
Ejaz et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:242
http://asp.eurasipjournals.com/content/2012/1/242
RESEARCH Open Access
Improved local spectrum sensing for cognitive
radio networks
Waleed Ejaz1, Najam ul Hasan1, Muhammad Awais Azam2 and Hyung Seok Kim1*
Abstract

The successful deployment of dynamic spectrum access requires cognitive radio (CR) to more accurately find the
unoccupied portion of the spectrum. An accurate spectrum sensing technique can reduce the probability of false
alarms and misdetection. Cooperative spectrum sensing is usually employed to achieve accuracy and improve
reliability, but at the cost of cooperation overhead among CR users. This overhead can be reduced by improving
local spectrum sensing accuracy. Several signal processing techniques for transmitter detection have been
proposed in the literature but more sophisticated approaches are needed to enhance sensing efficiency. This article
proposes a two-stage local spectrum sensing approach. In the first stage, each CR performs existing spectrum
sensing techniques, i.e., energy detection, matched filter detection, and cyclostationary detection. In the second
stage, the output from each technique is combined using fuzzy logic in order to deduce the presence or absence
of a primary transmitter. Simulation results verify that our proposed technique outperforms existing local spectrum
sensing techniques. The proposed approach shows significant improvement in sensing accuracy by exhibiting a
higher probability of detection and low false alarms. The mean detection time of the proposed scheme is
equivalent to that of cyclostationary detection.
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1. Introduction
Wireless networks are regulated today by using a static
spectrum allocation policy. However, an outsized portion
of the spectrum is used sporadically and the utilization of
the assigned spectrum ranges from 15 to 85%, as illu-
strated in Figure 1 [1]. The growing number of wireless
technologies and new applications are considerably in-
creasing the demand for more bandwidth. Such stringent
requirements cannot be met with the conventional infle-
xible spectrum management approaches in which each
operator is granted an exclusive license to operate. As
most of the useful radio spectrum has already been
assigned, vacant spaces are difficult to find for setting up
new services or add to existing services [2].
Cognitive radio (CR) is renowned for significantly en-

hancing the efficient utilization of the radio electromag-
netic spectrum, which is considered a precious natural
resource. CR is an intelligent wireless communication
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system built on the top of software-defined radio (SDR)
that learns from experience. By making use of both the
intelligence and re-configurability, the radio can switch
across the spectrum adaptively. Reconfiguration is per-
formed by SDR, while CR relies on signal processing tech-
niques for intelligence [2]. CR focuses on

� Efficient spectrum utilization
� Seamless communication of both CR users and

licensed users

Only an unallocated portion of the spectrum or white
space can be utilized by a secondary user (SU, i.e.,
unlicensed users using CR). Therefore, a SU searches
through the available spectrum for white space [3,4], a
process called spectrum sensing. The prime concerns of
spectrum sensing are that primary users (PU, i.e.,
licensed users) should not be disturbed by SU communi-
cation and that spectrum holes should be detected effi-
ciently for maintaining the required throughput and
quality of service.
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Figure 1 Fixed spectrum utilization [1].
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The most important local sensing techniques consid-
ered for CR are matched filter detection, energy detec-
tion, and cyclostationary detection [5]. Energy detection
needs much less sensing time but performs poorly under
low signal-to-noise ratio (SNR) conditions. One of the
well-known coherent detection techniques in the field
for spectrum sensing is matched filter detection. Cyclos-
tationary detection provides reliable detection but is
computationally complex.
Metrics for detection performance are the probability

of detection and false alarms. The probability that a SU
declares that a PU is present when the spectrum is idle
is called the probability of a false alarm. Conversely, the
probability that the SU declares that the PU is present
when the spectrum is occupied by the PU is called the
probability of detection. The probability of misdetection
indicates the probability that the SU declares that the
PU is absent when the spectrum is occupied. CR should
exhibit a low probability of false alarm and a high prob-
ability of detection. Misdetection leads to interference
with the PUs, while false alarms decrease the efficiency
of spectrum utilization [6].
Fuzzy logic has been proposed to solve many telecom-

munication problems since the 1990s. Applications of
fuzzy logic to CR systems are discussed in [7]. Fuzzy logic-
based cooperative spectrum sensing is proposed in [8] in
which estimated results of SUs are combined to get a final
result at the fusion center. In this article, we propose a
two-stage fuzzy logic-based detection (FLD) system for
local spectrum sensing. In the first stage, each CR performs
existing spectrum sensing techniques, i.e., energy detec-
tion, matched filter detection, and cyclostationary detec-
tion. In the second stage, the outputs of those detection
approaches are combined using fuzzy logic in order to
deduce the presence or absence of primary transmitters.
The remainder of the article is organized as follows.
Section 2 highlights the related work on transmitter de-
tection techniques for spectrum sensing. The system
model is presented in Section 3. The proposed fuzzy
logic-based spectrum sensing approach is discussed in
Section 4. Section 5 presents the numerical results con-
firming the accuracy of the simulation results and com-
parisons of the proposed approach with other detection
techniques. Finally, conclusions are in Section 6.
2. Related study
Spectrum sensing plays a critical role for the efficient
utilization of the radio spectrum. Researchers currently
focus on two major aspects in spectrum sensing: (1) how
to improve local sensing results and (2) cooperative
spectrum sensing for better data fusion results.
Cooperative spectrum sensing is a two-stage process

composed of (1) local sensing and (2) fusion of local
sensing results. In the first stage, each SU sniffs the
spectrum and deduces the presence or absence of PU. In
the second stage, local decisions of multiple users are
fused together for making the final decision on whether
a PU is absent or present. For improving cooperative
sensing, researchers focus on how to optimally fuse local
sensing results. Several optimal fusion schemes for co-
operative spectrum sensing have been summarized in
[6]. Although fusion rules may improve the final deci-
sion, the decision is highly dependent on the result of
the first stage. Therefore, improving the first stage can
improve cooperation results.
Researchers have recently focused on how to achieve

reliable results with less mean sensing time. The most
promising reforms applied to local spectrum sensing
are: using multiple antennas, using two-stage sensing
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schemes, and improving existing techniques. In [9,10],
the improvement of the sensing performance of energy
detection is achieved using multiple antennas at the
sensing node. In [11-14], two-stage spectrum sensing
techniques are explored, in which the first stage
involves coarse sensing and the second one involves
fine sensing. In the majority of two-stage sensing tech-
niques, coarse sensing performs energy detection while
fine sensing is later performed to verify the presence
or absence of PUs.
To improve the existing techniques, one-order cyclos-

tationary detection in the time domain is proposed in
[15], where the mean characteristic of the PU signal is
exploited in order to improve the efficiency of channel
sensing. Both real-time operation and low computational
complexity can be achieved using this detection scheme.
In [16], the energy detection technique is improved by
replacing the squaring operation with arbitrary positive
power operation. Power operation depends on the prob-
ability of false alarms, the probability of detection, the
average SNR, and the sample size. By choosing the value
of the power operation, detection performance of a con-
ventional energy detector can be improved. Advanced
sensing techniques for energy detection, including mul-
tiple antenna sensing and cooperative sensing, are dis-
cussed in [17].
L. A. Zadeh first introduced fuzzy logic in order to

cover more general linguistic notation for extending
binary logic. Fuzzy logic can be applied in CR networks.
In [18], fuzzy logic is used for the representation of
cross-layer information and for the implementation of
optimization strategies in CR networks. The fuzzy rea-
soning model that is appropriate for SU devices operat-
ing in heterogeneous networks is proposed in [19].
Fuzzy comprehensive evaluation is used for collabora-
tive spectrum sensing in CR networks [8,20]. Fuzzy col-
laborative spectrum sensing improves the performance
in terms of the probability of detection and false
alarms. However, introducing fuzzy logic at node-level
sensing can further improve the performance by im-
proving local sensing results. In our proposed approach,
fuzzy logic is used to make the local spectrum sensing
decision.
3. Spectrum sensing techniques
The most commonly employed spectrum sensing techni-
ques for transmitter detection are: matched filtering,
energy detection, and cyclostationary detection. These
spectrum sensing techniques are used for detection in
parallel and then the fuzzy logic approach is used to
determine spectrum holes. First, we will discuss each of
the transmitter detection techniques including their pros
and cons.
Recently, researchers have shown a great concern
towards spectrum sensing to induce the effective inter-
activity of CR with the environment. One of the major
spectrum sensing schemes is transmitter detection, in
which we determine the frequency at which the transmit-
ter is operating. A hypothesis model for transmitter detec-
tion is defined in [5] and models the signal received by the
SU as

r tð Þ ¼ n tð Þ when the PU is absent
hs tð Þ þ n tð Þ when the PU is present

�
ð1Þ

where r(t) is the signal received by SU, s(t) is the signal
transmitted by the PU, n(t) is additive white Gaussian
noise (AWGN), and h is the amplitude gain of the
channel. In general, the performance of spectrum sens-
ing techniques is measured on the basis of two metrics:
the probability of detection and the probability of false
alarms. The probability of detection is the probability of
SU’s correctly declaring the presence of a PU and the
probability of false alarms is defined as the probability
of falsely declaring the presence of a PU. For the best
performance, the probability of detection should be high
and the probability of a false alarm should be low.
3.1. Matched filter detection
One of the well-known techniques in the field of signal
processing for identifying a known pattern from a
received signal is matched filter detection. In the pres-
ence of additive stochastic noise, the matched filter is an
optimal linear filter for maximizing the SNR [21].
Figure 2 depicts the block diagram of a matched filter.
The signal r(t) received by SU is fed to the matched filter
and is expressed mathematically as

r tð Þ ¼ hs tð Þ þ n tð Þ: ð2Þ

which is a generic form of (1) and s(t) is 0 if the PU is
absent. The matched filter is equivalent to convolving
the received signal r(t) with a time-reversed version of
the known signal or template as

r tð Þ∗s T � t þ τð Þ: ð3Þ

where T is the symbol time duration and τ is the shift in
the known signal.
Finally, the output of the matched filter is compared

with a threshold factor λ1 in order to decide whether the
PU is present on the sensed spectrum.
The intuition behind the matched filter relies on the

prior knowledge of the PU waveform such as
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Figure 2 Block diagram of matched filter.
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modulation type, order, the pulse shape, and the packet
format. In order to meet such a stringent condition,
CRs need to have a cache for pattern information in
their memory and satisfy synchronization. Achieving
synchronization is the most cumbersome part of demo-
dulation. However, synchronization is still realizable be-
cause most PUs have pilots, preambles, synchronization
words, or spreading codes that can be used for coherent
detection [22].
The probability of detection, Pd,1, and false alarm, Pf,1,

of a matched filter are given [23] as

Pd;1 ¼ Q
λ1 � E

σw

ffiffiffi
E

p
� �

: ð4Þ

Pf ;1 ¼ Q
λ1

σw
ffiffiffi
E

p
� �

: ð5Þ

where Q is the Gaussian complexity distribution func-
tion, E is the energy of the deterministic signal of interest,
and σw

2 is the noise variance.
3.2. Energy detection
When it is difficult for the SU to bring adequate infor-
mation about the PU waveform, matched filter detection
is not a favorable choice. However, if the SU is given the
power of random Gaussian noise, energy detection
becomes a better alternative [22] for spectrum sensing.
Figure 3 depicts the block diagram for energy detection.
The elementary approach behind energy detection is the
estimation of the power of the received signal r(t). To
evaluate the power of the received signal, the output of a
band pass filter of bandwidth W is squared and inte-
grated over an interval T. Finally, the integrated value is
compared with a threshold λ2 in order to decide whether
the PU is present or not [24].
r(t)
Squaring 
Device 

Band pass 
Filter 

Figure 3 Block diagram of energy detection.
One of the major shortcomings of energy detection is
that the performance is vulnerable to uncertainty in
noise power. Energy detection determines the presence
or absence of the PU based on the received signal en-
ergy. Since this detection scheme cannot discriminate
between signal and noise power, it frequently causes
false alarms at low SNR values [1].
The probability of detection, Pd,2, and probability of

false alarm, Pf,2, of energy detection over the AWGN
channel are approximated in [14] as

Pd;2 ¼ Qm

ffiffiffiffiffi
2γ

p
;
ffiffiffiffiffi
λ2

p� �
: ð6Þ

Pf ;2 ¼
Γ ME;

λ2
2

� 	
Γ MEð Þ : ð7Þ

where Γ(.) and Γ(.,.) are complete and incomplete gamma
functions, respectively. Qm(.,.) is the generalized Marcum
Q-function, γ is the instantaneous SNR, ME is the time
bandwidth product, and λ2 is the decision threshold of
the energy detector.

3.3. Cyclostationary feature detection
Researchers suggest that cyclostationary feature detec-
tion is more suitable than matched filter and energy
detector techniques. As discussed earlier, the matched
filter as a coherent detector requires prior knowledge
about the PU’s wave. Although the energy detector, as a
non-coherent detection method, does not require any
sort of prior knowledge about a PU’s waveform and so is
easy to implement, it is highly susceptible to in-band
interference and changing noise levels [25] and cannot
differentiate between signal and noise power.
Commonly the primary modulated waveforms are

coupled with patterns also characterized as cyclostation-
ary features like sine wave carriers, pulse trains, repeat-
ing spreading, hopping sequences, and cyclic prefixes
Threshold
H02

2 H 1
Integrator 



C 3 Η1≥ λ

3 Η0< λ

r(t) Feature 
Detection

Average over 
T

Correlate
R(f)R(f-α)

Figure 4 Block diagram of cyclostationary detection.
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inducing periodicity [26]. SU can detect a random signal
with a specific modulation type in the presence of ran-
dom stochastic noise by exploiting periodic statistics like
the mean and the autocorrelation of the PU waveform.
Features like autocorrelation and mean are estimated by
analyzing spectral correlation functions (SCFs). Imple-
mentation of the SCF is depicted in Figure 4.
SCF, also called a cyclic spectrum, is a two-dimensional

function with a cyclic frequency α. Power spectral density
is a special case of a SCF with α = 0. The features
detected are the number of signals, their modulation
types, symbol rates, and presence of interferers. Using
the computed SCF and a hypothesis model for spectrum
sensing, we can determine whether a signal of a specific
cyclic frequency of interest is present or not [27].
The probability of detection, Pd,3, and probability of

false alarm, Pf,3, of one-order cyclostationary detection
over an AWGN channel are approximated in [15] as

Pd;3 ¼ 1� 1� Qm

ffiffiffiffiffi
2γ

p
σm

;
λ3
δA

� �
 �L
; ð8Þ

Pf ;3 ¼ 1� 1� e
� λ2

3
2δ2

A

 !L

: ð9Þ

where σw
2 is the variance, δA

2 = σm
2 /(2MC + 1) in which

Mc is the number of samples for detection, L is the num-
ber of diversity branches, γ is instantaneous SNR, Qm(.,.)
is the generalized Marcum Q –function, and λ3 is a pre-
determined threshold.

4. System model and framework
Figure 5 illustrates a system model for the proposed
spectrum sensing method. It is assumed that the PU
signal structure is unknown but it allocates fraction of
its power to transmit a deterministic pilot tone. This
model is suitable for many practical communication
systems in which the pilot tone is used for the data
frame synchronization. A digital television (ATSC)
signal is considered as the PU in which there is a
strong pilot tone signal which is a sinusoidal signal in
time domain. The spectrum sensing problem can be
stated as
r tð Þ ¼ n tð Þ when the PU
2
ffiffiffiffiffi
Ps

p
s tð Þ cos 2πf0t þ θ0ð Þ þ n tð Þ when the PU

�

where f0 is the carrier frequency and Ps and θ0 are the
initial power and phase of the carrier, respectively. The
signal s(t) is modeled as a(t)cos(2πfmt) in which fm is
the frequency of pilot tone in the TV signal and a(t) is
the analogue waveform. While on air, the signal
becomes corrupted with AWGN noise n(t). However,
any interference from users operating in a non-
overlapping band can be mitigated through linear
filtering. The SU will scan the whole spectrum and
detect whether there is a spectrum hole available or
not. All three transmitter detection techniques can be
applied on this model and are compared in [23] using
this model.
4.1. FLD
Traditional set theory has crisp concept of membership,
i.e., an element either belongs to a set or it does not. In
contrast, fuzzy set theory allows for partial membership.
Fuzzy logic was initially proposed to cover the problem
of reasoning under uncertainty. Decisions based on
fuzzy logic are made using vague information, human-
understandable fuzzy sets, and inference rules (e.g., IF,
THEN, ELSE, AND, OR, and NOT) instead of compli-
cated mathematics [8].
In order to test the applicability of fuzzy logic for the

mathematical hypothesis given in (1) and increase the
performance of local sensing, we propose an FLD
scheme for the final decision (presence or absence of a
PU). FLD offers several unique features that make itself
a particularly good choice for PU detection. It does not
require precise inputs therefore it is inherently robust.
Because the FLD system is governed by user-defined
rules, it can be modified easily to improve system per-
formance. Figure 6 shows the structure of FLD system.
When the input is applied to the FLD, the output is
computed by the fuzzy inference engine corresponding
to each rule. The crisp output is then computed by
defuzzification from output sets. The system has three
inputs and one output using singleton fuzzification,
Max-Product, as the conclusion method and the center
of area as the defuzzification method [7].
The FLD is designed to detect the PU accurately in

order to increase reliability of the detection and to avoid
is absent;
is present

ð10Þ
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Figure 5 System model for fuzzy logic-based spectrum sensing.
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interference with PU transmission. The detection of PU
is based on three antecedents, i.e., descriptors

� Antecedent 1: Normalized output of energy detector
� Antecedent 2: Normalized output of matched filter
� Antecedent 3: Normalized output of cyclostationary

detector

The linguistic variance used to represent each ante-
cedent is labeled high, medium, or low, indicating the
possibility of the presence of the PU. Each antecedent
uses two thresholds for the label choice. Let λ1A and λ1B
are two thresholds for which linguistic variance is high,
medium, and low when the output of detector is greater
than or equal to λ1A, between these two thresholds, and
less than or equal to λ1B, respectively. In this article, λ1A
and λ1B are set to be 0.25 and 0.75, respectively. The
consequence, i.e., the possibility of detection of PU, is
divided into seven levels which are worst, very bad, bad,
moderate, good, very good, and best. The triangular
membership function is used to represent high, medium,
and low for all three antecedents as shown in Figure 7a
and to represent worst, very bad, bad, moderate, good,
very good, and best for the consequence as shown in
Fuzzification 

Rules

Inferenc

Crisp input 

Figure 6 The structure of FLD system.
Figure 7b. Since there are 3 antecedents and 3 fuzzy
subsets, there are totally 27 rules for the proposed FLD
scheme. The fuzzy if-then rules in this FLD scheme are
of these types:
Rl: IF x1 is Fl

1, and x2 is Fl
2, and x3 is Fl

3, THEN the pos-
sibility (y) that the PU is present is Dl where l=1,2, . . .,
27.
Table 1 presents a rule base for combining the fuzzy

information. The other rules can be interpreted in a
similar way due to the symmetry of the rule base. The
output y from the FLD system is

y x1; x2; x3ð Þ ¼
μF1

l
x1ð Þ þ μF2

l
x2ð Þ þ μF3

l
x3ð Þ

N
ð11Þ

where N is the number of antecedents, in this case
N = 3, and μF1

l
, μF2

l
, and μF3

l
are the triangular member-

ship functions for the all three antecedents. According
to the draft IEEE 802.22 standard [27], the probability
of false alarm and misdetection should be less than or
equal to 0.1. The available literature on setting a thresh-
old value of individual detectors suggests that a target
Pf should be fixed to calculate required threshold.
Therefore, the threshold λ is set to 0.5 experimentally
Defuzzification 

e 

Crisp output 

y 



Figure 7 The membership functions used to represent the linguistic labels. (a) For all three inputs. (b) For the output.
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to achieve 100% detection even for the probability of
false alarm less than 0.1. If the decision metric y is lar-
ger than the predetermined threshold, the SU will assert
the presence of the PU. Otherwise, the SU will deny the
presence of the PU.
4.2. Analysis of sensing performance
In this section, we analyze the sensing performance of
proposed FLD scheme with respect to detection per-
formance. The overall probability of detection and the
probability of false alarm for the FLD scheme can be
approximated as [28]

Pd ¼
XN
k¼n

X
Σdi¼k

Y
i

Pdi
d;i 1� Pd;i
� 	1�di ð12Þ

Pf ¼
XN
k¼n

X
Σdi¼k

Y
i

Pdi
f ;i 1� Pf ;i
� 	1�di ð13Þ

where di {low, medium, high} for all i = {1, . . . N}
and n ≥ N/2. Pd,i and Pf,i are the probability of



Table 1 Example of rule base for fuzzy combining

Input 1 Input 2 Input 3 Output

Low Low Low Worst

Low Medium Low Very bad

Low Medium Medium Bad

Low high medium Moderate

Medium Medium High Good

High Medium High Very good

High High High Best
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detection and probability of false alarm, respectively,
when using ith sensing technique. The summation
based on

P
di = k is used to include the effect of

fuzzy logic and is conducted with all combinations of
di satisfying

P
di = k. It is shown in the next section

that approximated probabilities are close to the simu-
lation results.
In order to evaluate the agility of the FLD scheme,

mean detection time is compared with matched filter de-
tection, energy detection, and cyclostationary detection.
The number of samples during observation periods is
known in each sensing technique. The symbol duration
is known in the case of the matched filter and the chan-
nel bandwidth is known for energy detection and cyclos-
tationary detection. Using this information, we can
calculate the mean detection time represented as T1, T2,
and T3 for matched filter, energy detection, and cyclosta-
tionary detection, respectively.
Figure 8 Comparison of transmitter detection and FLD schemes when
The mean sensing time for each channel for the
matched filter, T1, can be calculated as

T1 ¼ 2M1

Ts
ð14Þ

where M1 is the number of samples during the observa-
tion interval and Ts is the symbol duration.
The mean sensing time for each channel for energy

detection, T2, can be calculated as

T2 ¼ M2

2W
ð15Þ

where M2 is the number of samples during the observa-
tion interval and W is the channel bandwidth.
The mean sensing time for each channel for cyclosta-

tionary detection, T3, can be calculated as

T3 ¼ M3

2W
ð16Þ

where M3 is the number of samples during the observa-
tion interval and W is the channel bandwidth.
In the FLD scheme, all transmitter detection schemes

run in parallel. The FLD will wait till all three detection
algorithms finish their sensing. By doing so, the per-
formance is increased and is better than individual
performance of all the detectors. Main objective of this
proposed FLD scheme is to increase reliability of detec-
tion at the cost of more hardware for each detector.
the PU is present.
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Therefore, the total detection time of the proposed
scheme can be expressed as

T
― ¼ Max T1;T2;T3ð Þ ð17Þ

The probability of detection, Pd, and probability of
false alarm, Pf, are calculated after combining the results
of individual sensing techniques at each SU. Therefore,
the overall Pd is increased and Pf is decreased when
compared to individual techniques. Because the detec-
tion time of FLD scheme is equal to the maximum
detection time of three sensing techniques, performance
Figure 9 Comparison of transmitter detection and FLD schemes. (a) R
is improved with a similar sensing time at the cost of
added parallel hardware at each SU.

5. Simulation
Figure 8 compares the probability of detection for trans-
mission detection techniques with the proposed FLD
scheme. The FLD scheme has a better performance over
the entire SNR range compared to the other transmitter
detection techniques. The FLD scheme detects the PU
with 100% certainty even under a very low SNR value of
−22 dB. In order to achieve the same degree of accuracy
as a fuzzy logic scheme, the cyclostationary feature
OC theoretical. (b) ROC simulated (instantaneous SNR = −10 dB).



Figure 10 Sensing time of transmitter detection techniques compared with FLD.
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detector and the matched filter require relatively higher
SNR values of −8 and 2 dB, respectively. The perform-
ance of energy detection seems to be better than all
other mentioned techniques over the entire SNR range
at the cost of high probability of false alarms. Due to
inherent limitation of the energy detector, it is unable to
discriminate between signal and noise energy. The prob-
ability of false alarm for the energy detection is the high-
est as compared to other detectors, which means that
this comparison is not enough to determine the best
detector for spectrum sensing.
In Figure 9, the receiver operating curves (ROCs) of

the matched filter, energy detector, cyclostationary
detector, and FLD scheme are shown. In this scenario, it
Table 2 Comparison of the proposed scheme with existing im

Spectrum sensing scheme

Proposed FLD scheme

PU detection in a multiple antenna CR [9]

A two-stage sensing technique for dynamic spectrum access [12]

Two-stage spectrum sensing for CRs [13]

Combined energy detection and one-order cyclostationary detection [14]

Energy detector with bi-thresholds [15]

Improved energy detector [16]

Advanced sensing techniques of energy detection [17]
is assumed that the instantaneous SNR is −10 dB. Time
bandwidth product ME for energy detection is 2. Noise
variance σw

2 for both matched filter and cyclostationary
detection is taken as 1 dB. The number of samples for
detection Mc and the number of diversity branches L for
cyclostationary detection are assumed to be 2 and 3,
respectively. It is seen that the simulated ROCs shown
in Figure 9b agree with the theoretical results presented
in Figure 9a. The result shows that the ROC perform-
ance of FLD scheme outclasses all the existing transmit-
ter detection techniques. FLD scheme is an optimal
choice even at lower SNR values.
Figure 10 shows the comparison of the detection time

of the proposed FLD scheme with matched filter, energy
proved local sensing techniques

Average SNR (dB) Pf Pd

−15 0.0001 0.50

−10 0.0001 0.97

0 0.01 0.45

15 0.01 1

6 0.1 0.99

−10 0.1 0.99

10 0.1 0.94

10 0.1 0.85

0 0.1 0.62

10 0.1 0.99

−5 0.1 0.72

−5 0.6 0.95
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detection, and cyclostationary detection. In proposed
FLD scheme, all spectrum sensing techniques run in
parallel and so detection time is the maximum time
taken by any individual detection scheme, while detec-
tion performance comparatively increases relative to any
individual detection performance. The key advantage of
the proposed FLD scheme is that its detection perform-
ance is more reliable than existing spectrum sensing
techniques with a mean sensing time equal to that of
cyclostationary detection.
In Table 2, we compared the performance of proposed

FLD scheme with existing, improved local sensing
techniques as discussed in Section 2. The two-stage
spectrum sensing proposed in [13] gives the most reli-
able results in comparison with the remaining existing
schemes mentioned in Table 2. The probability of detec-
tion of the proposed FLD scheme is 0.97 in comparison
with 0.99 for the two-stage spectrum sensing scheme, at
an average SNR of −10 dB. However, FLD has a false
alarm probability of 0.0001, while the corresponding
value for the two-stage spectrum sensing scheme is 0.1.
False alarms reduce spectral efficiency and misdetection
causes interference with the PU. In general, it is then
vital for optimal detection performance that the max-
imum probability of detection is achieved with the mini-
mum probability of false alarm [6]. Therefore, the
advantage of the FLD scheme is that it achieves a high
probability of detection with a minimum probability of
false alarms in comparison with existing schemes at low
SNR values.

6. Conclusion
In this article, a new FLD scheme for local spectrum
sensing is proposed. In the first stage of FLD, each SU
performs existing spectrum sensing techniques, i.e., en-
ergy detection, matched filter detection, and cyclostation-
ary detection, in parallel. In the second stage, the outputs
of those detection approaches are combined using fuzzy
logic in order to deduce the presence or absence of PU.
Transmitter detection techniques are compared with

the proposed fuzzy logic-based approach. By comparing
these techniques, we conclude that the FLD scheme gives
better results in terms of the probability of detection and
false alarms. The FLD scheme has a mean detection time
equal to the maximum time taken by any existing
scheme, i.e., the mean detection time of cyclostationary
detection. All the existing techniques perform at each SU
in parallel, and therefore the hardware cost of the pro-
posed FLD is slightly higher. However, since accurate
detection is to be predicted, cost can be sacrificed for the
accuracy of detection and fast detection time.
Every detection technique has an SNR threshold below

which robust operation is not possible. We find that by
simultaneously combining the results of different detection
techniques using fuzzy logic, better results can be obtained.
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