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Abstract

Independent vector analysis (IVA) is a special form of independent component analysis (ICA), which has demonstrated
its prominent performance in solving convolutive blind source separation (BSS) problems in the frequency domain.
Most IVA algorithms are based on optimizing certain contrast functions, where the main difficulty of these approaches
lies in finding a reliable and fast estimation of the unknown distribution of sources. Despite the rich availability of
efficient tensorial approaches to the standard ICA problem, these methods have not been explored considerably for
IVA. In this article, we propose a matrix joint diagonalization approach to solve the complex IVA problem. The new
factorization neither relies on a whitening process, nor does it require an estimate of the joint probability distribution
of the dependent signal groups. The latter is in contrast to most IVA approaches up to date. The underlying geometry

of the problem is investigated together with a critical point analysis of the resulting cost function. A conjugate
gradient algorithm on the appropriate manifold setting is developed.

1 Introduction

Independent component analysis (ICA) is a standard sta-
tistical tool for solving the blind source separation (BSS)
problem. BSS aims to recover source signals from the
observed mixtures, without knowing either the distribu-
tion of the sources or the mixing process. Application of
the standard ICA model is often limited, since it requires
mutual statistical independence between all individual
components. However, in many applications, there exist
groups of signals of interest, where components from
different groups are mutually statistically independent
indeed, but where mutual statistical dependence occurs
between components in the same group. Such problems
can be tackled by a technique now referred to as multidi-
mensional independent component analysis (MICA) [1],
or independent subspace analysis (ISA) [2].

A special form of ISA arises in solving the BSS prob-
lem with convolutive mixtures [3]. After transferring the
convolutive observations into the frequency domain via
short-time Fourier transforms, the convolutive BSS prob-
lem results in a collection of instantaneous complex BSS
problems in each frequency bin. After solving the sub-
problems individually, the final stage faces the challenge
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of aligning all statistically dependent components from
different groups, which is referred to as the permutation
problem. To avoid this problem, a new approach named
independent vector analysis (IVA) has been proposed in
[4]. Besides its application in convolutive BSS problem,
IVA has also recently been applied to analyze multivari-
ate Gaussian models, cf. [5,6]. In the current literature,
the majority of IVA algorithms are based on optimizing
certain contrast functions, cf. [5,7-9]. The main difficulty
of these contrast function based approaches lies in esti-
mating the unknown distribution of the sources, which
usually requires a large number of observations [10].

On the other hand, tensorial approaches are efficient
and richly available to solve both the ICA and ISA prob-
lems. In particular, joint block diagonalization approaches
are shown to be effective methods for solving the ISA
problem, cf. [11,12], and are inherently applicable to
IVA. However, such general joint block diagonalization
approaches do not take the intrinsic structure of the IVA
problem into account. Recent study in [13] proposes a
joint diagonalization approach of cross cumulant matri-
ces to solve the complex IVA problem. More recently,
the present authors have developed a similar approach
of jointly diagonalizing both cross covariance and cross
pseudo covariance matrices, cf. [14]. In this article, we
extend the previous study in [14], and adapt the so-
called complex oblique projective (COP) manifold, which
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has proven to be an appropriate setting for the stan-
dard instantaneous complex ICA problem [15], to the
current scenario. Finally, an efficient conjugate gradient
(CQ) based IVA algorithm is proposed, and numerical
experiments are provided to demonstrate the convergence
properties of the proposed CG algorithm, and to com-
pare its performance with two recently developed IVA
algorithms in terms of separation quality.

2 Notations

Throughout the article, (-) " denotes the matrix transpose,
()" the Hermitian transpose, (-) the entry-wise complex
conjugate of a matrix, and by G/(m) the set of all m x m
invertible complex matrices. The Frobenius norm of a
matrix A € C"*" is denoted by ||A || := +/tr(AAH), where
tr(-) is the trace of a square matrix. Given a square matrix
Z e O™, ddiag(Z) forms a diagonal matrix whose diag-
onal entries are those of Z, and off(Z) generates a matrix
by setting all diagonal entries of Z to zero, i.e. off(Z) :=
Z — ddiag(2).

In this study, we consider an m-dimensional complex
signal s(¢) =[s1(),...,5m ()] € C™ as an m-dimensional
complex stochastic process indexed by the variable ¢£. The
empirical expectation of a random variable s is denoted
by E[s(¢)] = % Z;T=1 s(t), where T is the number of sam-
ples. As usual for the standard ICA model, we assume
without loss of generality that E[s(£)] = 0. The empirical
covariance and pseudo-covariance matrix of complex sig-
nals s(¢) are referred to as cov(s(z)) := E[s(®)s(®)"] and
pecov(s(t)) := E[s(t)s(t) "], respectively.

3 Problem description

It is known that convolutive BSS problems can be trans-
formed into in the frequency domain, and can be solved as
instantaneous complex BSS problems for every frequency
simultaneously, when the demixing filter is sufficiently
longer than the mixing filter, cf. [16,17]. In this study, we
consider the spectral time-frequency representation of a
signal in terms of a short-time Fourier transformation that
is centered at time t. Let w;(¢,f) € C and s;(t,f) € C
denote the coefficient of the center frequency f of the ith
observation w;(¢) and the ith source signal s;(¢), respec-
tively. Then, for a given pair (¢, f), the Fourier coefficients
of the observations and the sources obey the equality

w(t,f) = Ags(t, f), (1)

where w(t,f) ::[wl(t,f),...,wm(t,f)]Te ", s, f) =
[s1(t.f), ... sm(t,f)]T € C", and Ay € C"™* serves as a
complex mixing matrix. More compactly, for a fixed fre-
quency f, we get a standard instantaneous complex BSS
problem as

W(f) = ArS(f), (2)
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where W(f) €[w(1,f),...,w(T,f)]le C"*T and S(f) €
[s(Lf),...,s(T, )]l e C"™T, with T being the number of
chosen time frames. One popular approach to solve the
convolutive BSS problem is to solve the individual instan-
taneous BSS problem at each frequency (2), and then
assemble the results from each frequency to reconstruct
the estimated signal in the time domain [18].

Let us denote the rows of S(f) by si(f) =
[si(L,f)s...,s:{(T,f)le C*T for i = 1,...,m. Following
the assumption of statistical independence between the
sources, the complex valued signals s;(f) and s;(f) are
statistically independent for i # j. In contrast, we assume
that for a pair of frequencies (fy,f;) with f, # f;, the
complex signals s;(f,) and s;(f;) are statistically dependent
for a given source. The development of IVA is inspired
by this cross frequency structure. It aims to find a set of
demixing matrices {X¢} C GIl(m) via

Y(f) = X W(f), (3)
such that

(1) all sub-ICA problems are solved, and

(2) the statistical alignment between groups is restored,
i.e. the estimated ith signals {y;(f)} are mutually
statistically dependent.

The main idea for our approach is to exploit the
cross covariance matrices between groups of observations
defined as

T
1
cov(W(f), W(f)) := - § w(t, fyw(t, f)1
t=1

T

1 (4)
= A(f) - > s s )T AT

t=1

=:cov(S(f),S(f))

Similarly, the so-called pseudo cross covariance, defined
as

T

1 ‘ T
T;mmmw> -

= A(f;) peov(S(f), SUNAK) T,

also allows to gain additional information about the
second-order statistics of the involved signals. In this
study, we assume that cross covariances between sources
in all groups do not vanish. The assumption of statistical
independence between the source signals implies that the
cross covariance matrix cov(S(f;), S(f))) and the pseudo
cross covariance matrix pcov(S(f;), S(f;)) are diagonal for
all pairs (i,j). With a further assumption on the sources
being non-stationary, which has been exploited in [19],
we arrive at a problem of jointly diagonalizing two sets of

pcov(W (f), W(f))) :=
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cross covariance and pseudo cross covariance matrices at
different time instances.

To summarize, we are interested in solving the following
problem. For a complex IVA problem with k subprob-
lems, we consider the cross covariance and pseudo cross
covariance matrices at z time instances, i.e. for all i,j =

1,...,kand t = 1,...,n, a set of matrices {Ci(jt)}Kj and

a set of complex symmetric matrices {Rg)}iq, which are
constructed by

and RE?:A,@E}&T,, (6)

where Ql(«;), 525;) € C"™" gre diagonal. The task is to find
a set of matrices {Xi}f=1 C Gl(m) such that

XM C}l.”Xj and X{*Rﬁﬁ)?,-, )

forall i < jand ¢t = 1,...,n, are simultaneously, or
approximately simultaneously diagonalized. In this study,
we study the noise free IVA problem as defined in (2), and
neglect the cross covariance matrix estimation errors due
to the finite sample size effect. In other words, we assume
that both sets of C;t) ’s and Rl(}«t) s are jointly diagonalizable.

Note that the above problem is similar to the simul-
taneous SVD formulation proposed in [20], where only
the situation with two transform matrices is studied, i.e.
k = 2. To the contrary, our current setting deals with the
cases of multiple transform matrices {X;};—1 ..k, which are
not restricted to be unitary. Finally, instead of consider-
ing second order cross covariance matrices, our developed
approach can be generalized to the high order cross cumu-
lants. We refer to [17] for further details.

4 Diagonality measure and the COP manifold

Our cost function to tackle problem (7) originates from
the popular off-norm function that measures the squared
Frobenius norm of the off-diagonal entries of the involved
matrices. We develop an appropriate mathematical setting
on the subsequently defined complex oblique projective
(COP) manifold to provide its critical point analysis.

4.1 Derivation of the cost function

For legibility reasons, from now on, we only consider the
problem of simultaneously diagonalizing the covariance
matrices, i.e. the first condition in (7). The combina-
tion with the additional requirement that also the pseudo
cross covariance matrices may be used for estimating
the demixing matrix is straightforwardly adapted to our
setting and not further discussed here.

Let us define the off-norm function as

g: (Glm)* - R,

gX,. ., Xp) == ii% HOff(XPC;;)Xj) Hi 8

i<j t=1
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Due to the noise-free assumption and since we neglect
finite sample size effects, the set of joint diagonalizers
(X7, ...,X}) of the C;;) in Equation (7) is a global min-
imum of g, that is g(X7,...,X) = 0. It is clear that
a minimization approach without further constraints on
the X; would drive all diagonalizers to zero. In order to
avoid such trivial solutions and to regularize the mini-
mization problem, the authors in [21] propose to restrict
all columns of transform matrices to have unit norm. This
set is known as the oblique manifold, which has been
shown to be an appropriate setting for matrix diagonal-
ization, cf. [22]. Its complex counterpart is the so-called
complex oblique manifold

Ob(m) = {X € Gl(m) ‘ ddiag(X"X) = I, } ©)

and we denote by Obk(m) the product manifold of k
copies of Ob(m). The restriction of the off-norm cost
function (8) is denoted by

a: Obk(m) — R,

Q. X0 =Y )5 Hoff(Xi X)) HF
i<j t=1

Now denote the pth column of X; by x;,. It is obvious
that the function g; is invariant with respect to the phase
difference of each column x;,, which reflects the well-
known scaling ambiguity of complex ICA problems. By a
further calculation, g; has the form

1 k n m 5
_ H ~()
LXp) = 5 E E E xipCi/ qu‘
i<j t=1 p#q

1 k n m H
H ~() H ~()
e D DPICAGEACAE

i<j t=1 p#q

aXy, ..

k n m
1 HY 0 (. H) ~OH
=522 2.t (et 7 (miay) 7).
i<j t=1 p#q
(11)

Instead of fixing a phase for each x;,, in this study we
employ an elegant mathematical setting for the problem.
Recall the fact that each xipxi«" defines a Hermitian rank-
one projector, the set of which identifies the (m — 1)-
dimensional complex projective space CP" 1, i.e.

CP7l = {P e Cmm ‘PH —P,P*=P,u(P) = 1 } .
(12)

By doing so for each column and by maintaining the
fact that the columns of X; form a complex basis (i.e.
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invertibility of X;), we naturally arrive at the following set,
which we refer to as the complex oblique projective (COP)
manifold,

Q(m) = {(pl, .. Py |Pi € CP" 1 det (fpi) > o}.

i=1
(13)
The off-norm cost function g; now induces the follow-

ing function g on the COP manifold. Namely, if ok (m)
denotes the k-times product of Q(m), g, is given by

g: Ofm) - R,

AL O p, AOH (14)
£P1,...,Py) = ZZ ZtrPiPCij PG

i<j t=1 p#q
with P; := (P;1,...,Py).

4.2 The geometry of the complex oblique projective
manifold

In this section, we recall some basic facts and con-
cepts that are necessary for developing a Riemannian CG
algorithm on the COP manifold, cf. [23]. In particular,
we require a formula for the parallel transport and the
geodesics of the COP manifold. We endow Q(m) with the
standard Riemannian metric

(A1, Ap), By, ..., By)) = Y tr(AiBy),

i

(15)

inherited from the Euclidean metric of the m-fold product
of Hermitian matrices. With this, Q(m) is an open and
dense Riemannian submanifold of the m-times product of
CP"~! with the standard metric, i.e.

Q(m) =: (CP"~1)", (16)

where Q(m) denotes the closure of Q(m). Accordingly,
the tangent spaces, the geodesics, and the parallel trans-
port for Q(m) and (CP"~1)" coincide locally and thus are
easily derived from the geometry of CP”~!. We refer to
[24] for further discussions and details about CP”*~1,

Let us denote by

u(m) = {sz e Crmxm ]sz — _qf } (17)

the set of skew-Hermitian matrices. The tangent space at
Pin CP" ! is given by

TpCP" ! = ([P, Q]| Q € u(m)} (18)

where [ A, B] := AB — BA is the matrix commutator. Then,
the tangent space at P = (Py,...,Py) € Q(m) is simply

the Cartesian product
TpQ(m) = Tp,CP" ! x ... x Tp, CP" 1, (19)

With the above metric, the geodesics through P €
CP"~ ! in direction Z € TpCP™~! are given by
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t[Z,P]Peft[Z,P]’

ypz: R— CP" 1 yps(t):=e

(20)

where e denotes the matrix exponential. Thus, the
(local®) geodesic through P € Q(m) in direction Z :=
(Z1,...,Zy) € TpQ(m) is given by

wz(®) = (vp1,2.©), .. ., VP2, (D) - (21)

The parallel transport of W := (W, ..., ¥,,) € TpQ(m)
with respect to the Levi-Civita connection along the
geodesic yp z(¢) is

,2(V) = (12,2 (V1)s - - > T2 (W) » (22)

with tpz being the parallel transport of ¥ € TpCP"—1
with respect to the Levi-Civita connection along the
geodesic yp z(?), i.e.

(V) = el@Plye 80, (23)

The natural or Riemannian gradient of a function that
is the restriction of some globally defined function to a
sub-manifold is simply the orthogonal projection of the
Euclidean gradient onto the corresponding tangent space.
For the complex projective space, this projection is given
by

Mp: C™™ — TpCP"™ !, A [P, [P, L(A+A™)]].
(24)

It is easily seen that the operator Ilp is an orthogo-
nal projector on the tangent space TP(C]P””_l, i.e. that
Ip o Mp(A) = TIp(A) and that the null space of Ilp
is orthogonal to its image. Here, o denotes the compo-
sition of functions. The formulas for the tangent spaces,
the geodesics, the parallel transport, and the projection
onto the tangent spaces of QX () follow directly from the
product manifold structure.

5 Critical point analysis of the cost function

In this section, we conduct a critical point analysis of
the cost function gy on the product COP manifold. We
show that the joint diagonalizers are a non-degenerate
global minimum of gy, This is an important fact, since in
many cases the speed of convergence relies on the non-
degeneracy of the minima. First of all, we present a lemma
which originates from the derivation of the cost from the
off-norm function.

Lemma 1. Let us assume that all Ci(jt) s are jointly diag-
onalizable. If (XT,...,X}) € ObX (m) minimizes the cost
function g1, as defined in (10), i.e. X;"HCI.(;)X;F = Dl(jt) =
diag(dfjtl), ces dfjtr)n) being diagonal forallt = 1,...,n and
i,j =1,...,k then the set of corresponding Hermitian pro-
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*H

jectors P* = (P},...,Py) € QX(m) with P}, := xjxif! €

CP"~! minimizes the cost function g, defined in (14) and
¢
PLC Py =0, forp # q,

forp=gq.

(25)
] (2)
P, C; Pj”; = dl.lpP;;,
The above lemma follows directly from the condition
of X;”"Ci(jt))(]?k being diagonal, i.e. its (p, g)th entry is com-
puted as

H ) 0, forp # g,
x,-pC,«, Xig = @ _ (26)
dijp, forp =gq.
Now, let P := (Py,...,P,) € QK(m) be arbitrary.

We compute the first derivative of g at P € O%(m) in
direction Z := (Zy, ..., Zy) € TpQ¥(m) as

k m n
Do(PZ=) > > trZyCP P, C"

i<j p#q t=1 (27)

+tr Py Cl Ziy CPM.

By recalling the structure of the tangent space of Q% ()
and the result in Lemma 1, it is trivial to see that the first
derivative of gy vanishes at P*, which corresponds to the
correct joint diagonalizers.

The remainder of this section addresses the character-
ization of the Hessian of gy at the joint diagonalizers. To
that end, we denote by off(m) := {Z € C"™ | z; = O,
i =1,...,m} the set of matrices with zero diagonal. Let 7
be the natural projection

7 Ob(m) — Q(m), w(X) = (xal, ..., xuxll) (28)

and let ux be defined as

jux: off(m) — Ob(m),

. 1 1
Z > X + Z>d1ag<n>((el+mu SRE ||X(em+zm>||)'

(29)

where ¢; denotes the jth standard basis vector. Note, that
wx defines a locally injective but not bijective mapping.
The composition of 7 and px, however, yields a local dif-
feomorphism. With the shorthand notation P := 7 (X),
the mapping

¢p: off(m) > Q(m),  Z+> 7w opux(Z) (30)

is a local parametrization around P and thus permits a
local parameterization of Ok (m) via

Dp: offk(m) — Ok (m),

(ZI’ ) ’Zk) = (¢P1 (Zl)r R !¢P/< (Zk))r

(31)
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with ®p(0) = P := (Py,..
map T®p is given as

., Px). The associated tangent

T®p: Toff(m) = off (m) — Tp QX (m),

(O1,...,0) —

<x11$(x11)91H1 + gt

Kt )y + O o))

(32)
where &(x;,) == Iy, — xipx; is the orthogonal projection
operator onto the complement space of x;,. Let Z :=
Tdp+(0©) € Tp+QX(m). Then, we can compute the Hes-
sian of gy at the critical points P* € Ok(m), i.e. the sym-
metric bilinear form Hg,(P*): Tp« Ok (m) x Tpx QK (m) —
R via

He, (P*)(Z, Z) = Hg, (P*)(T®p+(©), Tdp+(©))
= L (@0 Pp)(tO)

t=0

k
i<j p#q t=1
k m n
=222

i<j p#q t=1

Op) L 10,0
d,jpep;+di,q9qp .

(33)

The last equality holds by following the results in
Lemma 1, i.e. XfHijt))(lfk = Dg), which is equivalent to
Ci(jt) = X;'“HDI(;)X‘**I and the fact that Z;; = (I, —
Pi1)X}6;p. It can easily been seen that the Hessian form
(33) is positive definite if and only if all (2 x 2)-matrices

n 2 46 L0
\dipp1” dijq iy 1)
() 5t ®) 2
=1 | djpdig  Iddjq

are positive definite. Since this is a generic assumption on
the data, we have the following result.

Theorem 1. Generically, the global minimizer of the cost
function g is non-degenerate.

6 ACGIVAalgorithm

In this section, we introduce a general form of CG
algorithms on matrix manifolds. After computing the
Riemannian gradient of the cost function on the COP
manifold, we develop a CG based IVA algorithm. The
CG methods on matrix manifolds are shortly reviewed
here. They form the backbone of the algorithm for our
optimization problem on the COP manifold and explain
the use of the differential geometric concepts derived in
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Figure 1 Convergence behavior of the proposed CG algorithm.
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the previous sections. For an in-depth introduction on
optimization on matrix manifolds, we refer the interested
reader to [23].

Let M be a submanifold of some Euclidean space with
inner product (-,-) and let f: M — R be smooth. The
CG method is initialized by some xy € M and the descent
direction Hy := —gradf (xo) given by the Riemannian gra-
dient. If f is the restriction of a globally defined function
f to M, the Riemannian gragient is just the orthogonal
projection of the gradient of f to the tangent space, i.e.

grad f() = T, (V). (35)
where Vf(x) denotes the Euclidean gradient of]?, and
I, is the orthogonal projection onto TxM. Subsequently,
sweeps are iterated that consist of two steps, a line search
in a given direction (i.e. along a geodesic in that direc-
tion) followed by an update of the search direction. Several
different possibilities for these steps lead to different CG
methods. Assume now that x;, H;, and G; := grad f(x;)
are given.

Given a geodesic y; with y;(0) = x; and y;(0) = H;,
the line search aims to find A; € R that minimizes f o
y:t — R. A generic approach for the step-size selec-
tion is a Riemannian adaption to the backtracking line
search and several modifications, cf. [23,25]. Here, we
present a closed form solution for the step-size selection
that works particularly well for our problem due to the
quadratic nature of our cost function, cf. [26]. It is based
on the assumption that a one-dimensional Newton step
along f o y yields a good approximation for its minimizer.
Explicitly, we choose the step-size as

L (ror)Wlico

Ve . (36)
| £5 (for) il

The absolute value in the denominator is chosen for
the following reason. While being an unaltered one-
dimensional Newton step in a neighborhood of a mini-
mum the step size is the negative of a regular Newton step

if :11722 (foy)V) | ;—o < 0and thusyields non-attractiveness
for critical points that are not minima.

In order to compute the new search direction H;y; €
T, ., M, we need to transport H; and G;, which are tangent
to x;, to the tangent space T, ;M. This is done via parallel
transport along the geodesic y, which we denote by

T TyM — Ty, M.

Xit+1

(37)

The updated search direction is now chosen accord-
ing to a Riemannian adaption of the Hestenes-Stiefel, the
Polak-Ribiére, or the Fletcher-Reeves update. Here, we
choose a different formulation that performs slightly bet-
ter in our situation than the afore mentioned ones, namely
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(Giy1, Gip1 — 7Gy)
(H;, Gi)

Albeit the nice performance in applications, conver-
gence analysis of CG methods on smooth manifolds is
still an open problem. Partial convergence results for CG-
methods on manifolds can be found in [27,28] and a recent
result in [29].

As it is clear from the above, the first step towards for-
mulating a CG algorithm for minimizing the cost function
&> is to compute its Riemannian gradient. Let us denote
by & the continuation of g to the embedding space
Crmxmxmxk Eollowing the computation in Equation (27),
we have the Euclidean gradient of g at P € ok (m), ie.
Vg (P) := (J1,-..,Jx), for each element /3, € C"*™, as

k m n 9y k m n 9y
Tp =323 Ci'PuCy™ + 33> G PGy

j>i p#q t=1 j<i p#q t=1

Vii=— (38)

(39)

By projecting it onto the tangent space Tp QX (m), we
get the Riemannian gradient of g at P € Q(m), i.e.
grad g&2(P) := (Gy,...,Gg) € T QK (m), for each ele-
ment G, € Tpl.p(C]P””_l, as

k m n
() (OH
Gir = P[P 33 €0 Puc

j>i p#q t=1

k m n
S aziac]
j<i p#q t=1
The above formula for the Riemannian gradient now
allows to implement the geometric CG algorithm for
minimizing the function g, as define in (14) in a straight-
forward way. A pseudo code is provided in Algorithm 1.

Algorithm 1 A CG IVA algorithm.
Input: A set of matrices {ijt)} C C"*"m for
Lj=1,...,m
Step 1: Generate an initial guess
PO :[Pgo) .. ,PIEO)] € QX(m) and set i = 1;
Step 2: Compute
GO =HD =[Hy,..., Hi] < —gradg,(P©) using
Equation (40);
Step 3:Seti =i+ 1;
Step 4: Update P < (yp, 1, (M), - ..
where A; is computed (36);
Step 5: Update H™™) «— —GUFD 4y 7, 50 (M),
where
GV = grad ;2(P?),
and y; is chosen according to Equation (38);

Step 6:1f i mod (2km(m —1) — 1) =0, set
HEHD . _gGtD,

» VP, Hy ()\i)))
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Figure 3 Comparison of separation performance.

Step 7:1f | GV | is small enough, stop. Otherwise,
go to Step 3;

7 Numerical experiments

In our experiment, we investigate the performance of our
method in terms of both local convergence property and
accuracy of estimating the joint diagonalizers.

7.1 Experiment one

The First task of our experiment is to jointly diagonalize
two sets of complex matrices, { Cl.(it) }i<jand {Rg)}Kj, which
are constructed by

CO = AQ0AY +eN! and RY = A;QPA] + NS
(41)

where the matrices A; € Gl(m) are randomly picked, both
real and imaginary parts of the diagonal entries of SZL(»;) and

ﬁgjﬂ are drawn from a uniform distribution on the inter-

val (0, 10), the matrices Né.{ e C"™*" and Ng e Cmxm
are a Hermitian and a complex symmetric matrix, respec-
tively, whose real and imaginary parts are generated from
a uniform distribution on the unit interval (—0.5, 0.5), rep-
resenting additive stationary noise, and ¢ € R is the noise
level.

In our experiments, we set m = 3, k = 3, n = 3. First
of all, we choose the noise level ¢ = 0. A typical local
convergence curve of our proposed algorithm is shown in

Figure 1. A tendency of superlinear convergence can be
observed.

In order to investigate the performance of the proposed
algorithm in terms of estimation accuracy, we restrict ¢ €
{0.1,0.5,1.0}, and run 50 tests. The performance index is
chosen to be the averaged Amari error, proposed in [30].
Generally, the smaller the Amari error, the better the sep-
aration. The quartile based boxplot of averaged Amari
errors of our proposed algorithm against three different
noise levels are drawn in Figure 2. Our CG algorithm
demonstrates its correspondingly delaying performance
with the increasing noise levels.

7.2 Experiment two

In this experiment, we compare our CG based IVA
approach, referred to as IVA-CG, with two second-order
statistics based IVA algorithms. We refer to one contrast
optimization based IVA algorithm as IVA-CO, cf. [5,6],
and the other matrix joint diagonalization based approach
as IVA-JD, cf. [13]. The task of this experiment is to
separate two groups of complex valued signals. We take
three real audio source signals with 480,000 samples, and
apply the short time Fourier transform to the sources with
the number of FFT points being 1,024. By doing so, we
end up with a complex IVA problem with 513 groups of
statistically dependent complex signals.

For a practical implementation of our method, note
that computing and jointly diagonalizing all possible
cross covariance and pseudo covariance matrices between
the 513 groups is prohibitively expensive. We overcome



Shen and Kleinsteuber EURASIP Journal on Advances in Signal Processing 2012, 2012:241

http://asp.eurasipjournals.com/content/2012/1/241

this issue by only taking two neighboring frequency
bins randomly at one time. The sources from each fre-
quency bin are mixed independently via multiplying a
mixing matrix, whose entries are drawn from a normal
distribution. We run the experiment 100 times, and plot
the boxplot of averaged Amari errors of the three stud-
ied algorithms in Figure 3. It depicts clearly that our
proposed IVA-CG algorithm outperforms the other two
consistently.

8 Conclusion

We propose a matrix joint diagonalization approach to
solve the complex IVA problem which does not rely on a
pre-whitening step nor on the estimation of the unknown
distribution of the sources. A mathematical setting is
derived that allows a formulation without ambiguity on
the set of unknown parameters, i.e. the dimension of the
search space is maximally reduced. This leads in a natural
way to a smooth manifold structure that we call complex
oblique projective manifold, due to its close relation to
the oblique manifold which consists of invertible matri-
ces with normalized columns. We propose to solve the
complex IVA problem via minimizing a cost function that
is based on the well-known off-norm function for mea-
suring joint diagonality. We show that our setting leads
to a non-degenerate Hessian for the solution of the IVA
problem. This is an important result for the design of
minimization methods, since in many cases, the speed
of convergence relies on the non-degeneracy of the min-
ima. We develop a geometric CG method for solving the
IVA problem and conclude by providing some numerical
experiments.

Endnote
2Note, that Q(m) is not a geodesically complete manifold.
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