WMAP images. Finally, we
provide a discussion of the results in the last section.

Model

The model description is defined in terms of the
microwave source separation problem, where there are s
maps of the sky at frequencies (v1, ..., v,,), each map con-
sisting of / pixels. The data are denoted d; € R",j =
1,...,J. The source model consists of n; sources and is
represented by the vectors s; € R, with each compo-
nent representing the amplitude of a physical source of
microwaves. We assume that the d; can be represented as
a linear combination of the s;:

d; = As; + e, (1)

where A is an ny x ng “mixing” matrix and e; is a vector
of ny independent Gaussian error terms with precisions
(inverse variances) T = (rl,...,rnf). For convenience,
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Figure 2 Observations on the three of the nine channels (lowest,
middle, and highest frequencies are shown) of the data
generated from the source separation model with realistic
simulations of CMB, synchrotron, and galactic dust.

define

D= {dij|i=1,...,l’lf,j=1,...,]};
S ={sylk=1,...,n5j=1,...,]}

to represent all data and sources.

We assume dependence between the sources, defined by
a prior distribution p(S|y) with parameters . The goal
is to estimate the S and the parameters 1 associated with
the model for S, given observation of D. The noise vari-
ances 7 and the mixing matrix A are assumed known.
GMM are used to represent the non-Gaussian sources, in
which case it is an example of a model known as a mixture
of factor analyzers [10]. As in [10], we adopt a Bayesian
approach to the data fitting, implemented by a variational
Bayes approach.

Bayesian inference will be based on the posterior dis-
tribution, which following the above description can be
factorized as

PSS, ¥IA, D, 1) x p(D[S, A, T)p(S|¥)p(¥). (2)
Each element of this distribution is defined next in turn.
Noise structure

Gaussian error, ej, is assumed independent within and
between pixels j and frequency, which gives

] nf . .
p(DIS, A, 7) = E g ;—; exp (-%(d,, _ Ai.sj)z)

(3)
where A;. is the ith row of A.

Mixing matrix structure
In this application, A is parameterized and denoted A(6).
Each column of A(0) is the contribution to the observa-
tion of a source at different frequencies, which is written
as a function of the frequencies and 6. These parameter-
izations are approximations that come from the current
state of knowledge about how the sources are generated.
Here, we merely state the parameterization that we are
going to use, and refer to [11] for a more detailed expo-
sition on the background to them. Some restrictions are
usually placed on A(f) in order to force a unique solution;
this is achieved here by setting the first row of A(0) to be
ones.

It is assumed that the CMB is the first source and
therefore it corresponds to the first column of A(6). It is
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Figure 3 The simulated sources used to generate the simulated
datain Figure 2.

modeled as a black body at a temperature, and its con-
tribution is a known constant at each frequency. The
parametrization of the mixing matrix is given as

gy
gy)

Aq(0) = , (4)

where

() = ( hv; )2 exp(hv;/kgTo)
g = kgTo) (exp(hvi/kgTy) — 1)%’

To = 2.725K is the average CMB temperature, / is the
Planck constant, and kg is Boltzmann’s constant. The ratio
g(vi)/g(v1) is designed to ensure that A;;(f) = 1 as we
constraint the first row of A(f) to be ones.

Ap@) = (:—:) ,

exp(hvy /kgTy) — 1 (v \ T
As(®) = 2,
13(9) exp(hvi/kBTl) -1 V1 and

Vi “r
Aud) = (v_1) ,

where T7 = 18.1 K is the assumed thermodynamical tem-
perature of the dust grains, and column 2 corresponds
to synchrotron, column 3 to galactic dust, and column
4 is free—free emission. There are three unknown model
parameters for A, for synchrotron ks € {ks : —3.0 < ks <
—2.3}, the spectral indices for dust k; € {kz: 1 < kg <2},
and for free—free emission «y € {x7 : —2.3 < xy < —2.0}.

The sources

The distribution of s; is modeled as a GMM with m
factors. The model proposed allows for between-source
dependence; the vector of sources at a pixel is a mixture of
multivariate Gaussians

J m
pSI) =[] war(slita Q) (5)
j=1la=1
where
5 1
p(sjlﬂar Qu)= (lzg)lls €xp <_§(Sj - Ma)TQa(Sj - Ma))

for mixture component weights w,, mean vectors 11,4, and
precision matrices Q, so that ¥ is all the w,, u, and Q,,
with a = 1,...,m. Note that, in the standard inflation-
ary cosmological model the CMB is a single multivariate
Gaussian (m = 1) while the Galactic foregrounds might
require m > 1 to be correctly modeled. In order to fulfill
this, we set the CMB for components 2, . .., m of the mul-
tivariate mixture to be exactly zero in the implementation.
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Priors

The remaining term in Equation (2) is p(y¥). We use
the conjugate prior distributions [12] that facilitate the
computation of the posterior and yet flexible enough to
incorporate good prior information: Gaussians for the
component means, Dirichlet for the component weights,
and Wishart for precision matrices. In the microwave
source application, background knowledge about the
magnitude of the sources can be incorporated through
specifying values of the parameters of these prior distri-
butions. This prior specification follows [13], who discuss
how to specify these values in more detail.

Implementing the source separation

The posterior developed in the previous section does not
lend itself to an analytical solution. MCMC techniques
are one approach that let us evaluate complicated inte-
grals by sampling rather than by analytical or numerical
methods. The main criticism of Bayesian source sepa-
ration with sampling methods, MCMC in particular, is
their computational load and slow convergence. Regard-
ing the speed, they cannot compete with methods such as
FastICA [14,15].

There are several approaches to speed up the algorithm,
such as the strategies suggested in [16]. In the image
source separation problem framework, the Langevin sam-
pling scheme has been implemented [4], as a way to obtain
a faster MC algorithm.

In this study, the source separation model presented
in Section “Model” is implemented by a variational
Bayesian approach [10,17,18], that allows for more effi-
cient inference when dealing with large data when com-
pared with MCMC techniques. In essence, given the
data D and a model with parameters 6 and latent
variables Z, the variational Bayes method is based on
approximating the posterior distribution p(Z,0|D) with
a factorial approximation ¢(Z,0|¢) = q(Z|¢z)qO|ds),
where ¢ are the variational parameters. The approx-
imation is fitted by minimizing the Kullback-Leibler
divergence between g and p, or equivalently maximiz-
ing a lower bound on marginal log-likelihood of the
data.

Attias [19] has recently developed a fully Bayesian
approach to GMM with a variational approximation to
the posterior that, when choosing conjugate priors, leads
to the following components: Wishart densities for the
precisions, Q,; Normal densities for the means, u,; and
a Dirichlet for the mixing coefficients, p; and a dis-
crete distribution for the indicator posteriors, z;j, which
indicates the component that explains information in
pixel j. We further derived the variational approxima-
tion to the marginal posterior of sources, s;, which
turns out to be a multivariate Gaussian distribution.
In brief

Page 5 of 11

q(sj) ~ MVN(A‘?,B}’)
q(p) ~ D)
q(1alQa) ~ N(Sa) BaQa)
q(Qa) ~ Wa, Va)

and

q(zj = a) x exp (\P(Aa) - v (Z Aar>> |Va|%2%

1& Na+1—1i g
exp (2 ; v <72 )) exp (— 2/3“)

exp (2 (4 — 6 Vald] — &)+ r(Va(B) ™) )

where MVN stands for multivariate normal distribution

and ¥ denotes the digamma function. Note that g(z; =
a) is the probability that component a is responsible for
information in pixel j in sources, s;.

The quantities of interest, i.e., the hyper-parameters to
be computed, A}-’, B}’, A&y Bongand V, forj=1,...,]

and a = 1, ..., m, have the following values:
}’lf m
Bhu = Y thAiAi+ Y _ 4z = a)naVau
i=1 a=1

ANk = (B}~ 'v(k), with

}’lf " n
vk = ) udjAic+ ) az = ana y_(VouGa

i=1 a1 py

ha = Y ag=a)+ 25"
j

£ Zj[q(zj = a)Aj*] +55rior Erior

a = ‘
Zj q(zj =a)+ ﬁgrlor
ﬂa = Zq(zj — a) +ﬁ5rior

]
prior

Na = Zq(zj =a)+1a
j

2q(zj= o~
Va =Y, {q(z,- =a) [(1 - fo;;};’;)) B+ @
A} — i) (4] — )T ||+ VR

prior

+ a

prior

(> a(zj=a)][P+(fta—Ea
Ba

Y(ia—E2" T
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Figure 4 The posterior mean of the reconstruction of the CMB with a scatter plot of true versus posterior mean.
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Computations were carried out using Matlab.

Examples

Analysis of simulated data

The synthetic Planck data were generated using the Planck
Sky Model (PSM) package. The PSM is a set of IDL codes
created by the Planck WG2 team in order to provide real-
istic simulations of the sky at the Planck frequencies [20].
Figure 2 shows data obtained from realistic simulations of
CMB, synchrotron, and galactic dust on a 512 x 512 patch.
The original sources are shown in Figure 3. The data
were generated at the nine frequencies that are observed
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Figure 5 The posterior mean of the reconstruction of synchrotron and galactic dust.

by Planck from 30 to 857 GHz. The mixing matrix used
was as defined in Section “Mixing matrix structure” with
ks = —2.9 and k; = 2.0. Noise precisions were those
published by the Planck research team [21]. After explor-
ing several values for m, the number of components in the
GMM source model was fixed to be m = 1, as it provided
the best fit, taking into account the compromise between
fit and number of parameters in the model.

Figure 4 shows an estimate of CMB, along with a scat-
ter plot of this estimate against the true value, as shown
in Figure 3. Such an estimate is the average of the samples
obtained for the first column of A*, which corresponds
to CMB. We see from the scatter plot and from compari-
son with Figure 3 that the reconstruction of CMB is very

accurate here. The same is true for the other two sources,
as shown in Figure 5.

Table 1 shows the mean of the parameters of the
model. Regarding the between-sources dependence struc-
ture, posterior estimates of Vl_kl, k = 2,3 are approxi-
mately 0, suggesting independence between CMB and the

other sources, as expected. On the other hand, posterior

Table 1 Mean estimate of parameters for simulated data

0.020 4665 0 0
i=| 0014 Q=] o 0006 0003 | x 108
0008 0 0003 0010
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Figure 6 Temperatures (in mK) at 20° square patch of the sky from WMAP [2] at 5 microwave frequencies (clockwise from top left) 22, 30,

Table 2 Parameter estimated mean for WMAP data
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A ) 0.051 . 0 147 —004 —160
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0.003 0 008 028 026
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Figure 7 Estimated CMB.

estimate of Vz_sl # 0, indicating dependence between
synchrotron and galactic dust.

Analysis of a WMAP year 5 patch

The WMAP [22] was launched in 2001 and data collection
activities finished in 2010. It observes 5 frequencies from
22 to 90 GHz. Figure 6 shows a patch of 5-year WMAP
data.

The algorithm was implemented with four sources
(CMB, synchrotron, dust, and free—free emission). The
noise precisions were assumed to be the published values
for WMAP detectors. The spectral density for free—free
emission was fixed at —2.14 (following [11]) and the syn-
chrotron and dust spectral indices were as in the first
example. The number of components in the GMM source
model were fixed to be m = 2, following the same
reasoning as in the simulation study. Informative priors
were placed on the GMM parameters, based on discus-
sions on the expected marginal properties of the sources.
Table 2 shows the mean of the mixture parameters of the
model. Figure 7 shows the estimated CMB. The result
obtained is in agreement with previous work [3], as can be
appreciated in Figure 8 that shows an histogram of the dif-
ferences between the estimated CMB using the approach
presented here and the estimated CMB obtained in [3].

Finally, in order to show the fit of the data to the model,
Figure 9 is a scatter plot of the observed value of the dj;
with the standardized residuals, with one figure for each
frequency k =1,...,5.

Conclusion

A fully Bayesian factor analysis algorithm has been pre-
sented and applied to a multi-channel image source sepa-
ration problem, where dependencies between sources are

Page 9 of 11

modeled as a multivariate GMM. The algorithm performs
very well on simulated Planck data and has been applied
to data from WMAP.

In this study, we extend previous approaches [3] by
allowing the source priors to be a mixture of multivariate
Gaussian distributions for each pixel.

The development of this methodology is motivated by
the need to bring an efficient solution to the separa-
tion of components in the microwave radiation maps to
be obtained by the satellite mission Planck which has
the objective of uncovering CMB radiation. The pro-
posed algorithm successfully incorporates a rich vari-
ety of prior information available to us in this problem
in contrast to most of the previous work that assumes
completely blind separation of the sources. Further, the
variational approach presented here overcomes the con-
vergence problems of the MCMC stated in [23], when
dealing with large datasets such as that will be provided by
the satellite mission Planck.

In the analysis of simulated data, the number of compo-
nents in the GMM source model turned out to be m =
1. This means that sources are multivariate Gaussian a
priori. On the other hand, for real data, the number of
components is m = 2. In blind source separation problem,
identifiability relies on the independence of the sources.
In this study, in spite of modeling the sources as Gaus-
sians when m = 1, identifiability is obtained because of
the prior information which is incorporated to the model,
given structure to the mixing matrix.

Another type of dependence is that a source is spa-
tially correlated. Spatial dependence is most conveniently

!

-0.1 0 0.1

Figure 8 Histogram of the (pixel-by-pixel) differences between
the estimated CMB using the approach presented in this article
and the estimated CMB obtained in [3]. The result obtained is in
agreement with previous work.
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Figure 9 Assessment of model fit. Scatter plot of the posterior predicted values of d; against the standardized residual over all pixels.

modeled by a Gaussian MRF and some preliminary work
on this idea can be found in [5]. Combining with cross
source correlations, one might ultimately consider a mix-
ture of multivariate Gaussian MRF as a prior for the
sources. Implementing the analysis with such a prior
would be a significant challenge computationally; we
hypothesize that it will be difficult to derive a well-
behaved MCMC approach. Other functional approxima-
tions, such as that of [24], offer feasible alternative to
computing the posterior distribution in this case.

Finally, although the technique was developed for the
astrophysical source separation problem in mind, it is
general and it is applicable to other source separation
problems as well.
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