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Abstract

Correspondence techniques start from the assumption, based on the Lambertian reflection model, that the apparent
brightness of a surface is independent of the observer’s angle of view. From this, a grey value constancy assumption is
derived, which states that a change in brightness of a particular image pixel is proportional to a change in its position.
This constancy assumption can be extended directly for vector valued images, such as RGB. It is clear that the grey
value constancy assumption does not hold for surfaces with a non-Lambertian behaviour and, therefore, the
underlying image representation is crucial when using real image sequences under varying lighting conditions and
noise from the imaging device. In order for the correspondence methods to produce good, temporally coherent
results, properties such as robustness to noise, illumination invariance, and stability with respect to small geometrical
deformations are all desired properties of the representation. In this article, we study how different image
representation spaces complement each other and how the chosen representations benefit from the combination in
terms of both robustness and accuracy. The model used for establishing the correspondences, based on the calculus
of variations, is itself considered robust. However, we show that considerable improvements are possible, especially in

the case of real image sequences, by using an appropriate image representation. We also show how optimum (or
near optimum) parameters, related to each representation space, can be efficiently found.

Introduction

The optical flow constraint [1], based on the Lambertian
reflection model, states that a change in the brightness
of a pixel is proportional to a change in its position, i.e.,
the grey level of a pixel is assumed to stay constant tem-
porally. This same constancy concept can be used also in
disparity calculation by taking into account the epipolar
geometry of the imaging devices (e.g., a stereo-rig). The
grey level constancy, that does not hold for surfaces with
a non-Lambertian behaviour, can be extended for vec-
tor valued images with different image representations.
In this study, we use a method based on the calculus
of variations for approximating the disparity map. Vari-
ational correspondence models typically have two terms,
the first one being a data term (e.g., based on the grey level
constancy), while the second one is a regularisation term
used to make the solution smooth. In order to make the
data term more robust with respect to non-Lambertian
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behaviour, different image representations can be used.
Some of the problems in establishing correspondences
arise from the imaging devices (e.g., camera/lens parame-
ters being slightly different, noise due to imaging devices)
and some, from the actual scene being observed (e.g.,
lighting conditions, geometrical deformations due to cam-
era setup). Typically, illumination difference and optics
related ‘errors’ are modelled as a multiplicative type of
error, while the imaging device itself is modelled as a com-
bination of both multiplicative and additive ‘errors. It is
clear that the underlying image representation is crucial in
order for any correspondence method to generate correct,
temporally coherent estimates in ‘real’ image sequences.
In this article, we study how combinations of differ-
ent image representations behave with respect to both
illumination errors and noise, ranking the results accord-
ingly. We believe that such information is useful to the
part of the visual community that concentrates on appli-
cations, such as obstacle detection in vehicle related sce-
narios [2], segmentation [3], and so on. Although other
authors address similar issues [4,5], we find these to be
slightly limited in scope due to a reduced ‘test bench;
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e.g., a small number of test images or image representa-
tions. Also, in most of the cases, the way in which the
parameters related to the model(s) have been chosen is
not satisfactorily explained. Therefore, the main contri-
bution of our article is an analysis of the different image
representations supported by a more detailed and sys-
tematical evaluation methodology. For example, we show
how optimum (or near optimum) parameters for the algo-
rithm, related to each representation space, can be found.
This is a small but important contribution in the case of
real, non controlled, scenarios. The standard image rep-
resentation is the RGB-space, the others being (obtained
via image transformations): gradient, gradient magnitude,
log-derivative, HSV, r¢6, and phase component of an
image filtered using a bank of Gabor filters.

This work is a comparative study of the chosen image
representations, and it is beyond the scope of this arti-
cle to explain why certain representations perform better
than others in certain situations. Under realistic illumi-
nation conditions, with surfaces both complying and not
complying with the Lambertian reflection model, theoret-
ical studies can become overly complex, as we show next.
It is typically thought that chromaticity spaces are illumi-
nation invariant, but under realistic lightning conditions,
this is not necessarily so [6]. One of the physical models
that explains light reflected by an object is the Dichro-
matic Reflection Model [7] (DRM), which in its basic form
assumes that there is a single source of light [7], which
is unrealistic in the case of real images (unless the light-
ning conditions can be controlled). A good example of this
is given by Maxwell et al. in their Bi-Illuminant Dichro-
matic Reflection article [6]: in a typical outdoor case, the
main illuminants are sunlight and skylight, where fully
lit objects are dominated by sunlight while objects in the
shade are dominated by skylight. Thus, as the illumina-
tion intensity decreases, the hue of the observed colour
becomes bluish. For the above mentioned reasons, chro-
matic spaces (e.g., HSV, r¢0) are not totally illumination
invariant under realistic lightning conditions. Therefore,
in general, we do not speak of illumination invariance
in this article but of illumination robustness or robust
image representation with respect to illumination changes
and noise. By illumination error, we refer to varying illu-
mination conditions between the left- and right stereo
cameras.

Next, Section 1 presents the relevant related study, some
sources of error, and the variational method. Finally, in
Sections 1, 1, and 1, we describe the proposed methodolo-
gies, results, and conclusions.

Background material and related study

Related study

The idea of robust ‘key-point’ identification is an impor-
tant aspect of many vision related problems and has
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lead to such concepts as SIFT [8] (scale invariant fea-
ture transform) or SURF [9] (speeded up robust features).
This study relates to identifying robust features as well,
however, in the framework of variational stereo. Several
studies comparing different data- or smoothness terms
for optical-flow exist, for example, those of Bruhn [10]
and Brox [11]. A similar study to the one presented here,
carried out in a smaller scale for the optical-flow, has
been done by Mileva et al. [4]. On the other hand, in
[5], Wohler et al. describe a method for 3D reconstruc-
tion of surfaces with non-Lambertian properties. How-
ever, many comparative studies do not typically explain
in detail how the parameters for each different competing
algorithm or representation were obtained. Also, some-
times it is not mentioned, if the learn and test sets for
obtaining the parameters were the same. This poses prob-
lems related to biasing and over-training. If the param-
eters have been obtained manually, they are prone to
bias from the user: expected results might get confirmed.
On the other hand, if the learn and test sets were the
same or they were too small, it is possible that over-
training has taken place and, therefore, the results are
not generalisable. We argue that in order to properly
rank a set of representation spaces or different algo-
rithms, with respect to any performance measure, opti-
mum parameters related to each case need to be searched
consistently, with minimum human interference, avoiding
over-fitting.

Where our study differs from the rest is that (a) we use
an advanced optimisation scheme to automatically opti-
mise the parameters related to each image representation
space, (b) image sets for optimisation (learning) and test-
ing are different in order to avoid over-fitting, (c) we study
the robustness of each representation space with respect
to several image noise and illumination error models, and
(d) we combine the results for both noise and illumina-
tion errors. Thus, the methodology can be considered to
be novel.

Sources of error

Since the approach of this article is more experimen-
tal than theoretical, we only quickly cover some of the
sources of error suffered by correspondence methods.
Although optical-flow and stereo are similar in nature,
they differ in a very important aspect: in stereo, the
apparent movement is due to a change of position of
the observer (e.g., left and right cameras), whereas in the
optical-flow case, both the observer and the objects in
the scene can move with respect to each other. Thus,
stereo and optical-flow do not suffer from exactly the same
shortcomings. For example, in the case of stereo, shad-
ows cast upon objects due to illumination conditions can
provide information when searching corresponding pixels
between images. In the case of optical-flow, a stationary
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shadow cast upon a moving object makes it more difficult
to find the corresponding pixels. Also, as it was already
mentioned in Section 1, the imaging devices also cause
problems in the form of noise, motion blur, and so on.
Thus, an image representation space should be robust
with respect to (a) small geometrical deformations (geo-
metrical robustness), (b) changes in the illumination level
(illumination robustness), both global and local, and (c)
noise present in the images (e.g., due to the acquisition
device). Our analysis was carried out for stereo but is
directly applicable to optical-flow as well.

Variational stereo
We have chosen to use a variational method for several
different reasons: (a) transparent modelling of the corre-
spondence problem; (b) extending the model is straight-
forward; (c) the same mathematical formalism can be used
for both optical-flow and stereo; and (d) the governing
differential equation(s) can be solved efficiently [12]. The
original idea of solving optical-flow in a variational frame-
work is by Horn and Schunck [1]. The particular method
that we have used was introduced by Slesareva et al. in
[13] and is based on the optical-flow method of Brox
et al. [14]. The characteristics of this method are: error
functions for both the data and the regularisation terms
are non-quadratic [14,15]; the regularisation term is non-
linear isotropic [12,16], based on the flow (flow-driven)
and warping over several scales (multi-resolution strat-
egy) is used in order to recover greater displacements
with late linearisation [14,17,18] of the constancy terms.
A Matlab/MEX code of the algorithm can be downloaded
from?®.

Before going any further, we introduce the used nota-
tion, so that the rest of the text would be more readable.

Notation

We consider the (discrete) image to be a mapping I(x, k) :
Q — RX*, where the domain of the image is Q :=
[1,..., NI x[1,...,M], M and N being the number
of columns and rows of the image, K defines number
of the channels, and * = (x, ). In our case K =
3, since the input images are RGB, that is, I(X, k) :=
[R(X) Gx) B(x)]. The inputimage is then transformed
into the desired image representation by I(x, k) —
T (%, kt) so that T(%, kt) : Q@ — RXT*, where KT is the
number of channels of the transformed image and 2 is as
defined previously. We use subindices L and R to refer to
the left- and the right images. Superindex w means that
the components in question are ‘warped’ using the dis-
parity d. For example, T = T(x + d(x,%),t) g means
that all the components of the right image are warped as
per disparity d = d(x,y). For ‘warping’ we use bilinear
interpolation.
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Model
The energy functional to be minimised is as follows:

2
E(d) =/ (thDt(TL; TR,d)) dX-!-Ol/ S(Vd)dx
Q Q

t=1

E(d)=/ b1D1(T1, TR, d) + baDo(Ty, Tk, d) | dx
Q

combined data term

+a / S(Vd)dx
Q
(1)

where D1 (I, Ig,d) and Dy (11, I, d) are components of the
combined data term, S(Vd) is the regularisation term, and
T(z,ry refers to the transformed versions of the left and the
right images (all the channels). b; > 0,5, > 0Oand ¢ > 0
are the parameters of the model, defining the weight of the
corresponding term. Both the data and the regularisation
terms are defined as:

KT
DTy, Trod) = Y xp(|| Toge — Ti ||§), Vi
k=1 @)

S(Vd) = w(nwn%)

where T4, = T(x, ¥, kt) ; is the ktth channel of the left
transformed image, T[‘g:kt = T(x+d 9,9, kt) R is the ktth
channel of the right transformed image warped as per dis-
parity d = d(x,%), ¥(s?) = +/s2 + €2 is a non-quadratic
error function, and || - | is the L? norm. For ‘warping’
we use bilinear interpolation. We would like to point out
that even if formal definitions for all the D, are ‘equal,
the used image representation (i.e., transformation) is not
necessarily the same for each t. We could have used an
additional index for pointing out this fact, but we feel it
should be clear from the context.

Because of the ambiguities related to the different rep-
resentations and the L2 norm, here we give a concrete
example of (2) for the VI (see 1) and |VI| (see 1) repre-
sentations. More specifically, we use VI representation for
D; and |VI| for D,. For clarity’s sake, we refer directly to
the channels R, G and B, while subindices {L, R} indicate
which image (left or right) is in question. Terms of the VI
representation are:

i [ SO 0G0, i ]
ax dy ax 0y ox dy
®3)
igon [ Ml 0GuiGe o8B ]
ox dy ax dy ax 0y
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whereas terms of the |VI| representation are:

oR;, ORp|[0G, 0aGy 0B; 0Bp
VI = | — —||— — -—
0x ay 0x ay

0x dy
0Rg  O0Rp|[0Gr 0Ggr 0Br  0Bp
VRl =||— —||— — —_— —
0x ay 0x ay

(4)

0x ay
In the (4) case the inner brackets (i.e., [-]) are used to
indicate over which terms the norm is calculated. In other
words, in (3) KT = 6, whereas in (4) KT = 3. Next step is
to ‘plug’ terms of each representation into Equation (2) in
order to get the actual data terms. For the VI we have:

apw 2 apw 2
DI(WL,WR,@:\U«& o) )W((& %) )
ox dx ay ay
L (29 0GR\ Ly (26 _ 95k’
ox ax ay ay
3B _ 9By)? 0B _ 0By’
+\p<< ax 3x>)+\p<< dy  dy
(5)
The same for the |VI| is:

AR, ORYN\?  /aR, ORY\?
Dy(VIL|L VIRl d) =W [ (&2 - =R )+ _—L——R>
ax 0x ay ay
aG,  9GY\? 3G, 0GY\?2
v ((—=-2) +(—=-=28
dx ax ay ay
3B, 0BR\® (9B, 9By’
FI/ 9L PPR + 9oL _ PR
ox ax ay ay
(6)

where the superindex w refers to warping as previously,

ie, Ty = T(x 4 d(x,9),y, kt) . In order to complete the

example, using the above mentioned representations, the
complete energy functional would be written as:

_ OBy _ ORR)® (&,ﬁy

E(d)— -/Q <b1\l1 <( . o ) )-‘rbl\IJ( 3}/ 3)/
3G, 9GH\2

>+“W«3;‘3?)>
)+bwfﬁ %QQ

! <3y Y]
2 /oR,  ORY\?
)*(@*@J

@@_ﬁg)
2 W
+@ﬁ_§»)>h

2
G;g+

+

Na

£
P S
N
(oL}
@
D

+ oz/ﬂ (IvdII3) dx
(7)
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As we can see from Equations (5) and (6), error func-
tion W(-) acts differently for ‘scalar’ and ‘vector’ fields.
In (5), each of the components has its own error func-
tion, while in (6), the components are ‘wrapped’ inside the
same error function. In order to have a better insight how
this affects robustness, let us suppose that at a given posi-
tion, the vertical derivative could not approximated well
and, thus, would be considered an outlier. In the VI case,
only the vertical derivative would be suppressed (i.e., the
component considered an outlier), while the horizontal
derivative would still be used for approximating the dis-
parity. In the |VI| case, however, the whole term would
be suppressed and the horizontal derivative would not be
used either for approximating the disparity.

Now, with both the energy functional and the related
data terms described, a physical interpretation of the
model can be derived: we are looking for a transformation
described by d that transforms the right image represen-
tation into the left image representation, with the d being
piecewise smooth. By transforming the right image into
the left image, we mean that the image features described
by the data term(s) align.

Since the model is well known, we only quickly cover
its characteristics. A quadratic error function typically
gives too much weight to outliers, i.e., where the data
does not fit well with the model. In the data term case,
these outliers arise from where the Lambertian reflec-
tion model does not accurately describe surfaces of the
objects being observed or from occluded regions (i.e., fea-
tures seen only in one of the images). On the other hand,
in the case of the regularisation term, outliers are those
approximations that do not belong to the surface in ques-
tion and, thus, regularisation across object boundaries
belonging to different surfaces takes place. The use of a
non-quadratic error function [15] makes the model more
robust with respect to the outliers. In the case of the regu-
larisation term, this means that the solution is piece-wise
smooth [16,17]. As can be observed from (2), each chan-
nel in both data terms has its own penalisation function
W(s? + €2) [19]. Since the error functions are now sepa-
rate, this implies that if one of the constancy assumptions
is rejected due to an outlier, other channels can still gen-
erate valid estimations, thus increasing the robustness of
the method. Theoretically, any number of different rep-
resentations could be used in the data term, but we have
limited the number to two in this work in order to keep
the computational cost at a reasonable level.

Solving the equations

The functional (1) is minimised using the corresponding
Euler-Lagrange equation. A necessary, but not sufficient,
condition for a minimum (or a maximum) is for the Euler-
Lagrange equation to be zero. As it was mentioned earlier,
late linearisation of the data term is used. This means that
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linearisation of the data term is postponed until discreti-
sation of rest of the terms [12,14,17,18]. Because of late
linearisation, the model has the benefit of coping with
large displacements, which, however, comes at a price:
the energy functionals are non-convex. Due to the non-
convexity, many local minima possibly exist and, there-
fore, finding a suitable relevant minimiser becomes more
difficult. Another difficulty is due to the non-linearity of
the robust error function. One such way of finding a rel-
evant minimiser are the so called continuation methods
(e.g., Graduated Nonconvexity [20]): search for a suitable
solution is started from a simpler, smoothened version
of the problem which is used to initialise the search at a
finer scale. This is also known as a coarse-to-fine multi-
resolution (or multigrid) strategy [12,14,18,21]. The multi-
resolution strategy has two very important implications
that are interconnected. First, this means that the solu-
tion to the partial differential equation (PDE) is searched
using a multigrid technique which has a positive effect
on the convergence rate [12,21]. Second, the problem of
physically irrelevant local minima is also efficiently over-
come by the this scheme: a solution from a simplified
version of the problem (coarse scale) is used to initialise
the next finer scale [12,18]. While this does not guarantee
that a global minimiser is found, it does, however, pre-
vent getting stuck on a non-relevant local minimum [20].
In order to deal with the non-linearities, a lagged diffusiv-
ity fixed point method is used [10,11]. The solver used for
the linearised versions of the equations is alternating line
relaxation (ALR) which is a Gauss-Seidel type block solver
[10,21].

Proposed methodologies

Searching for optimal parameters with differential
evolution

Since the main idea of this study is to rank the cho-
sen image representation spaces with respect to robust-
ness, we have to find an optimum (or near optimum)
set of parameter vectors [ by by o] for each different case,
avoiding over-fitting. As was already mentioned, using a
human operator would be prone to bias. Therefore, we
have decided to use a gradient free, stochastic, population
based function minimiser called differential evolution®
(DE) [22,23]. The rationale for using DE is that it has
empirically been shown to find the optimum (or near
optimum), it is computationally efficient, and the cost
function evaluation can be efficiently parallelised. The
principal idea behind DE is to represent the parameters
to be optimised as vectors where each vector is a pop-
ulation member whose fitness is described by the cost
function value. A population at time ¢ is also known as a
generation. Therefore, it can be understood that the sys-
tem evolves with respect to artificial time ¢, also known as
cycles. By recurring to the survival of the fittest theorem,
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the ‘fittest’ members contribute more to the coming pop-
ulations and, thus, their characteristics overcome those of
the weak members, therefore minimising (or maximising)
the function value [22,23]. Two members (parents) are
stochastically combined into a new one (offspring), possi-
bly with mutation, which then competes against the rest of
the members of the coming generations. Therefore, in our
case, a single member is a vector given by [ by by ] while
the cost function value is the mean squared error (MSE)
given by Equation (31).

In order to compare the results obtained using differ-
ent combinations of the image representations, we adopt
a strategy typically used in pattern recognition: the input
set (a set of stereo-images) is divided into a learning, a
validation, and a test set. The learning set is used for
obtaining the optimal parameters while the validation set
is used to prevent over-fitting: during the optimisation,
when the error for the validation set starts to increase, we
stop the optimisation process, therefore keeping the solu-
tion ‘general’ This methodology is completely general and
can be applied to any other image registration algorithm
with only some small modifications. DE itself is compu-
tationally cost efficient, the problem being that several
function evaluations (one per population member) per
cycle are needed. The following table displays the parame-
ters related to the DE, thus allowing us to approximate the
computational effort.

From Table 1, we can see that a total of 34,0000 cost
function evaluations are done in order to find the param-
eters. On the average, each cost function evaluation takes
approx. 5s (Matlab/MEX implementation). Therefore, it
would take around 19.7 days ‘wall clock time’ to find the
parameters. As is explained in Section 1, we repeat this
procedure 5 times. However, the optimisation can be par-
allelised by keeping the members on the master computer
and by calculating the function values on several slave
computers simultaneously, which was the adopted strat-
egy. This method of parallelising DE is certainly not new
and has been reported earlier by, for example, Plagianakos
et al. [24], Tasoulis et al. [25], and Epitropakis et al. [26].
The whole system was implemented on a ‘Ferlin’ LSF-type
cluster (Foundation Level System) at the PDC Center for
High Performance Computing, KTH, Stockholm, Sweden.
The cluster consists of 672 computational nodes (each

Table 1 DE parameters

Parameter Value
Population members 25
[terations 20
Training + validation sets 1545
Image representations 34
Total 34,0000
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node consists of two quad-core Intel CPUs). By using four
computational nodes (i.e., 32 cores), the total ‘wall clock
time, for all the five different runs (see Section 1), was
approximately 5 days.

Image transformations

In this section, we describe the image transformations that
we have decided to evaluate. We have chosen the most
common image representations as well as other transfor-
mations that have been proposed in the literature, due to
their robustness and possibility of real-time implementa-
tion. All combinatorial pairs of NONE, RGB, RGBN, VI,
HS(V), (r)¢0, PHASE, LOGD and |VI| are tested, except
|VI| and PHASE+LOGD. The 34 different tested combi-
nations can be seen in Appendix 1, Table 7. As it was
already mentioned previously, Mileva et al. tested some
of the same representations earlier in [4]. Some combina-
tions were left out because of practical issues related to
the computational time (see Section Searching for optimal
parameters with differential evolution for more informa-
tion related to the computational time). A preliminary
‘small scale’ experiment was conducted in order to see
which representations would be studied more carefully.
In the following section, we briefly describe the different
input representations under study.

RGBN (normalized RGB)
In the RGBN case, the standard RGB representation is
simply normalised by using a factor N. In our tests, both
images are normalised by using their own factor which
is N; = max(R;, G;, B;), i being the image in question
(e.g., left or right image). The transformation is given by
Equation (8).
T
[R G B]TI—>|:R G B] (8)
N N N

RGBN is robust with respect to global multiplicative illu-
mination changes.

\Z/
The transformation is given by:

[R G B]'—~[R R G: G, B, B] (9

where sub-index states with respect to which variable
the term in question has been derived. Gradient con-
stancy term is robust with respect to both global and local
additive illumination changes.

Vi

The transformation is given by:

R G BI"—[[R. RIIG: G,[B. BJ]"
(10)
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where sub-index states with respect to which variable the
term in question has been derived. In general, this term is
illumination robust with respect to both local and global
additive illumination changes.

HS(V)

HSV(Hue saturation value) is a cylindrical representation
of the colour-space where the angle around the central
axis of the cylinder defines ‘hue; the distance from the
central axis defines ‘saturation; and the position along the
central axis defines ‘value’ as in:

[R G B]'"~[H s V]'

0, if max = min
G—-B
60° X ————, ifmax = R
max — min
H= o B—R o .
60° x —— +120°, ifmax = G
max — min
o R—-G R )
60° x ——— + 240°, ifmax = B
max — min
0, ifmax=0
S$= 1 max — min .
,  otherwise
max
V = max
(11)

where min = min(R, G, B) and max = max(R, G, B). As
can be understood from (11), the H and S components are
illumination robust, while the V component is not and,
therefore, it is excluded from the representation. In the
rest of the text, HS(V) refers to image representation with
only the H and S components.

(nNgo

While HSV describes colours in a cylindrical space, r¢6
does so in a spherical one. r indicates the magnitude of the
colour vector while ¢ is the zenith and 6 is the azimuth, as
in:

[R G B]'—[r 6 ¢]

r=vVR+G*+B?

G
6 = arctan ()
R

VR? + G?
¢ = arcsin —+
VR? + G* 4 B?

(12)

As can be observed from (12), both the ¢ and 0 are
illumination robust while magnitude vector r is not and,
therefore, we exclude r from the representation. In the
rest of the text, (r)¢6 and spherical refer to an image
representation based on the ¢ and 6.
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LOGD
With LOGD we refer to log-derivative representation and
the corresponding transformation is as follows:

[R G Bl [(nR), (nG), (nB),

x(n R, (nG), (nB),]"
(13)

where sub-index states with respect to which variable the
term in question has been derived. The log-derivative
image representation is robust with respect to both addi-
tive and multiplicative local illumination changes.

PHASE
The reason for choosing the phase representation is three-
fold: (a) the phase component is robust with respect to
illumination changes; (b) cells with a similar behaviour
have been found in the visual cortex of primates [27],
which might well mean that evolution has found this kind
of representation to be meaningful (even if we might not
be able to exploit it completely yet); and (c) the stability
of the phase component with respect to small geometri-
cal deformations (as shown by Fleet and Jepson [28,29]).
The phase is a local component extracted from the sub-
traction of local values. Therefore, it does not depend on
an absolute illumination measure, but rather on the rela-
tive illumination measures of two local estimations (which
are subtracted). This makes this estimation robust against
illumination artifacts (such as shadows, which increase or
decrease local illumination but do not affect local ratios so
dramatically). In a similar way, if noise (multiplicative or
additive) affects a certain local region uniformly, in aver-
age the illumination ratio (in which phase is based) will be
less affected than the absolute illumination value. The fil-
tering stage with a set of specific filters can be regarded as
band-pass filtering, since only the components that match
the set of filters are allowed (or not discarded) for fur-
ther processing. Gabor filters have specific properties that
make them of special interest in general image processing
tasks [30].

We define the phase component of a band-pass fil-
tered image as a result of convolving the input image
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with a set of quadrature filters [28-30] as proceeds. The
complex-valued Gabor filters are defined as:

h(x; f0,0) = he(x; fo,0) + ihs(x; fo,0)

where x = (%, y) is the image position, fy denotes the peak
frequency, 6 the orientation of the filter in reference to the
horizontal axis, and 4.(-) and /,(-) denote the even (real)
and odd (imaginary) parts. The filter responses (band-
pass signals) are generated by convolving an input image
with a filter as in:

Q(x;0) =1 x h(x;/5,0) = C(x;0) +iS(x;6)

(14)

(15)

where I denotes an input image, * denotes convolution,
and C(x;0) and S(x;60) are the even and odd responses
corresponding to a filter with an orientation 6. From
the even and odd responses, two different representation
spaces can be built, namely phase and energy as follows:

E(x;60) = v/C(x,0)2 + S(x;0)2

S(x;0) )
C(x;0)

where E(fx;0) is the energy response and w(x;6), the
phase response of a filter corresponding to an orienta-
tion 0. As can be observed from (15), the input image /
can contain several components (e.g., RGB, HSV) where
each component would be convolved independently to
extract energy and phase. However, in order to maintain
the computation time reasonable, the input images are
first converted into grey-level images, after which the filter
responses are calculated. Therefore, the transformation
can be defined by:

R G B' > [w(x0)]

(16)

w(x;0) = arctan (

for all 6 17)

Figure 1 shows phase information for the Cones image
from the Middlebury database®.

Induced illumination errors and image noise
Here, we introduce, along with the related mathematical
formulations, the used models for simulating both illumi-
nation errors and image noise. Tables 2 and 3 display the
error and noise models, in their respective order.

From Table 2, we can observe that both global and local
illumination errors are used. The difference between these

'i"(

Figure 1 Phase response of Cones stereo-image: (a) original image; (b) phase response corresponding to § = 0°; (c) phase response
corresponding to # = 22.5°; (d) phase response corresponding to § = 45°.
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Table 2 Tested illumination error types
Global

Additive (GA)

Multiplicative (GM)

Multiplicative and additive (GMA)

Local
Additive (LA)
Multiplicative (LM)

Multiplicative and additive (LMA)

Table 3 Tested image noise types

Luminance Chrominance Salt & pepper
mild (nLM) mild (nCM) mild (NSPM)
severe (nLS) severe (NCS) severe (nNSPS)

types is that in the former case, the error is the same for
all the positions, while in the latter, the error is a function
of the pixel position. In the illumination error case (both
local and global), we apply the error only on one of the
images. Especially in the local illumination error case, this
simulates a ‘glare’

From Table 3, we can see that luminance, chrominance,
and salt&pepper image noise types are used. The differ-
ence between the luminance and the chrominance is that
in the former case, the noise affects all the channels, while
in the latter, only one channel is affected. We apply the
noise model to both of the images (i.e., left- and right
image). Figure 2 displays some of the illumination errors
and image noise for the Baby2 case from the Middlebury
databased.

It can be argued that the noise present in the images
could be reduced or eliminated by using a de-noising
pre-processing step, and thus, the study should be cen-
tred more towards illumination type of errors. However, if
any of the tested image representations proves to be suf-
ficiently robust with respect to both illumination errors
and image noise, this would mean that less pre-processing
steps would be needed. This certainly would be beneficial
in real applications, possibly suffering from a restricted
computational power.

Before describing the mathematical formulations for
each of the models previously mentioned, we need to
make certain definitions.

However, before going any further, we would like to
point out that the illumination error and noise models

Page 8 of 19

are applied on the RGB input images before transform-
ing these into the corresponding representations. For the
sake of readability, the used notation is explained here
again. We consider the (discrete) image to be a mapping
I# k) : Q@ — RXY, where the domain of the image is
Q:=[1,...,N] x[1,...,M], M and N being the number
of columns and rows of the image, while K defines the
number of the channels. In our case K = 3, since the input
images are RGB. Minimum and maximum values, after
having applied the error or noise models, of the images are
limited to [O, ..., 255]. The position vector can be written
as follows: (i) = (x(i), y(i)), where i €[1,...,P] with P
being the number of pixels (i.e., P = MN). When refer-
ring to individual pixels, instead of writing I (x(i), k)), we
write [ (i, k) with i defined as previously and k being the
channel in question.

Global illumination errors
Global illumination errors are defined as follows:

GA : 1(i, k) — 1(i, k) + ga, (18)
GM : 1(i, k) — I(i, k)gm, (19)
GMA : (i, k) — 1(i, K)gm + ga, (20)

where i = 1,...,P, k = 1,...,3, and ga is the addi-
tive error, while gm is the multiplicative error. For additive
error, we have used ga = 25 and for multiplicative error,
we have used gm = 1.1.

Local illumination errors

We define the local illumination error function as a map-
ping E : @ — R, with the domain as previously. In
this study, we have used a scaled multivariate normal
distribution, N3 (x(i), u, £)sF, to approximate the local
illumination errors that change as a function of the posi-
tion. Mean u, covariance X, and scaling factor sF are
defined as follows:

= (N/2, M/2), T =

sF = 0.3527|Z|Y?)

3 |
T e
G

Figure 2 Baby2. (a) Original; (b) Local multiplicative and additive (LMA); () Severe luminance (nLS); (d) Severe salt&pepper (nSPS).
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where N and M are the number of columns and rows
in the image (as previously) and |X| is determinant of
the covariance. Scaling factor sF simply scales the values
between [0, ..., 0.35]. In other words, we simulate an illu-
mination error that influences most the centre of the the
image in question, as can be observed from Figure 2 (LMA
case). With the above in place, we define the local illu-
mination error function as E(i) := N3 (%(i), u, o)sF and,
thus, the local illumination errors are as follows:

LA : 1G, k) — 10, k) + 255E()) (22)
LM : I(, k) — 1(i, k)(l + E(i)) (23)
LMA : I, k) — 1(, k)(l n E(i)) + 255E()) (24)

where i = 1,...,Pand k = 1,...,3. The multiplier 255
is simply due to the ‘scaling’ of the image representation
(ie,[0,...,255]).

Luminance noise

In order to simulate both luminance and chrominance
noise, we have generated two vectors of random numbers
from normal distribution with different parameters. We
denote these vectors as N, :=[N1(0, 10),...,N71(0, 10)]
and N; :=[N1(0, 30),...,N1(0, 30)], where the first vec-
tor simulates mild noise and the second one more severe
noise. We use the same vectors for all the images and for
both the luminance and chrominance types of noise.

nLM : 13, k) — 13, k) + Nm((k — 1P+ i) (25)

nLS : 1, k) — 1, k) + Ns((k — 1P+ i) (26)

wherei=1,...,Pandk =1,...,3. Theindex (k—1)P+i
just makes sure that a different value is applied to each
pixel in each channel.

Chrominance noise
Below, models for the chrominance type of noise are
shown:

nCM : 1G, k) — 1(i, k) + N, (z) 27)

nCS : 1(, k) — 1, k) + N, (z) (28)

wherei=1,...,Pand k = 1.

Salt&pepper noise

In order to simulate the salt&pepper type of noise, we
have generated a vector from uniform distribution. We
denote this vector as SP :=[U(0,1),...,U(0,1)]. We use
this same vector for generating this type of noise for all the
images.

255, if SP(i) > 0.95
nSPM :1(i, k=0,...,3) =
0, if SP(i) < 0.05

(29)
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255, if SP(i) > 0.90
0, ifSP(i) <0.10
(30)

nSPS :I(i, k=0,...,K) =

wherei=1,...,P.

Experiments

The purpose of the experiments was to study, both
quantitatively and qualitatively, how each of the chosen
image representations performs using both the origi-
nal images and images with induced illumination errors
or noise. This kind of analysis not only allows us to
study how each of the representations behaves using the
original images (naturally containing some noise due to
the imaging devices), but also gives an insight of how
robust each of the representations actually is: those rep-
resentations that produce similar results with or without
induced errors can be regarded to be robust. Due to
the availability of stereo-images (with different illumina-
tion/exposure times) at the Middlebury® database, with
ground-truth, these were used for the quantitative experi-
ments (Figure 3). We have used images that correspond to
a size of approximately 370 x 420 (rows x columns). For
the qualitative analysis and functional validation, images
from the DRIVSCOf and the GRASP$ projects were
used.

Even if no vigorous image analysis was used when
choosing the images, both the learn- and test sets were
carefully chosen by taking the following into consider-
ation: (a) none of the sets contains known cases where
the variational method is known to fail completely; (b)
both very textured (e.g., Aloe and Clothl) and less tex-
tured cases (e.g., Plastic and Wood1) are included. Even
though less textured cases are considerably more diffi-
cult for stereo algorithms, these were included so that the
parameters found by the DE algorithm would be more
‘generic. In Appendix 1, Table 9, typical disparity values
for each image are given, along with an example of the
mean squared error for the calculated disparity maps. The
reason for not including cases where the algorithm fails
is that in these cases, the effect of the used image repre-
sentation would be negligible and thus, would not convey
useful information for our study. The variational methods
(and any other method known to us) are known to fail
with images that do not contain enough spatial features in
order to approximate the disparity correctly. However, in
[31] we propose a solution to this problem by using both
spatial and temporal constraints.

K-fold cross-validation

Because of the limited size of the data set for the quan-
titative experiment, a set of 25 different stereo-images,
we have used a technique called k-fold cross-correlation
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Figure 3 Stereo-images from the Middlebury database used in the quantitative experiments. (a) Aloe; (b) Art; (c) Baby1; (d) Baby2; (e)
Babys3; (f) Books; (g) Bowling; (h) Cloth1; (i) Cloth2; (j) Cloth3; (k) Cones; (I) Dolls; (m) Lampshade; (n) Lampshade2; (o) Laundry; (p) Moebius; (q)
Plastic; (r) Reindeer; (s) Rocks1; (t) Rocks2; (u) Teddy; (v) Tsukuba; (w) Venus; (x) Wood1; (y) Wood?2.

[32,33] to statistically test how well the obtained results
are generalisable. In our case, due to the size of the data
set, we use a 5-fold cross-correlation: the data set is bro-
ken in five sets, each containing five images. Then, we
run the DE and analyse the results five times using three
of the sets for learning, one for validation, and one for
testing. In each run the sets for learning, validation and
testing will be different. Results are based on all of the
five runs. Below, there is a list of sets for the first run
(Table 4).

Information related to the image sets for all the different
runs can be found in Appendix 1, Table 8.

Table 4 Learn-, validation-, and test sets

Error metric
The error metric that we have used is the mean squared
error (MSE), defined by:

1

MSE =
SP

((di)j - (dgti)/>2

1

s P
(31)

j=1i

where d is the calculated disparity map, dgt is the ground
truth, P is the number of pixels, and S is the number of
images in the set (e.g., for a single image S = 1) for which
the mean squared error is to be calculated for.

Run Learn Test Validation

1 Lampshade2 Cloth1 Rocks2 Aloe Bowling2
Baby3 Reindeer Baby2 Baby1 Laundry
Cones Plastic Tsukuba Books Moebius
Art Wood1 Rocks1 Lampshade1 Venus
Dolls Cloth3 Cloth2 Wood?2 Teddy
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Results

In this section, we present the results, both quantity and
visual quality-wise. First, the results are given by rank-
ing how well each representation has done, both accu-
racy and robustness-wise. Then, we study how combining
different representations has affected the accuracy and
the robustness of these combined representations. After
this, we present the results for some real applications
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visual quality-wise, since ground-truth is not available for
these cases.

Ranking

Here, we rank each of the representation spaces in order
to gain a better insight on the robustness and accuracy of
each representation. By robustness and accuracy, we mean
the following: (a) a representation is considered robust

Table 5 Ranking for combined error+noise and original images

Rank Error 4+ noise MSE Original images MSE
1. VI+PHASE 723 VI+HS(V) 35.1
2. \% 83.6 HS(V)+LOGD 375
3. PHASE+| V| 84.1 VI+RGB 390
4. VI+LOGD 874 V/I+RGBn 394
5. PHASE 923 HS(V)+PHASE 40.6
6. (") pO+PHASE 924 (") pO+PHASE 422
7. VI+|VI| 926 \%, 449
8. RGBN+LOGD 92.8 VI+LOGD 456
9. LOGD 97.5 VI+PHASE 46.0
10. RGB+PHASE 102.7 RGB+LOGD 46.0
1. LOGD+| V| 105.5 RGBNn+LOGD 46.8
12. RGBn+|V/| 1115 RGBN+PHASE 471
13. HS(V)+| V| 1120 PHASE+| V| 477
14. RGB+|V/| 1129 RGB+PHASE 479
15. VI+RGBn 114.8 PHASE 483
16. RGBNn+PHASE 120.0 LOGD 50.7
17. HS(V)+PHASE 120.2 HS(V)+(r)¢0 532
18. RGB+LOGD 125.7 (nNe¢o 536
19. VI+(1)¢0 134.1 LOGD+|V/| 55.2
20. NP+ V| 13938 HS(V)+| V| 559
21. VI+RGB 1750 (NPO+| V| 56.9
22. VIHHS(V) 1804 RGB+|VI| 57.7
23. HS(V)+LOGD 2784 VI+|VI| 59.8
24. HS(V) 293.8 RGBn+| V| 62.1
25. RGB+HS(V) 360.8 RGBN+HS(V) 74.8
26. RGBn+HS(V) 3738 VI+(r¢o 99.3
27. RGBn 3744 (nN¢6+LOGD 103.7
28. RGB 380.7 RGB+(r)¢0 1194
29. RGB+RGBn 3943 HS(V) 1343
30. (N $pH+LOGD 394.8 RGBN+(r) 6 166.3
31. HS(V)+()¢o 563.8 RGB+HS(V) 178.8
32 (Ne¢o 712.2 RGB 2248
33. RGBn+(n 6 716.7 RGB+RGBN 239.1
34. RGB+(r)¢6 7274 RGBn 260.3

Combined error+noise is MSE of all the different illumination errors and noise types.
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when results based on it are affected only slightly by noise
or image errors; (b) a representation is considered accu-
rate when results based on this gives good results using
the original (i.e., noiseless) images. While this may not be
the standard terminology, we find that using these terms
makes it easier to explain the results. In Table 5, each
of the representations is ranked with respect to (a) the

Table 6 Combined ranking

Rank Representation space Summed rank
1. \% 9
2. VI+PHASE 10
3. VI+LOGD 12
4, (1) $O+PHASE 12
5. PHASE+|V/| 16
6. V/I+RGBN 19
7. RGBN+LOGD 19
8. PHASE 20
9. HS(V)+PHASE 22
10. VI+HS(V) 23
1. VI+RGB 24
12. RGB+PHASE 24
13. HS(V)+LOGD 25
14. LOGD 25
15. RGB+LOGD 28
16. RGBN+PHASE 28
17. VI+| V| 30
18. LOGD+| V| 30
19. HS(V)+| V| 33
20. RGB+|V/| 36
21. RGBN+| V]| 36
22. (NPO+VI| 41
23. V(g6 45
24. HS(V)+(r)¢0 48
25. (N0 50
26. RGBN-+HS(V) 51
27. HS(V) 53
28. RGB+HS(V) 56
29. (n¢0+LOGD 57
30. RGB 60
31. RGBN 61
32. RGB+RGBN 62
33. RGB+(r)p0 62
34. RGBN-+(n¢o 63

The summed rank column is the sum of the rankings given in Table 5 for each
representation. The ranking here is based on the summed rank (the lower, the
better).
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original images and (b) the combined illumination errors
and noise types, while Table 6 combines the aforemen-
tioned results into a single ranking. The MSE value in the
tables is based on all the different runs (see Section 1). In
the case of the combined error and noise (error+noise in
the tables), the MSE value is calculated based on all the
different illumination errors and noise types for the five
different runs.

As can be observed from Table 5, the most robust rep-
resentation was VI+PHASE, while the second one was VI
without any combinations. Since both VI and PHASE rep-
resent different physical quantities (gradient and phase of
the image signal, as the names suggest), and both of these
have been shown to be robust, it is not surprising that a
combination of these was the most robust representation.
In general, representations based on both VI and PHASE
were amongst the most robust representations. On the
other hand, V/+LOGD was the most accurate representa-
tion with the original images (i.e., without induced errors
or noise). In general, representations based on VI have
produced good results with the original images.

As can be observed from Table 6, the best combined
ranking was produced by VI alone. Also, it can be
noted that the first three are all based on VI. However,
VI+PHASE is slightly more robust than VI alone, but not
as accurate. This is clear from the figures presented in
Section 1.

Improvement due to combined representation spaces

In the following, we show how each of the basic represen-
tations (1st column in Appendix 1, Table 7) has benefited,
or worsened, by being combined with different represen-
tations. In other words, we show, for example, how the
error for VI changes when combined with |VI|, therefore,
allowing us to deduce if VI benefits from the combination.
Results are given with respect to error, thus, a positive
change in the error naturally means greater error and vice
versa. Figure 4 displays the results for VI, PHASE, and
LOGD, while Figure 5 gives the same for (r)¢6, HS(V) and
RGB. We have left out results for RGBN on purpose, since
this was the worst performer and the results, in general,
were similar to those of RGB.

As it can be observed, combining VI with any of the rep-
resentations, apart from (r)¢6, has improved both accu-
racy and robustness. Combining (r)¢6 with VI improves
robustness but at the same time, worsens accuracy. The
situation with PHASE is similar: combining PHASE with
other representations, apart from VI, has improved both
accuracy and robustness; when combined with VI, accu-
racy worsens slightly while robustness improves. From
Table 5, it can be observed that VI+PHASE is more
robust than VI alone (first and second positions) with
error+noise, while VI ranks seventh and VI+PHASE
ranks ninth with the original images.



Ralli et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:254

http://asp.eurasipjournals.com/content/2012/1/254

Page 13 of 19

VI

140
120 +
100 +
80
60 |
40 +
20

% change

20 |
-40

§ Org. @
4 Err4noise mm

>

40

30
20
10 F

% change

210 +
220

Org. ™
Err+noise mm

-30

350
300 |
250
200
150 +

% change

—

Org. ™
Err+noise mm

1

e

a negative value indicates a decrease in error.

Figure 4 Change in error due to combined representation. Results for V/, PHASE, and LOGD. A positive value indicates an increase in error, while

||
% .
o

%
& &
e 6}1/

Visual qualitative interpretation

Figures 6, 7, and 8 display results visually for the Cones,
DRIVSCO, and GRASP cases, using the following image
representations: VI, VI+PHASE, VI+HS(V), PHASE, and
RGB. A video of the results for DRIVSCO is available at".
These representations were chosen since (a) VI was the
overall ‘winner’ for the combined results (see Table 6);
(b) VI+PHASE was the most robust one; (c) VI+HS(V)
was the most accurate one; (d) PHASE is both robust and
accurate, and (e) RGB is the ‘standard’ representation from
typical cameras. The parameters used were the same in
all the cases presented here and are those from the 1st
run (out of five) for the 5-fold cross-validation. The rea-
soning here is, confirmed by the results, that any robust

representation should be able to generate reasonable
results for any of the parameters found in the cross-
validation scheme.

As can be observed from Figure 6, the results are some-
what similar for all the representations. However, as it can
be observed, RGB has visually produced slightly worse
results.

Figure 7 shows results for the DRIVSCO! sequence
(Additional file 1). Here, VI+PHASE has produced the
most concise results: results for the road are far better
than with any of the other representations. On the other
hand, VI+HS(V) has produced the best results for the
trailer: obtaining correct approximations for the trailer is
challenging since it tends to ‘fuse’ with the trees. RGB
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has produced very low quality results and, for example,
scene interpretation based on these results would be very
challenging if not impossible.

Figure 8 shows results for a robotic grasping scene. Both
VI and VI+HS(V) have produced good results: the object
of interest lying on the table is recognisable in the dis-
parity map. VI+PHASE or PHASE alone has increased
‘leakage’ of disparity values between the object of interest
and the shelf. On the other hand, PHASE representa-
tion has produced the best results for the table, espe-
cially for the lowest part. Again, RGB has produced low
quality results.

Altogether, visual qualitative interpretation of the
results using real image sequences is in line with the

quantitative analysis. Both VI and VI+PHASE produce
good results even with real image sequences. However, the
former produces slightly more accurate results while the
latter representation is more robust.

Conclusions

We have shown that the quality of a disparity map, gener-
ated by a variational method, under illumination changes
and image noise, depends significantly on the used image
representation type. By combining different representa-
tions, we have generated and tested 34 different cases and
found several complementary spaces that are affected only
slightly even under severe illumination errors and image
noise. Accuracy differences of 7-fold (without noise) and
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d e

Figure 6 Cones. (a) Ground truth; (b) V/; (c) V/+PHASE; (d) V/+HS(V); (e) PHASE; (f) RGB.

d e

Figure 7 DRIVSCO scene. (a) Left image; (b) V/; (c) V/I+PHASE; (d) VI+HS(V); (e) PHASE; (f) RGB.

d e

Figure 8 GRASP scene. (a) Left image; (b) V/; (¢) VI+PHASE; (d) VI+HS(V); (e) PHASE; (f) RGB.
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10-fold (with noise and illumination errors) were found
between the best and worst representation maps, which
highlights the relevance of an appropriate input repre-
sentation for low level estimations such as stereo. This
accuracy enhancing and robustness to noise can be of
critical importance in specific application scenarios with
real uncontrolled scenes and not just well behaving test
images (e.g., automatic navigation, advanced robotics,
CGI). Amongst the tested combinations, the VI represen-
tation stood out as one of the most accurate and least
affected by illumination errors or noise. By combining
VI with PHASE, the joined representation space was the
most robust one amongst the tested spaces. This finding
was also confirmed by the qualitative experiments. Thus,
we can say that the aforementioned representations com-
plement each other. These results were also confirmed in
a qualitative evaluation of natural scenes in uncontrolled
scenarios.

There are some studies similar to ours, carried out in
a smaller scale. However, the other studies typically pro-
vide little information related to how the optimum (or
near optimum) parameters of the algorithm are achieved,
related to each representation space: in this study, we have
used a well known, derivative free, stochastic algorithm
called DE for the reasons given in the text. We argue that
manually obtained parameters are subjected to a bias from
the human operator and therefore, can be expected to
confirm expected results. Three different sets of images
were used for obtaining the parameters and testing each
of the representations, in order to avoid over-fitting. The
proposed methodology for estimating model parameters
can be extended to many other computer vision algo-
rithms. Therefore, our contribution should lead to more
robust computer vision systems capable of working with
real applications.

Future study

The weighting factors (b1 and by in (1)) for each image
representation are applied equally to all of the ‘channels.

Table 7 Tested image representation combinations
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Since some of the channels are more robust than others,
like in the case of HSV for example, each channel should
have its own weighting factor. Since this study allows us to
cut down the number of useful representations, we pro-
pose to study the best behaving ones in more detail with
separate weighting factors where needed.

Appendix 1

Image representations and sets

Typical disparity values

The following table displays minimum, maximum, mean,
and standard deviation (STD) of ground-truth disparity
for each of the used images. Also, in the same table we
give the MSE (mean squared error), for each of the images,
calculated using the parameters from the 1st run for the
VI based image representation. The lowest numbers are
the mean, standard deviation and MSE for the whole
image set. The number on the lowest row in the table
are the mean, standard deviation and MSE for the whole
image set.

As it can be observed from Table 9, for some of the
images the MSE is some what big. This does not come
as a complete surprise since some of the images, such as
Woodl, Wood2, Lampshadel, and Lampshade2 contain
only few useful spatial features for approximating the dis-
parity correctly. As future study, it would be interesting to
divide the images into two categories (ones with sufficient
spatial features and ones with only very few spatial fea-
tures), and then search for the optimum parameters using
the DE algorithm. Now, if there would be considerable
improvement in either of the sets, then this would suggest
that the parameters should be chosen based on previous
image analysis step.

Endnotes

http://www.jarnoralli.fi/.
Phttp://www.icsi.berkeley.edu/~storn/code.html.
http://vision.middlebury.edu/stereo/data/.
dhttp://vision.middlebury.edu/stereo/data/.

Term Term

None RGB RGBN VI HS(V) (r¢d Phase LOGD
None
RGB X X X X X X X
RGBN X X X X X
v/ X X X X X X X
HS(V) X X X X X
(N¢o X X X X
Phase X X
LOGD X X



http://www.jarnoralli.fi/
http://www.icsi.berkeley.edu/~storn/code.html
http://vision.middlebury.edu/stereo/data/
http://vision.middlebury.edu/stereo/data/
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Table 8 Learn-, validation-, and test sets

Run Learn Test Validation

1 Lampshade?2 Cloth1 Rocks2 Aloe Bowling2
Baby3 Reindeer Baby?2 Baby1 Laundry
Cones Plastic Tsukuba Books Moebius
Art Wood1 Rocks1 Lampshade1 Venus
Dolls Cloth3 Cloth2 Wood?2 Teddy

2 Baby1 Cloth1 Teddy Art Rocks1
Aloe Wood1 Reindeer Baby2 Rocks2
Lampshade1 Laundry Bowling2 Cloth3 Cloth2
Dolls Wood?2 Lampshade2 Plastic Books
Cones Baby3 Moebius Tsukuba Venus

3 Aloe Rocks1 Lampshadel Baby1 Baby3
Dolls Venus Moebius Bowling2 Wood?2
Laundry Tsukuba Rocks2 Lampshade2 Plastic
Cones Baby2 Books Reindeer Cloth2
Wood1 Art Cloth3 Teddy Cloth 1

4 Baby3 Cones Tsukuba Baby1 Books
Rocks2 Art Cloth3 Cloth2 Lampshade2
Laundry Dolls Reindeer Teddy Cloth1
Plastic Bowling2 Lampshadel Venus Rocks1
Aloe Wood?2 Baby2 Wood1 Moebius

5 Bowling2 Books Reindeer Baby2 Teddy
Tsukuba Cloth3 Rocks2 Cloth1 Baby3
Moebius Aloe Laundry Plastic Venus
Cones Wood1 Art Rocks1 Cloth2
Lampshade1 Dolls Lampshade2 Wood?2 Baby1

Table 9 Typical disparity values for each image, and MSE for each image using parameters from the 1st run for V/
image representation

Image Min Max Mean Std MSE
Aloe 1433 70.33 24.13 9.34 437
Art 24.33 74.67 44.36 14.37 95.5
Baby1 833 45.33 27.79 10.66 24.6
Baby2 1333 51.67 28.95 12.05 7.8
Baby3 15.67 51.00 42.15 6.93 1.7
Books 21.67 73.67 43.00 14.71 87
Bowling2 1333 66.00 46.88 15.96 116.0
Cloth 13.00 57.33 3828 893 06
Cloth2 14.00 76.00 5324 1237 306
Cloth3 15.00 5533 36.28 11.31 5.1
Cones 5.50 55.00 33.54 11.58 8.7
Dolls 3.00 73.67 45.85 14.09 4.2
Lampshade1 14.00 64.67 35.87 15.90 78.2

Lampshade2 8.67 65.33 3892 14.46 755




Ralli et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:254

http://asp.eurasipjournals.com/content/2012/1/254

Page 18 of 19

Table 9 Typical disparity values for each image, and MSE for each image using parameters from the 1st run for V/

image representation (continued)

Laundry 11.67 7733
Moebius 2133 7267
Plastic 767 6533
Reindeer 3.67 67.00
Rocks!1 19.33 56.67
Rocks2 2333 56.00
Teddy 12.50 52.75
Tsukuba 5.00 14.00
Venus 3.00 19.75
Wood1 21.67 71.67
Wood2 1433 72.33

40.29 12.95 27.3
37.19 11.20 12.7
45.27 13.36 154
4154 15.01 112.8
37.53 9.50 1.7
38.57 7.00 1.3
27.38 9.02 8.8
6.79 267 2.1
8.89 4.09 1.0
40.83 12.71 102.5
48.89 15.46 126.6
37.08 15.82 369

http://vision.middlebury.edu/stereo/data/.
fhttp://www.pspc.dibe.unige.it/~drivsco/.
Ehttp://www.csc.kth.se/grasp/.
Dhttp://www.jarnoralli.fi/.
ihttp://www.jarnoralli.fi/joomla/publications/
representation-space.

Additional file

Additional file 1: DRIVSCO sequence disparity results. Disparity
calculation results for the DRIVSCO sequence using different image
representations.
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