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Abstract

An efficient bit rate control method for the transform domain distributed video coding (DVC) system is proposed.
In order to decide quantization levels of each transform coefficient in the proposed distributed video decoder, a
new bitplanewise zigzag scanning method is used. The bit rate can be controlled precisely in the proposed system,
since the number of available bit rates is equal to the number of bitplanes. On the other hand, the bit rate is
controlled by changing fixed quantization tables in conventional methods. In the proposed DVC system, Wyner-Ziv
frames can be efficiently reconstructed by refining the side information with transmitted parity bits. If there is no
transmitted parity bit, the side information is not refined and it is considered to be a decoded Wyner-Ziv frame. The
side information is refined more precisely, as the amount of transmitted parity bits increases. The proposed DVC
system provides superior coding performance with a precise bit rate control compared to conventional methods.

Keywords: Distributed video coding, Side information, Wyner-Ziv frame, Efficient bit rate control, Bitplanewise
zigzag scanning
Introduction
Efficient compression of video data is essential for
storage and communication, since the amount of video
data is very large. Video coding standards, such as
MPEG or H.264, have been widely used to compress
video data. The temporal and spatial correlations of
video data are used by adopting the motion compen-
sated prediction and discrete cosine transform (DCT)
in the encoder of conventional video coding systems.
The conventional video encoder is more complex than
the decoder is, since motion compensated prediction
requires many operations. This conventional video
coding system is appropriate for systems, in which
video data is encoded by one complex encoder and
decoded by many simple decoders.
A new video coding technique termed distributed

video coding (DVC) has been proposed [1-18]. It is
based on the Slepian-Wolf and Wyner-Ziv theorems.
The Slepian-Wolf theorem says that the minimum rate
for encoding two correlated sources separately and
decoding jointly is the same as the minimum rate for
joint encoding [19]. Wyner and Ziv studied a particular
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case of Slepian-Wolf coding corresponding to the lossy
source coding [20]. In DVC systems, the complexity of
encoders is greatly reduced by removing motion estima-
tion operations in the encoder, since the correlation
between frames is utilized in decoders [1]. The DVC sys-
tem is appropriate for emerging applications, such as
wireless low-power video surveillance systems, visual
sensor networks and mobile systems with ultra light
encoders [2,3]. The transform domain DVC coding sys-
tem named Power-efficient, Robust, hIgh compression
Syndrome based Multimedia coding (PRISM) has been
proposed [4]. In this system, the low frequency coeffi-
cients are compressed using a trellis-based syndrome
Slepian-Wolf code, and the high frequency coefficients
are entropy coded. While this system provides good cod-
ing performance, the encoding complexity is high. The
most popular DVC system was proposed by Aaron et al.
at Stanford university [5]. In this system, the input
frames in encoders are divided into key frames and
Wyner-Ziv frames. While key frames are encoded using
intra-frame coding techniques, such as H.264 intracod-
ing technique, Wyner-Ziv frames are encoded with
channel encoders such as turbo codes or LDPC codes,
and only parity bits are transmitted for Wyner-Ziv
frames. In the decoder, the side information, which is an
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estimate of the original Wyner-Ziv frame, is obtained
using key frames. Motion compensated interpolation tech-
niques are usually used to obtain side information.
Wyner-Ziv frames can be decoded with the side informa-
tion and transmitted parity bits, since the side information
can be considered to be a noisy version of the original
Wyner-Ziv frame. Wyner-Ziv frames in conventional dis-
tributed video decoders are reconstructed in the dequanti-
zation process, using the side information and transmitted
parity bits. If the parity bits are not enough, Wyner-Ziv
frames can’t be decoded successfully. On the contrary,
sending too much parity bits results in bit rate overhead.
Thus, the feedback channel is usually used, since the
amount of parity bits is not known in the encoder. The
transmission of parity bits is requested through the feed-
back channel, until the errors are corrected to decode
Wyner-Ziv frames. To eliminate the feedback channel, the
amount of parity bits should be calculated in the encoder.
Brites et al. proposed a simple side information generation
technique and encoder rate control method by using the
entropy and relative error probabilities [6]. However, the
coding performance for the systems without feedback
channels degrades due to the mismatch between the esti-
mated and real bit rates [6-8]. Recently, a method for con-
straining the number of feedback requests to a fixed
maximum number of N requests was proposed [9].
In this paper, we propose an efficient bit rate control

method for the transform domain DVC system. A
new bitplanewise zigzag scanning method to decide
quantization levels of each transform coefficient is pro-
posed to maximize the rate distortion performance. The
different bit rates in the proposed bitplanewise zigzag
scanning method are obtained at each scan of the bit-
planes. While the number of available bit rates in the
conventional DVC systems is seven or eight, which is
the number of fixed quantization tables, the quantization
table can be easily generated at each scan in the pro-
posed system. The bit rate can be controlled more pre-
cisely in the proposed DVC system, since the number of
available quantization tables is about eight times greater
than that for conventional systems. In the proposed
DVC system, the side information is refined with trans-
mitted parity bits, in which the side information refined
with transmitted parity bits is considered to be the
decoded Wyner-Ziv frame. If no parity bit is transmitted,
the side information is not refined and it becomes the
reconstructed Wyner-Ziv frame. As the amount of parity
bits increases, the quality of decoded Wyner-Ziv frames
improves by refining the side information more precisely
with parity bits. The proposed decoding method pro-
vides superior performance to conventional methods,
especially at low bit rates, since the side information can
be refined with a small number of parity bits. Computer
simulation results show that the proposed decoding and
bit rate control method provides superior coding per-
formance and finer bit rate control than the conven-
tional method. While conventional DVC systems usually
focus on the performance improvement or management
of feedback channel [5-17], the proposed DVC system
deals with the precise bit rate control method and per-
formance improvement.
In Distributed video coding system, the DVC system is

explained. The proposed DVC system and proposed bit
rate control method are presented in Proposed DVC sys-
tem and Proposed bit rate control method, respectively.
Performance is evaluated in Performance evaluation.
Finally, Conclusions are given in Conclusion.

Distributed video coding system
Figure 1 depicts the conventional transform domain DVC
system [5,10,11]. The odd and even numbered frames in
the encoder are divided into key frames and Wyner-Ziv
frames, respectively. While the key frames are coded using
an intraframe coding technique, Wyner-Ziv frames are
coded using a channel encoder, such as turbo or LDPC
encoders. Before being encoded, the Wyner-Ziv frames
are transformed into the DCT domain to increase the
coding efficiency. Each transform coefficient is quantized
using the quantization table shown in Figure 2 [12]. The
DC coefficients are quantized using a uniform quantizer
with a step size, since the maximum value of DC coeffi-
cients for 4 × 4 block is 1024.

SSDC ¼ 1024=NQ DC; ð1Þ

where SSDC is the step size for DC coefficients and NQ_DC

is the number of quantization levels for DC coefficients.
The same kind of quantizers for AC coefficients can be
used to quantize AC coefficients. If MaxACn is the max-
imum absolute value for the nth AC coefficient, the step
size for the nth AC coefficient is given by

SSACn ¼ 2 �MaxACn=NQ ACn; ð2Þ

where SSACn is the step size for the nth AC coefficient and
NQ_ACn is the number of quantization levels for the nth
AC coefficient. This quantizer is symmetric with respect
to the zero value, as is shown in Figure 3(a). Many coeffi-
cients are located near zero value, since the probability
density function of AC coefficients is known to be Lapla-
cian. If we use a symmetric quantizer, many parity bits are
required to reconstruct the AC coefficients near the zero
value. Thus, we can use a nonsymmetric quantizer,
depicted in Figure 3(b), in which zero value is included in
the quantization interval, to reduce the number of parity
bits for the AC coefficients near the zero value. If we use a
quantizer with a dead zone around the zero value, as
shown in Figure 3(c), we can use fewer parity bits to
encode the AC coefficients near the zero value.
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Figure 1 Conventional DVC system.
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Performance evaluation gives the performance analysis for
each AC quantizer.
Transform coefficients are grouped into bitplanes from

the most significant bit (MSB) to the least significant bit
(LSB), after being quantized. Each bitplane is encoded using
turbo codes and only parity bits are transmitted for Wyner-
Ziv frames. Each bitplane of the transform coefficients in
the decoder is reconstructed with side information and par-
ity bits. The side information is usually obtained by motion
compensated interpolation techniques using key frames.
Then, Wyner-Ziv frames are decoded using a dequantiza-
tion process with the reconstructed bitplanes. The follow-
ing simple method can be used [13], if l and u represent
the lower and the upper bounds of the quantizer interval,
respectively, to reconstruct the source information x in
Wyner-Ziv frames using a side information y.

x̂ ¼
l; y < l
y; y < l; u½ Þ

u; y≥u
;

8<
:

ð3Þ
where x̂ is the reconstructed DCT coefficient.
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Figure 2 Quantization table (quantization levels for each transform c
The following optimal reconstruction method can be
also used to minimize the mean squared error of the
reconstructed value for each DCT coefficient [12,13]:

x̂ ¼ E
�
x q0; yj � ¼

Z u

l
xf

x
��y
�
x yj Þdx

Z u

l
f
x
��y x

��y� �
dx

; ð4Þ

where q' is the decoded quantization bin and E(·) is
the expectation operator. In Eq. (4), the conditional
probability density function fx|y(·) represents residual sta-
tistics between corresponding coefficients in Wyner-Ziv
frames and side information; the Laplacian distribution
is assumed [14,15]. The reconstructed DCT coefficient
can be obtained using

x̂ ¼
l þ b; y < l

yþ γ þ 1=αð Þð Þe�αγ � δ þ 1=αð Þð Þe�αδ

2� e�αγ � e�αδ
; y∈ l; u½ Þ

u� b; y≥u

;

8><
>:

ð5Þ
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with b ¼ 1
α
þ Δ

1� eαΔ
; γ ¼ y� l and δ ¼ u� y:

In Eq. (5), α is the Laplacian distribution parameter
for each DCT coefficient and Δ is the quantization
bin size.

Proposed DVC system
Figure 4 depicts the DVC system proposed in this paper.
In this system, Wyner-Ziv frames are decoded by refin-
ing the side information with parity bits. If there is no
parity bit, the side information is not refined and it is
considered a decoded Wyner-Ziv frame. Thus, in the
proposed system, the decoded Wyner-Ziv frame is equal
to the side information at the zero bit rate. In this case,
the bit rate means the amount of transmitted parity bits
that are used to reconstruct Wyner-Ziv frames. As the
amount of transmitted parity bits increases, the quality
of Wyner-Ziv frames improves by refining the side infor-
mation more precisely with the reconstructed bitplane.
In the conventional DVC system, Wyner-Ziv frames are
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Figure 4 Proposed DVC system.
decoded by dequantizing each transform coefficient of
the Wyner-Ziv frame with side information and parity
bits. Thus, if the quantization level for a transform coef-
ficient is zero in the quantization table of Figure 2, it is
decoded as zero in the conventional DVC system, while
the side information is used as initial values for all trans-
form coefficients in the proposed DVC system.
The side information is refined progressively, as the

corresponding bitplanes are reconstructed using trans-
mitted parity bits [18]. This improves the quality of the
reconstructed Wyner-Ziv frame. If the optimal recon-
struction method given in Eq. (5) is used, the side in-
formation is refined more precisely. The AC quantizer
with a dead zone, which is shown in Figure 3(c), is used
to quantize AC coefficients, since the progressively re-
finement process can be implemented with the
quantizer. This exhibits better performance than the
symmetric quantizer shown in Figure 3(a). The non-
symmetric quantizer cannot be used for the progres-
sively refinement process, since it is nonsymmetric with
respect to the zero value.
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The performance of the proposed decoder is superior
to that of the conventional decoder, if the following in-
equality holds.

XM�1

i¼0

XN�1

j¼0

uWyner�Ziv i; jð Þ � ûProp:
Wyner�Ziv i; jð Þ

� �2

<
XM�1

i¼0

XN�1

j¼0

uWyner�Ziv i; jð Þ � ûConv:
Wyner�Ziv i; jð Þ

� �2
;

ð6Þ

where uWyner − Ziv(i, j), ûWyner�Ziv
Prop: i; jð Þ and ûWyner�Ziv

onv: i; jð Þ represent the pixels of the original Wyner-Ziv
frame, the reconstructed Wyner-Ziv frame in the proposed
decoder and the reconstructed Wyner-Ziv frame in the
conventional decoder, respectively. In the case where there

is no parity bit for Wyner-Ziv frames, ûProp:
Wyner�Ziv i; jð Þ is the

side information, while ûConv:
Wyner�Ziv i; jð Þ is zero. As the

amount of parity bits increases, ûWyner�Ziv
Prop: i; jð Þ is

refined more precisely, while ûWyner�Ziv
Conv: i; jð Þ is recon-

structed by the dequantization process. Although the
performance of the proposed decoder depends on the
quality of the side information, the proposed decoder
outperforms the conventional decoder significantly, espe-
cially at low bit rates. This is shown in Performance
evaluation. The performance of the proposed decoder is
much better than that of the conventional decoder, as
0
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Figure 5 Number of average bits per each bitplane ( Seventh quantiz
the side information gets closer to the original Wyner-
Ziv frame.

Proposed bit rate control method
A new method to determine the quantization levels of
each transform coefficient for a given bit rate is pro-
posed for a precise bit rate control of DVC system, as
follows. The following Lagrange multiplier can be used
to find the optimum order to increase the quantization
levels for each transform coefficient.

mini ΔDj ið Þ þ λ �ΔRj ið Þ; i ¼ 1; . . . ;M and j ¼ 1; . . . ;N ;

ð7Þ

where M and N are the number of transform coefficients
and the number of bitplanes, respectively. ΔDj(i) is the
decreased distortion caused by increasing the
quantization levels of ith transform coefficients on the
jth bitplanes, and ΔRj(i) is the increased rate needed to
increase the quantization level. The optimum scanning
order can be obtained by searching the transform coeffi-
cient i that minimizes the above formula for each bit-
plane from 1 to N. However, the optimum scanning
order differs for each video sequence. Thus, in the de-
coder, the optimum scanning order cannot be obtained
before the decoding process completes.
We propose the following scanning method to deter-

mine the quantization levels of each transform
28 31 34 37 40 43 46 49 52 55 58 61

itplaneNumber

C4 AC5 AC6 AC7 AC8 AC9 AC10~ AC14

er table, Coefficient by coefficient scan).
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coefficient for a given bit rate. The amount of parity bits
required for the least significant bit (LSB) of transform
coefficients is greater than that for the most significant
bit (MSB), since the probability that the side information
is outside the quantization interval in decoding the LSB
is higher than that in decoding the MSB. Figure 5 gives
the average number of parity bits required to encode
each bitplane for all video sequences used for perform-
ance simulations in Performance evaluation, for which
the seventh quantization table in Figure 2 is used. As
can be seen, the average number of bits for LSB is much
larger than that for MSB for each transform coefficient.
Even if the other quantizers are selected, we can observe
the same fact. By considering this phenomenon, the bit-
planewise zigzag scanning method is proposed to in-
crease the quantization level for each transform
coefficient. Figure 6 and Figure 7 illustrate the new scan-
ning method. Figure 6 illustrates the proposed zigzag
scanning method for the second quantizer in detail. At
each scan, the quantization level for each transform
coefficients increases subsequently. In Figure 7, the
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Figure 6 Proposed bitplanewise zigzag scanning method to determine q
proposed scanning method for quantization table 2, 5 and
7 is described. As the bit rate increases, the quantization
level for each transform coefficient increases progressively
from low frequency components to maximize the rate dis-
tortion performance. Different bit rates are obtained at each
scan of bitplanes in the proposed bitplanewise zigzag scan-
ning method. While the number of different rates depends
on the number of quantization tables in the conventional
methods, it is equal to the number of bitplanes in the pro-
posed method. For example, the proposed DVC system
provides 63 kinds of bit rates if the seventh quantizer table
in Figure 2 is used for the proposed bitplanewise zigzag
scanning, while the conventional DVC system only pro-
vides seven kinds of bit rates, which is the same number as
the quantization tables. For two LSB bitplanes of the sev-
enth quantizer table in Figure 2, the quantization levels in-
crease inversely from high frequency to low frequency
coefficients, since the large number of quantization levels
for the low frequency components reduce the correlation
between the two LSB bitplanes of low frequency compo-
nents and the side information. We can control bit rates
each transform coefficient)

)
)

antization table 2)
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precisely and get better coding results, as is shown in the
simulations of the next Section, using the proposed scan-
ning method.

Performance evaluation
We performed extensive computer simulations to evalu-
ate the coding performance of the proposed DVC sys-
tem. We used 150 frames of QCIF video sequences from
Foreman, Stefan and Mobile video sequences, shown in
(a) (b)
Figure 8 Test video sequences (QCIF) (a) Foreman (b) Stefan (c) Mobi
Figure 8. Foreman sequences are widely used as test
sequences and Stefan sequences have high motion activ-
ities, while Mobile sequences are complex. The same
technique as that of the DISCOVER system [10,11] is
used for simulations to obtain side information. The for-
ward motion estimation, the bilateral motion compen-
sated interpolation and the motion vector correction
techniques using weighted median filters are used to
generate the side information. The PSNR (peak signal to
(c)
le.
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noise ratio) between the original and the decoded
Wyner-Ziv frame is used as a performance measure.
First, the performance for each AC quantizer in the

conventional DVC system is evaluated using the opti-
mal dequantization methods given in Eq. (5) and the
conventional quantization tables in Figure 2. As is shown
in Figure 9, the symmetric AC quantizer depicted in
Figure 3(a) performs worst among the quantizers. The
30
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Figure 10 Comparison of coding performance for scanning methods.
bit rate increases significantly, since many parity bits
are used for the AC coefficients near the zero value in
the symmetric AC quantizer. The quantizer with a dead
zone performs better than the nonsymmetric quantizer
at low bit rates, while the nonsymmetric quantizer pro-
vides slightly better performance than the quantizer
with a dead zone at high bit rates. The quantizer with a
dead zone in Figure 3(c) is used for the following
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Figure 11 Comparison of coding performance between conventional and proposed DVC systems for Wyner-Ziv frames (Optimal
reconstruction, Q7: Using the proposed bitplanewise zigzag scanning method with the maximum bit rate for the seventh quantizer
table, Q5: Using the proposed bitplanewise zigzag scanning method with the maximum bit rate for the fifth quantizer table).
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simulations, since it performs well and the proposed
decoding method, in which the side information is
refined progressively, is easily implemented using the
quantizer with a dead zone.
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Figure 12 Comparison of coding performance between conventional
reconstruction, Q7: Using the proposed bitplanewise zigzag scanning
table, Q5: Using the proposed bitplanewise zigzag scanning method
Next, the performance of the proposed bitplanewise zig-
zag scanning method, which is used to determine
quantization levels of each transform coefficient in the pro-
posed DVC system, is compared with those of the optimal
400 500 600 700 800

te (kbps)

Proposed (Simple reconstruction, Q7)
Proposed(Simple reconstruction, Q5)
Conventional (Simple dequantizer)

and proposed DVC systems for Wyner-Ziv frames (Simple
method with the maximum bit rate for the seventh quantizer
with the maximum bit rate for the fifth quantizer table).
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scan and coefficient by coefficient scan. For the seventh
quantization table in Figure 2, different quantization tables
are generated for each scanning method. As is shown in
Figure 10, the proposed scanning method exhibits better
coding performance than the method in which the
quantization level increases subsequently from low fre-
quency components to high frequency components. The
rate represents the number of parity bits that are used to
(a)

(c)

(e)
Figure 13 Reconstructed images that are magnified for comparison. (
0.066406 bit per pixel) (b) Proposed DVC system (tenth frame of Foreman
frame of Stefan sequence at 0.156250 bit per pixel) (d) Proposed DVC syste
Conventional DVC system (tenth frame of Mobile sequence at 0.101563 bit
at 0.101563 bit per pixel).
reconstruct Wyner-Ziv frames. The optimum scan is
obtained using a Lagrange multiplier given in Eq. (7) to
maximize the rate distortion performance for the entire
test sequences and it represents the upper bound of rate
distortion. As can be seen, the proposed bitplanewise zig-
zag scanning method provides close performance to that
for the optimum scanning method and much better per-
formance than the coefficient scanning method.
(b)

(d)

(f)
a) Conventional DVC system (tenth frame of Foreman sequence at
sequence at 0.066406 bit per pixel) (c) Conventional DVC system (tenth
m (tenth frame of Stefan sequence at 0.156250 bit per pixel) (e)
per pixel) (f) Proposed DVC system (tenth frame of Mobile sequence
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Then, the coding performance of the proposed DVC
system is compared to that of the conventional DVC
system in Figure 11 and Figure 12. Especially, at low bit
rates, the coding performance of the proposed DVC sys-
tem is significantly better than that of the conventional
DVC system, since the side information can be refined
with a small number of parity bits in the proposed DVC
system. The side information is used as the initial value
for all DCT coefficients in the proposed DVC system,
while the side information is not used as the initial value
for the DCT coefficients with zero quantization level in
the conventional DVC system. As can be seen in Figure 7,
the different bit rates can be assigned as the quantization
tables are flexibly generated in the proposed scanning
method, while seven fixed quantization tables are used in
the conventional system. Thus, the proposed DVC sys-
tem provides much finer bit rate control, as can be seen
in Figure 11 and Figure 12. The performance for the op-
timal reconstruction method given in Eq. (5) is superior
to that of the simple reconstruction method, given in
Eq. (3). Figure 13 compares the reconstructed images. As
can be seen, the proposed DVC system provides better
reconstructed images for all test video sequences.
The conventional DVC systems usually focus on the

performance improvement [11-13,16,17] or management
of feedback channel [6-9]. The proposed DVC system
deals with the precise bit rate control method and per-
formance improvement. The proposed system provides
the efficient bit rate control method by using the bitpla-
newise zigzag scanning method. While seven or eight
fixed quantization tables are used in the conventional
system, the number of available quantization tables in
the proposed system is equal to the number of bitplanes.
For example, for the seventh quantizer table in the con-
ventional system, the number of available quantization
tables in the proposed system is 63, which is the number
of bitplanes. Thus, more quantization tables should be
made in the proposed system. The increased decoder
complexity for making more quantization tables is al-
most negligible, since they can be easily generated using
the bitplanewise zigzag scanning, which is shown in
Figure 6 and Figure 7. The decoder complexity for refin-
ing side information doesn’t increase compared to the
conventional DVC systems, since the same dequantiza-
tion method as the conventional DVC systems is used
for refining. By setting the initial decoded Wyner-Ziv
frame as the side information and refining the side infor-
mation progressively, the proposed system shows better
performance than the conventional DVC systems at low
bit rates.

Conclusions
An efficient bit rate control method for the transform
domain DVC system was proposed. By adopting the
bitplanewise zigzag scanning method to decide the
quantization levels for each transform coefficient, the bit
rate can be controlled more precisely in the proposed
DVC system, since the number of available quantization
tables is about eight times greater than that of fixed
quantization tables, which is used to control bit rates in
conventional DVC systems. Moreover, the proposed sys-
tem provides superior coding performance by refining
the side information using transmitted parity bits to re-
construct Wyner-Ziv frames. The proposed system per-
forms well especially at low bit rates, since the side
information can be refined with a small number of parity
bits. The side information is refined more precisely with
transmitted parity bits. While Wyner-Ziv frames are
decoded by dequantizing transform coefficients with side
information and parity bits in the conventional DVC
system, the Wyner-Ziv frames are reconstructed by re-
fining side information with parity bits in the proposed
system. Simulation results show that the proposed DVC
system provides better performance than the conven-
tional DVC system with precise bit rate control. Espe-
cially, at low bit rates, the coding performance of the
proposed DVC system is significantly better than the
conventional DVC system and the proposed DVC sys-
tem provides much better reconstructed images for all
test video sequences than the conventional systems.
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