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Abstract

It is well known that independent sources can be blindly detected and separated, one by one, from linear mixtures by
identifying local extrema of certain objective functions (contrasts), like negentropy, non-Gaussianity (NG) measures,
kurtosis, etc. It was also suggested by Donoho in 1981, and verified in practice by Caiafa et al., that some of these
measures remain useful for particular cases with dependent sources, but not much work has been done in this
respect and a rigorous theoretical ground still lacks. In this article, it is shown that, if a specific type of pairwise
dependence among sources exists, called linear conditional expectation (LCE) law, then a family of objective functions
are valid for their separation. Interestingly, this particular type of dependence arises in modeling material abundances
in the spectral unmixing problem of remote sensed images. In this study, a theoretical novel approach is used to
analyze Shannon entropy (SE), NG measure and absolute smoments of arbitrarily order 8, i.e. generic absolute moments
for the separation of sources allowing them to be dependent. We provide theoretical results that show the conditions
under which sources are isolated by searching for a maximum or a minimum. Also, simple and efficient algorithms
based on Parzen windows estimations of probability density functions and Newton—Raphson iterations are proposed

measure provides the best separation results.

for the separation of dependent or independent sources. A set of simulation results on synthetic data and an
application to the blind spectral unmixing problem are provided in order to validate our theoretical results and
compare these algorithms against FastlCA and a very recently proposed algorithm for dependent sources, the
bounded component analysis algorithm. It is shown that, for dependent sources verifying the LCE law, the NG

Keywords: Dependent component analysis (DCA), Independent component analysis (ICA), Blind source separation
(BSS), Generic absolute (GA) moments, Entropy measures, Non-Gaussianity (NG)

Introduction

In signal processing, a generic problem is how to separate
signals that are linearly combined in the measurements.
Blind source separation (BSS) consists on the task of
isolating # sources from a set of m linear mixtures:

X = ASt, (1)

where x; € R is a column vector containing the mix-
tures (observed measurements), s; € R” is a column
vector containing the unknown source signals (sources)
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and A € R"*" is the unknown mixing matrix containing
the mixing coefficients. The parameter ¢ is an index that
can be related to the position in time or space (pixel index)
depending on the application. The model of Equation
(1) is commonly referred as the noiseless instantaneous
mixing model.

When sources are statistically independent and m > n
(overdetermined case), the problem is well posed in the
sense that sources can be identified up to some unimpor-
tant indeterminacies [1]. This result allowed the develop-
ment of a sort of independent component analysis (ICA)
algorithms which were successfully and widely used in
engineering problems [2-4]. Many criteria have been pro-
posed in the context of ICA, for example, it is known that
sources can be detected by identifying the local minima of
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the SE, in the space of the mixing parameters, keeping the
variance constant because of a classic result from informa-
tion theory: the entropy of a sum of independent variables
is larger than the entropy of individual variables [1,3,5-7].
More generally, Comon [1] has introduced the definition
of contrasts for ICA, i.e. objective functions such that
their global maxima corresponds to the separation of all
sources. Besides negentropy (negative SE), other contrasts
have been proposed for ICA as it is the case of higher
order cumulants for which fourth order cumulant is a par-
ticular case [3,8-10], the convex perimeter for bounded
sources [11], L2-distance non-Gaussianity (NG) measure
[12], least absolute end-point (LAE) [13], and others. For
an up to date review of existing algorithms for ICA, the
reader may refer to [2].

Unlike in the ICA case, the separation of dependent
sources or dependent component analysis (DCA), has
not been fully studied in the past and showed more
difficulties. Hyvérinen & Hoyer [14] have proposed inde-
pendent subspace analysis (ISA) as an extension of ICA
where components in different subspaces are assumed
independent whereas components in the same subspace
have dependencies. When the sources and the mix-
ing matrix are restricted to be non-negative, the prob-
lem can be seen as a non-negative matrix factoriza-
tion (NMF) problem for which many algorithms have
been developed [15]. However, NMF suffers from non-
uniqueness of the solutions and the separation is not
granted if not additional constraints are assumed, for
example, by imposing sparsity of sources [16,17]. Bedini
et al. [18] have developed algorithms for the separa-
tion of correlated sources found in astrophysical appli-
cations based on multiple-lag data covariance matrices,
i.e. by exploiting the time structure of sources. In [12,19],
an algorithm called MaxNG based on the maximization
of a NG measure was proposed and tested on depen-
dent sources extracted from remote sensed images. In
[20,21], some DCA methods were tested on astrophys-
ical sources. Cruces [11] proposed bounded component
analysis (BCA) as an alternative method for BSS which
relies on the bounded support of sources. In BCA, the
separation is granted when the convex hull of the sources
domain can be written as the cartesian product of the
convex hulls of the individual source supports which
is a very restrictive assumption. Recently, Eldogar [22]
showed that a particular type of dependent sources gen-
erated according with a copula-¢ distribution are perfectly
separated by BCA for a wide range of the correlation
coefficient.

In all the previously mentioned DCA methods, when
the independence assumption is relaxed, the success of the
separation relies on alternative, and usually very restric-
tive conditions on sources. Moreover, it was suggested
in [23], and verified in practice in [12,19,24], that some
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measures used in ICA, such as negentropy, NG and
kurtosis, remain useful for particular cases with depen-
dent sources, but not much work has been done in this
respect and a rigorous theoretical ground still lacks.

In this work, we propose a unified theoretical frame-
work to study the capability of any objective function
to detect each of the sources as a local maximum (or
minimum) in the space of coefficients. From our analy-
sis, it turns out that many new objective functions can
be proposed owing this property if a particular type of
dependence is verified among sources. In particular, we
analyze generic absolute (GA) moments, SE and NG mea-
sure as valid objective functions. We introduce simple
and efficient algorithms for the separation of sources
using Parzen windows estimations of pdfs and Newton—
Raphson (N-R) iteration. We analyze the performance of
these measures and compare them against FastICA and
BCA algorithm.

This article is organized as follows: in Section 2, the
theoretical aspects are introduced followed by detailed
analysis of the independent sources case (Section 3) and
the dependent sources case (Section 4); in Section 5,
using this theory, a set of particular cases are rigorously
analyzed and illustrated by simulations; in Section 6, algo-
rithms for source separation with n = 2 sources are
derived by using Parzen windows estimation of pdfs and
N-R iterative method; in Section 7, several simulation
experiments are presented showing the performance of
the proposed algorithms and comparing them against Fas-
tICA and BCA,; finally, in Section 8, the main conclusions
of this work and a discussion about our results is included.

Notation and assumptions

We use capital letters to denote random variables, for
example, S, Sg,. . ., S, are the random variables associated
to the sources which have a joint probability density func-
tion (pdf) denoted by fs;s,. s,(s1,82,...,58,). Obviously,
when sources are independent, the joint pdf factorizes, i.e.

J5185..5,(51,52, - . ., 8n) = fs, (51)f5,(82) . . . S5, (sn),  (2)
where fs,(s;) is called the marginal pdf of variable S;. In
this work, we are also interested in the case of having
dependent sources where such a factorization of the joint
pdf does not exist.

We also define the conditional pdf of a random
variable S given that S, =x as follows: fs,is,(s1,%) =
fs1,5,(81,%) /fs,(x). Accordingly, we define the first and
second order conditional expectations as follows: E[S;
1S; = xl= [sifss,(s1,%)ds1 and E[S}[S; = «]=
fs%fsﬂsz (s1,x)ds1. In the case of having only two
sources, we can simplify the notation by using E[ S1|x] =
E[S11S2 = «] and E[S?|x]= E[S?S; = «]. Since
conditioned expectations are functions of x, we use the



Caiafa EURASIP Journal on Advances in Signal Processing 2012, 2012:255
http://asp.eurasipjournals.com/content/2012/1/255

following simplified notation: E'[ S1|x] = d%E[Sllx] and
E'[S2|x] = LE[S2].

In several parts of this article, when we apply the
differentiation operator under the integral sign, i.e.
% [gx,v)dx = [ %g(x, T)dx we will assume that the
function g(x, ) is sufficiently nicely behaved in order to
allow this operation. Basically, we assume that g(x, ) and
d%g(x,r) are continuous for x in the range of integra-
tion and there are upper bounds |g(x,7)] < A(x) and
|% g(x, 7)| < B(x) independent of 7 such that the integrals
[ Ax)dx, [ B(x)dx do exist.

A motivation for this work: the blind spectral unmixing
problem

Blind spectral unmixing is a specific application of BSS
to the analysis of hyper-spectral remote sensed images. In
this case, it is known that, at any fixed pixel, the linear
mixing model of Equation (1) is valid. The vector of mix-
tures x represents the sensor measurements at different
wavelengths, matrix A contains in its columns the spec-
tral signatures of the endmembers (materials) existing in
the covered area and vector s contains the endmember
fractional abundances at the given pixel [25]. When the
spectral signatures are unknown this is a blind problem
and the objective is to estimate both, matrix A and the
endmember fractional abundances s.

Most of the existing spectral unmixing algorithms
exploit geometrical concepts by using the fact that, due
to the linear mixing equation, the mixed pixels have to lie
inside the convex hull of the endmembers. This convex
hull forms a simplex in the spectral space, with the end-
members as spanning vertices. Some algorithms then try
to look for the largest volume embedded simplex (e.g. sim-
plex growing algorithm (SGA) [26], simplex-projection
unmixing (SPU) [27]) or try to identify extreme points
in the data cloud (e.g. vertex component analysis (VCA)
[28]). Other recently proposed methods are based on
the NMF with sparsity assumptions (e.g. S-measure con-
strained NMF algorithm (NMF-SMC) [29]).

As a BSS problem, sources in the blind spectral unmix-
ing problem are clearly not independent since they are
related to fractional abundances, in fact, they are con-
strained to sum up to one, i.e. Y i, S; = 1. Additionally,
in order to avoid scale indeterminacy and remove con-
stant values, we have to work with normalized sources
S;, ie S «— (S; — Mi)/UiZ where u; and o; are the mean
and standard deviation associated to source i. Under
these conditions, the blind spectral unmixing task can be
approached by solving a BSS problem with the additional
constraint [19]:

n

Z S;=0, (3)

i=1

with E[S;] = 0,E[S}] = 1(i = 1,2,...n).
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The dependence between any pair of normalized
sources can be characterized, for example, by the condi-
tional expectations E[ S;1S;] and E[S;|S;] (i # j). Clearly,
when sources are independent, we have E[ S;|S;] = E[ S;] =
0. On the other hand, when sources are dependent the
conditional expectation E[S;|S;] (i # j) is a function of
S;j. We can try, to determine these functions in order to
satisfy Equation (3). By applying the conditional expecta-
tion to this equation with respect to S; (i = 1,2,...,n)
we obtain a system of # equations with n> — n unknown
(the conditional expectations E[S;|S;] Vi # j). Thus, for
n > 2 there is not a unique choice of the conditional
expectations. Then, we have to obtain this information
from the observation of real data. In [19], it was shown
that hyper-spectral data can be well modeled as having lin-
ear conditional expectations (LCEs), i.e. E[ S;|S;] = aS;+ b
(see [19]). The following theorem provides us the values
of the constants « and b.

Theorem 1. ([19], Theorem 3): Given a pair of depen-
dent normalized sources S;, Sj, if the conditional expecta-
tion E[ S;|S;] is linear in S, that is E[ S;|S;] = aSj + b, then
a=E[S;Sjland b = 0.

In other words, in the blind spectral unmixing problem,
the normalized sources can be modeled as verifying the
following condition:

E[Si|Sj] = pySj, with p;; = E[S;S)], (4)

which is called the LCE law.

As we demonstrate in this article, when this particular
type of dependence between sources is valid, their separa-
tion from linear mixtures can be obtained by maximizing
(or minimizing) different types of objective functions.

Relationship with previous works and new contributions

In [12], we have proposed the Parzen based NG measure
and developed the MaxNG algorithm, a DCA method
which showed to be useful to separate dependent sources
extracted from images and also astrophysical dependent
sources [20], outperforming classical ICA algorithms.
However, in those articles the NG measure was not rig-
orously justified. Later, in [19], the NG measure was
proposed as a solution for the blind spectral unmix-
ing problem and a partial theoretical justification was
given in terms of the LCE condition (guarantee of local
extremum). In [24], we reported the results obtained by
extending our method to other measures of NG such as
Negentropy, and moment based measures, and applying
them to synthetic and real datasets in the blind spectral
unmixing problem context. However, a complete theo-
retical foundation was still lacking and several questions
arose from those experimental results, for example: (1)
why kurtosis based measure failed to separate one specific
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type of dependent sources? or (2) given a particular mea-
sure, how to determine if it can be used for the separation
of sources by local maximization or minimization?, and
(3) on which conditions on sources the separation can be
granted? In the present manuscript, we present a unified
theoretical framework for the study of different measures
for separation of independent and dependent sources ver-
ifying the LCE condition. The main contribution of this
manuscript is to fill the gaps existing among previous
works and give rigorous theoretical answers to the above
open questions. In particular, it is shown that the kur-
tosis based measure (i.e. GA moment with B = 4) has
zero second order derivative for the constrained depen-
dent sources, which makes it useless for the separation
as our empirical results showed in [24]. We also provide
a precise condition (see Equation (33)) that establishes
whether independent sources are separated by maximiz-
ing or minimizing the corresponding GA moment g (0).
On the other side, for dependent sources, it is necessary
to know the second order conditional expectations, i.e.
E [SizlSj]. Another contribution of the present article is a
new algorithm based on a N-R search for local extrema
which has quadratic convergence, i.e. being much faster
than the algorithms proposed in [12,19,20] which used a
steepest ascend method with fixed update step. Addition-
ally, in the present manuscript we compare our algorithms
against a recently proposed DCA algorithm, namely, the
BCA [22], one state-of-the-art algorithm for DCA.

Detection of sources by maximizing or minimizing
objective functions

In this article, we focus only on sequential methods,
also known as deflation methods, that extract normalized
sources one after another by searching for local extrema
of a predefined objective function. This simple idea was
already used in the ICA context [2,3] and can be intro-
duced as follows. When the matrix A in Equation (1) is
full-column rank, the sources can be expressed as a linear
combination of the mixtures by premultiplying Equation
(1) with a pseudo inverse matrix such as the case of the
Moore—Penrose pseudoinverse AT, ie.

s; = Afx,. (5)

Since matrix A is unknown, a reasonable strategy could
be to search in the space of coefficients, for those points
which correspond to each one of the sources. In other
words, if we denote by S; the random variable associated
to the source s;, then we need to analyze the behavior of
the mixture random variable X defined as:

X =a1S1+ a8+ - + Sy (6)

We say that variable S; is separated from the mixture
when all coefficients are zero except ¢, i.e. @; = 1 and

aj = 0 for every j # i. Here we arrive at the main

Page 4 of 17

question we want to answer in this article: how can we dis-
criminate between a single source compared to any linear
combination of two or more sources?

We introduce some important objective functions that
allow us to answer this question. Any valid candidate for
an objective function should involve the pdf of the mix-
ture fx(x) which depends on the mixture coefficients «;.
In particular we consider the SE:

goe = = [ S logtfi o), )
the NG measure defined as follows [12,19]:

8NG = / [fx(®) — ¢>(x)]2 dx, (8)
where ¢ (x) = ﬂén) exp (—%xz), and the GA moment of

order B8 which is defined as follows:

up = E[1X1P] = / xl? i () )

The SE is a well known measure already used in ICA, on
the other side the GA moment was not used before for BSS
except in the particular case when 8 = 4 which is closely
related with the kurtosis [3,9]. In fact, kurtosis is defined as
K = pa/ /L% In this sense, our analysis generalizes existing
ICA methods providing insightful interpretations of the
results. Note that, for 8 = 2 we obtain the second order
moment of the variable which, in our case is fixed to uy =
1. But we can choose any order of moment § provided that
the integral in Equation (9) exists. In the following section
we prove that these objective functions are valid for ICA.

Independent sources case

Let us focus on Equation (6) and analyze wether it is pos-
sible to isolate a source S; from the rest by only looking
at the statistical behavior of the mixture variable X, i.e.
by studying how the pdf fx(x; @) varies according to the
mixing parameters in the vector « = (a1, ®y,...,a;,). For
the ease of the presentation we start with the analysis of
the two independent sources case. Since we have to gen-
erate all possible mixtures of two independent sources
maintaining the variance constant, we use the following
parameterization: X = «1(0)S1 + «2(0)S2 with «;(8) =
cos(f) and ay(0) = sin(f) which means that the separa-
tion is obtained at 0 = kx /2 (k = 0,£1,+2,...) (ignoring
scaling ambiguity). We first introduce a new result char-
acterizing the pdf of a mixture of independent random
variables as a function of the mixing parameter 0, i.e.

Sx(x;0).

Lemma 1. (Two independent sources case): Given two
zero-mean and unit-variance independent source vari-
ables S1 and S», the pdf fx(x;0) of the mixture variable
X = a1(0)S1 + a2(0)Sy with a1(0) = cos(0) and a(0) =
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sin(0), has zero-derivative with respect to 0 for every x at
0 =km/2(k=0,£1,%2,...) ie

fx (% 6)
a0 0=k /2

=0. (10)

Proof. Let us prove first the zero-derivative condition
(maximum or minimum) at 6 = 7/2 (eg = (a1,a3) =
(0, 1)) which corresponds to the separation of source Sj.
In the neighborhood of g, i.e. @ = g + §, we can write
the pdf of the mixture as the convolution:

1 _
fr@sa) = / for (s1)fs, ("“m) dsy.

o2

(11)

By using the chain rule of derivatives we obtain
Ifx(e) _ dfx(xa) Afx (x; )
0 By dor

We compute the partial derivatives in the last equation
evaluated at o7 = 0 and oy = 1 and, by inserting the
derivative operator inside the integral, we obtain:

Afx (%5 o)
8a1

a1(9) + as®).  (12)

£ [ sufs 50 = -f, WELS11=0,

(13)

0(1:0

Afx (x5 o)
dory

= _fSZ(x) - xfs/‘z(x) = _(foZ(x))/’

C(z:l

(14)

Now, taking into account that of(7/2) = 1 and
a5(w/2) = 0, and using Equations (13) and (14) into
Equation (12), we arrive at

Afx (x;00)

50 =0x1— (xf5,(x)) x0=0,

(15)

O=m/2

for every x. Using a similar procedure but working in a
neighbouhood of 9 = (a3,2) = (1,0), i.e. by con-

sidering fx (x; ) = % [ fs, (s2)fs, (x—;m) ds, instead of
Equation (11), we can prove the zero-derivative condi-
tion at & = 0, which corresponds to the separation
of source S;. Finally, it is easy to see that the zero-
derivative condition also holds for any integer multi-
ple of 7/2, because the resulting mixture becomes +S;
or £S5, and the same reasoning used before applies.
Thus, the zero-derivative condition is valid for every x
at 0 = km/2 (k = 0,%£1,%2,...) as claimed by this
lemma. O

In Figure 1, a graphical interpretation of this lemma is
shown in terms of the shape of the pdf for a mixture of
two independent sub-Gaussian variables at 6y = /2 and
0 = 6y + 86.
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In the following, using this fundamental property of
independent variables (Lemma 1), we can easily prove
that gse(0) and 1g(0) have local extrema at the desirable
separation points, i.e. go (kn/2) = pc%(kn/2) = 0, for
keZ.

Theorem 2. Local extrema of SE (independent
sources case): Given two zero-mean and unit-norm source
variables S; (i = 1,2), the SE (gsg(0)) of the mixture vari-
able X = cos(0)S1 + sin(0)Sy, has local extrema at 0 =
kr /2 (k € Z.).

Proof. As in the proof of Lemma 1, here it suffices to
prove that the derivative of the SE, with respect to the
parameter 6, vanishes at 8 = 7/2. From the definition of
SE in Equation (7), if we take its derivative with respect to
6 we have:

dfx(x;0
2 (0) = —/ M (log(fx (x;0)) + 1) dx. (16)

do

Now, using Lemma 1 we see that the derivative of the
pdf is zero at & = m/2 for every x <% = OVx) and
therefore we conclude that g¢,(7/2) = 0.

Theorem 3. Local extrema of the GA moment mea-
sure (independent sources case):

Given two zero-mean and unit-norm source variables S;
(i = 1,2), the GA moment of order B, g (0) of the mixture
variable X = cos(0)S1 + sin(0)Sy, has local extrema at
0 =kn/2keZ)

Proof. We need to prove that the derivative of Equation
(9), with respect to the parameter 0, is zero at 6 = 7 /2. If
we take the derivative of this equation we obtain:

dfx(x; 0
TG / wp P50 o, (17)

where, by using the Lemma 1, we see that u% (r/2) = 0.
O

It is interesting to note that, our Theorem 3 shows that
local extrema are found at the desirable locations for any
chosen value of parameter 8.

In [19], it was shown that the NG measure defined
in Equation (8) has also local extrema at the separation
points. Moreover, it is clear that, by using the same line
of reasoning we can prove the existence of local extrema
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(a)

pdf shape at the separation point
0=0, |

Single source pdf

i Ix(x;00) = fs,(x)

—

051 ‘

0.3+
0.2+

0.1

A \

-4 -3 -2 -1 0 1 2 3 4
b -axa b

(b) pdf shape in the neighborhood of the
separation point

[ 6=0,+60 |

| Single source pdf ~ Mixed sources pdf

fs, fx (x;0
"N

/

-4 -3 -2 -1 0 1 2 3 4
b -axa b

Figure 1 pdf for the mixture variable X = «;(0)S1 + «2(0)S> with sub-Gaussian sources at 6y = x/2 (left) and at = 6y % §6 (right). Note
that, when 6 = /2 the pdf corresponds to the source S, on the other side, when a perturbation on the mixing parameter 6 is considered, i.e.

0 = 6y £ 86, a pdf with a shape closer to the Gaussian one is obtained. It is also noted that in the intervals x € {(—oo, —b) U (—a,a) U (b, +00)}

(x € {(=b,—a) U (a,b)}) the pdf fy(x; §) attains its minimum (maximum) at @ = 7 /2.

in many other objective functionals as, for example, for
the case of Renyi entropy which was already proposed and
studied for ICA [6,7].

It is important to note that, a local extremum at
(o1,2) = (0,1) is a necessary condition to separate
source S but it is not a sufficient condition. The existence
of local extrema which do not correspond to a separation
of sources, also known as mixing local extrema or spu-
rious local extrema, was a topic of research in the ICA
setting. Moreover, some theoretical results are available
showing the existence of spurious local minima for the
Entropy measure when sources has multimodal distribu-
tions [30,31]. Vrins and Verleysen [32] have shown that the
kurtosis-based contrast functions are more robust than
the information theoretic ones when the source distribu-
tions are multimodal.

Relaxing independence: DCA

In the previous section, we have shown that Lemma 1
suffices to guarantee the validity of the SE, the GA
moment and the NG measure as objective functions
for ICA. We are interested now to look at the prob-
lem of separation of potentially dependent sources. Then,
a natural question raises here: what kind of depen-
dence should have the sources in order to guarantee
the same behavior of the pdf as in the ICA scenario?
The following result provides a necessary and sufficient
condition.

Lemma 2. (n dependent sources case) Given a set of
zero-mean and unit-variance source variables S; (i
1,2,...,n) the pdf fx(x; o) of the mixture variable X =
a1S1 + @Sy + -+ + oSy, constrained to the case of
having unit-variance E[X*]= 1, has local extrema for
every x at the separation points (g = 1 and o; = 0

for all i # k) iff the LCE law defined in Equation (4)
holds.

Proof. Here it is only necessary to prove the local
extrema condition (maximum or minimum) for only one
point so we arbitrarily choose the case o, = 1 and o; = 0
for all i # n. In this case, in the neighborhood of ey =
0,0,...,1), ie. @ = ag + 8, we can write the pdf of the
mixture as follows:

Sx(a) = i/.../fsl...sn
Oy

X— Q18] — Y — 0p_1Sp—1
X |81,

(2773

X dSl . dsnfl.
(18)

Following the Lagrangean method, the condition for the
existence of a local extrema point at « = a under the
unit-variance constraint is as follows:

VL(xg) =0, (19)
with
L(a) = fx(x0) + A (Z a? +2 Zpikaiak - 1) ,
i=1 i<k
(20)

where A is the Lagrange multiplier and p; = E[S;Sk] is
the correlation coefficient between sources i and k.

Now, we take the derivatives of the pdf in Equation (18)
with respect to the coefficients o; withi = 1,2,...,n — 1
which, evaluated at & = « give:
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afx (x;00)

30ti

/ 0fs;s,, (8ir %)
= — 7Sidsi
0x

a=ag

(21)
= — (E[SilSu = *] fs, ) -

Similarly, the derivative of the pdf in Equation (18) with
respect to the coefficient ¢, is:

Afx (w5 0)

Sty (22)

= — (xfs, (x))/ .

o=0o(

Using Equations (20), (21) and (22) in Equation (19) we
obtain the following set of conditions:

oL
da; = — (E[SilSn = ] fs,x)) + 2Apin = O
i | y—ay (23)
fori=1,2,...,n—1
aL
=— (afs, () +21=0. (24)
doy, a=ag

The last equation determines the Lagrange multiplier,
ie. A = (1/2) (xfgn (x))/ and, by inserting it into (23) we
arrive to the desired condition:

(25)
O

E[Si|Sn = sul = pinsn.

It is important to note that the LCE condition is also
valid for the particular case of independent sources, i.e.
E[S1]|S2 = s2]= E[S1]= 0 and p = 0. In Figure 2,
some examples of sources are given indicating whether
they follow or not the LCE law.

Before proceeding with our additional results, we have
to solve a technical problem because, as our sources are
now dependent they are allowed to be correlated, thus the
parameterization X = cos(0)S; +sin(0)Sz does not longer
preserve the variance of the mixture variable X. Let us
consider the general linear mixture X = o151 + 252, if we
are constrained to the unit-variance case E[ X2] = 1, then
a% + oz% + 2paiay = 1, where we used p = E[§15,] to
denote the correlation coefficient between sources. Then,
the following parameterization preserves the variance and
uses only one parameter 7:

ai(t) =tand ax(1) = —1p +/72(p2 — 1) + 1. (26)

The following results can be considered as generaliza-
tions of Theorems 2 and 3 to the case of two dependent
sources.

Theorem 4. Local Extrema of SE (general case): Given
two zero-mean and unit-norm source variables S; (i = 1,2)
following the LCE law with respect to S, the SE of the
mixture variable X = a1S1 + oSy constrained to the
unit-variance case E[X%?) = 1, has a local extremum at
(a1, a2) = (0, 1).
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Proof. The proof can be obtained identically to the proof
of Theorem 2, taking into account the parameterization
(26) and using the fact that the LCE condition implies the
existence of local extrema of the pdf as stated by Lemma 2.

O

Theorem 5. Local extrema of the GA moment (gen-
eral case): Given two zero-mean and unit-norm source
variables S; (i = 1,2) following the LCE law with respect
to Sy, the GA moment of order B of the mixture variable
X = a181 + @28y, constrained to the unit-variance case
E[X?| = 1, has a local extremum at (a1, a3) = (0,1).

Proof. The proof can be obtained identically to the proof
of Theorem 3, taking into account the parameterization
(26) and using the fact that the LCE condition implies
the existed of the local extrema of the pdf as stated by
Lemma 2 O

Detailed analysis of SE and GA moments

In previous sections, we proved that some objective func-
tions applied to a unit-variance mixture of sources ver-
ifying the LCE law, have local extrema when only one
of the coefficients is non-zero, which means that we can
separate those sources by searching for local extrema.
Nevertheless, a more detailed analysis is required in order
to determine if each local extremum corresponds to a
maximum or a minimum.

Here, we compute the second order derivative of the
objective function with respect to t for the special cases of
the SE and GA moments of order 8. As we will show, the
condition of a maximum or minimum depends on the sec-
ond order conditional expectation of sources and on their
marginal pdfs. First we need to compute the second order
derivative of the pdf with respect to the parameter T which
is as follows (its derivation is included in Appendix 1):

3% fx (%501 (1), (1))
972 7=0

= (fs, @E[S2a])" + (1 — 3p%)

X fo, () + x(1 = 507)fs, (x)

— P2 °fE (). (27)

We note that the second order derivative explicitly
depends on the second order conditional expectation
E[ S% |S2 = ] and the marginal pdffs, (x).

Using this result, we are able to obtain the second order
derivatives of the objective function as follows:

(1) SE measure: to obtain the second order derivative of
SE we take the derivative of Equation (16) with
respect to the parameter 7 arriving at:
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Figure 2 Scatter plots for three examples of sources with estimations of the conditional expectation E [S; |S3] and the linear regression
given by pS5: (a) corresponds to a pair of independent sources (sub-Gaussian); (b) corresponds to a pair of dependent sources with
negative correlation following the model of abundances in spectral unmixing problem (constrained case); and (c) shows a pair of
dependent sources generated using a Copula-t distribution with correlation p =0.8. In (a) and (b) the LCE condition holds while in (¢) it is
only approximately verified.

3 4 T -1 -05 0 05 1 15 2

S2

2)

d> ;
() = —/ % (log(fs, (x) + 1)) dx,
(28)

and, by using Equation (27) in the last equation and
taking into account that the LCE law holds, i.e.
E[S1]x] = px, we obtain (see its derivation in

Appendix 2):
-[E/Tstw

(29)

2
fs (x))
" 2 2.2 (52
- _p) 2y
&se(0) /(E [Stlx]—p?x%) f5, @) x

X fs, (®)dx + (3p — 1).

GA moment: To compute the second order
derivative of the GA moment we need to take the
derivative of Equation (17) with respect to the
parameter T reaching to:

2
Wi(e) = / |x|f‘de(“) x. (30)

Again, by using Equation (27) into the last equation
and using the LCE law we obtain (see its derivation in
Appendix 3):

O = 6 — 1) [ 102 fe OE 2] i pi
X (1 + p%(B — 2)),
(31)

which is valid only when the integral
[ 1x1P=%fs, (x)E[ S3|x] dx exists.

Some particular cases

In this section, we analyze selected examples to illus-
trate our theoretical results applied to different types of
independent and dependent sources.

(1) Independent sources: Let us consider the simplest

case of having two independent sources Sj and S».
We see that the LCE law (Equation (4)) holds since
o0 = 0and E[ 51|S; = sp] = E[S1] = 0 which means
that SE, GA moment and NG measure have a local
extrema at T = 0 using the parameterization of
Equation (26). Additionally, we note that the second
order conditional expectation is

E[S%|Sz =g = E[S%] = 1 and then the second
order derivative of SE using Equation (29) becomes:

(fs,(%))*
fS2 (x)

which is always greater than zero except for the

Gaussian distribution for which is equal to zero

;. (x)?
f (f;: G~ d is the Fisher information)
2

5e(0) = dx —1, (32)

(see for

example [33], p. 23). This confirms the fact that, at the
separation point, we have a local minimum of the SE.
Now, using Equation (31) we evaluate the second
order derivative of the GA moment which is

15(0) = B [(B—Dup-2 — pg]. (33)

Let us now analyze different cases corresponding to
different values of B. For example, if we consider the
fourth order moment case (8 = 4), we obtain

1’ 4(0) = 4[3 — 4] which means that, for sources
with B4 > 3 (super-Gaussian) the fourth order
moment of the mixture has a minimum at T = 0. On
the other hand, for sources with us < 3
(sub-Gaussian), a maximum of the fourth order
moment of the mixture is found. More interestingly,
we can evaluate any arbitrarily order § and Equation
(33) will tell us if we need to search for a maximum
or a minimum to attain the separation.
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(2) Uncorrelated but dependent sources: We consider
here two sources S; and Sy generated as follows:
S1 = N1N3 and Sy = N5, where N7 and Ny are
independent non-Gaussian random variables with
E[Ni] = E[N>] = 0and E[N}] = E[N7] = 1. We see
that S; and S are highly dependent but are
uncorrelated because
p = E[S1S2] = E[N1N37] = E[N1] E[N?] = 0. The
first order conditional expectation is zero, i.e.
E[S1]S2 = so] = E[N1] so = 0. We also compute the
second order conditional expectation which is
E[S3|Sy = s3] = E[N?N2|Ny] = s3E[N}?] = 3.
Then, by using Equation (29), the second order
derivative of SE at T = 0 becomes:

, 5, @)?

dx — 3.
T

g0 = [« (34)

It is interesting to note that SE could have a
maximum at 7 = 0 if the integral in the last equation
is smaller than three as in the case of our example in
Figure 3d.

Regarding the GA moment, for these sources,

Equation (31) becomes:
1g(0) = B(B —2)up, (35)
and we conclude that we have a minimum at the
separation point (1 g(0) > 0) for every 8 > 2.

(3) A simplified model for material abundances in
spectral unmixing (dependent sources): A simple
model to generate a special type of sources which are
dependent, correlated and constrained to have their
sum constant is as follows [19]. First, we generate
P > 2 independent, nonnegative random variables
N1, Na, ..., Np; then, we define the following random
variables: U; = N;/ Zﬁ=1 Np, fori=1,2,...,P. We
note that these signals meet the constraint

ll;l U; = 1 as in the spectral unmixing application.
Now, we define our sources by normalizing two of
these constrained sources, i.e.: S; = (U; — L_Ii)/aui,

i =1,2. Itis not hard to prove that these sources
meet the LCE law since E[ $1S3] = p = —1/(P — 1)
and E[S1|S2 = s3] = psy = —1/(P — 1)sy.
Additionally, It is not difficult to prove that, for this
particular type of sources we have constant GA
moment of order B = 4 which makes it not suitable
as an objective function for this case. This behavior
was already observed in [24] but not theoretical
explanation was available until now. In Section 7.3,
we generate data and test ICA/DCA algorithms using
a more realistic model for material abundances in
hyperspectral images by computing directly the
material percentages per pixel in a real image.
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In order to illustrate these theoretical results, in
Figure 3, plots for SE, the NG measure, and GA moments
with several values of 8, are shown for the following types
of datasets using a sample size of T = 10° (except for SE
and NG for which we used T = 10%): (a) Independent
sub-Gaussian sources, generated by applying the func-
tion sinh(z)~! to zero-mean Gaussian independent sig-
nals; (b) Independent super-Gaussian sources, generated
by applying the function sinh(x) to zero-mean Gaussian
independent signals; (c) Independent bimodal sources,
where each of the independent sources were generated
by mixing two Gaussians with (u1,01) = (0.5,0.2) and
(2, 02) = (—0.5,0.2), respectively; (d) Dependent uncor-
related sources, generated by using s1; = ny.n2,; and
Say = ny; where nyy, ny; were generated as independent
zero-mean uniform distributions; and (e) Dependent con-
strained sources, generated by using s;(t) = —;-t— with

Zp:l Mpy
i = 1,2, where signals n,, (p = 1,2,...y,4) were gener-
ated using independent uniform distributions in [0, 1].

We see that for the cases (a), (b), (c) and (e), the sepa-
ration of each source is attained at the minima of the SE
and the maxima of the NG measure. Interestingly, sources
in case (d) (dependent and correlated) shows that one of
the sources is detected at one maximum of the SE and
one minimum of the NG measure. It is important to note
that the SE have also spurious local minima for the case of
bimodal distributions (case (c)). This behavior in informa-
tion theoretic measures was already analyzed in [30-32]
for the independent sources case. On the other hand, in
our results, we see that the NG measure and GA moments
are more robust having no spurious local extrema. We also
note that, for Sub-Gaussian independent sources (a), the
GA moment measure have local minima at source loca-
tions, on the other side, for super-Gaussian sources, they
are located at local maxima. Nevertheless, it is important
to note that for large order (8 = 4 and 8 = 7) one local
maxima is less evident because moments of a large order
are affected by outliers (see scatter plot in Figure 3b). In
the case (e), we observe GA moments provide a local max-
imum for 8 = 3 and local minima for § = 7, 10, and, for
B = 4 the second order derivative is in theory zero and for
that reason the local extrema are not clear.

Parzen windows based algorithms for source
separation

Parzen windows method is a non-parametric technique
used to estimate a pdf based on a set of samples [34]. Using
Parzen windows we can obtain the following estimators
for SE [6] and the NG measure [12]:

T T
. 1 L6) — 1,0
gse(0) =— ) log T—hE ¢<”()h”()> , (36)
1

t1=1 thy=
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Figure 3 Computation of SE, NG measure and GA moments for different types of independent and dependent sources S; and S;. After a
de-correlation step (whitening) the measures are computed using the polar parameterization y(6) = cos(0)X; + sin(8)X, where X; and X; are the
whitened variables. The corresponding scatter plots are shown in the 1st row. The position of theoretical positions (in polar coordinates) are shown
as red arrows. The measures were normalized in order to cover the range [0, 1. We used signals with a total number of samples T = 10° but we
used only a subset of 10,000 samples to compute SE and NG measure to avoid the extremely high computational demand. For the generation of
sub-Gaussian and super-Gaussian sources we used the transformation sinh ™" (x) and sinh (x) applied to a Gaussian variable x, respectively.
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yt1(9)
T«/h2 Z («/ +1)+T2h«/§t12=:1

)’tl(@) ytz(e) 1
> ( ) PN

anG(0) =

th=1
(37)
where T is the number of samples,
y¢(0) = cos(O)x1, + sin(0)xay, (38)

is the projected variable® sampled at time ¢ (x; and x, are
assumed uncorrelated, i.e. whitened), ¢ (-) is the kernel
function (typically a Gaussian kernel) and % is a parame-
ter which determines the size of the windows (we adopt
I = 1.06 x T~5 as determined by the minimum mean
integrated square error (MISE) [34]). From Equations (36)
and (37) we see that their computational complexity is
quadratic in terms of the number of available samples
O(T?).

On the other hand, for the estimation of GA moments
we can use the ergodic average formula:

T
1
7 S B
Ap©) == @1, (39)
t=1
Clearly, a big advantage of GA moments over the other

measures is its lower computational cost since it is linear
in the number of samples, i.e. O(T).

As usual, in order to simplify the search of the maxi-
mum (or minimum), we first apply a whitening filter, i.e.
x; < Tx,; after which we obtain E[xx”]= I The fil-
ter matrix is given by T = A=2UT with A and U being
the diagonal matrix of singular values and the matrix of
singular vectors of the covariance matrix Cxx = E[xx'],
respectively [3,12].

The search for a local extrema 6* can be done by
iteratively evaluating the objective function and/or its
derivatives at a current estimate #°' and by generating
a sequence 1,0, y,6% that converges to 6*. Note
that the derivatives of the measures can be easily com-
puted from Equations (36), (37) and (39). The simplest
way to generate this sequence could be to use a steepest
ascend/descend method, i.e. 6*+D = g + eg’(G(k)). In
this case the step size ¢ must be chosen in order to guar-
antee the convergence in few steps which is not a simple
task. To avoid this problem, we consider here a simple
and efficient algorithm based in the N-R iteration which,
in the one dimensional case, is equivalent to the steepest
ascend/descend method with an adaptive step size defined
by ex = ﬁ, ie.

8" (0%)]
g/(e(k))

g+ _ gk )
lg” ()|

(40)
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where g(6) could be any of gse(6), gng(0) or ig(6), and
the sign “+" or “—"" must be chosen for the case of a max-
imum or minimum, respectively; g’(6) and g”(0) are the
first and second order derivatives, respectively, whose for-
mulae can be derived from Equations (36), (37) or (39),
providing similar computation complexity. A great advan-
tage of the N—R algorithm is that it is proven to converge
quickly in general (quadratic convergence). A potential
drawback of the N-R method is that a close to zero second
order derivative can make the method diverge. Anyway,
our simulations showed always very fast convergence sug-
gesting that the zero second order derivative condition is
not likely to occur in general.”

Algorithm 1: DCA algorithm (two-sources case)
Require: mixtures x; (t = 1,2,...,T) (centered), toler-
ance fol, max. # of Iterations K}y, attempts N, .
Ensure: estimated sources s7; and s3;.

I Cx =7 Zt 1tht ; Covariance matrix.
2: UAVT = Cyy; Singular Value
Decomp051tlon SVD.
= A"12UTx,, (t =1,2,..y, T); Whitening.

SearCh for first extremum
0© = 27y; Initialization: uis a random
number uniformly distributed in[0,1].
89 = +00, k =
while &y > tol and k < Kmﬂx do

g+l — by 1 €O 0 ¢ i terations.

‘& g(k))|

8o = 9(k+1)
k= k+ 1;
: endwhile

0 = O(k’l); First local extremum found
: Search for second extremum

00 =g, + m/2; Initialization

: Repeat STEPs 6-11;

n= 1
: whlle|0(k D _ 6] < toland n < Ny do
00 = 27y; Initialization: uis a
random number uniformly
distributed in[0,1].
19:  Repeat STEPs 6-11;
20: n=n-+1;
21: endwhile
22: 6y = 9*=1; gsecond local extremum found
23: return $;; = cos(6;)x1; + sin(0;)x2; (i = 1,2);

el el
PN N BP0 NN

In Algorithm 1, the algorithm for the case n = m = 2
(two mixtures and two sources) is shown. In this case, after
the first local extremum is found, the algorithm searches
for the second local extrema starting from an initial guess
6@ = g; + /2 which, in the case of having independent
sources, would correspond exactly to the location of the
second source (orthogonal case). It is noted that, in the
general dependent sources case, it is possible that this pro-
cedure results in finding the same local extremum again.
In order to avoid this situation, the algorithm re-start
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the local extrema search by using different random initial
guesses until the proper local extremum is found. The
maximum number of attempts N, is a parameter which
was set to N = 20 in our simulations.

It is important to highlight that, if we generalize Algo-
rithm 1 to the case of arbitrary number of sources and
m = n > 2, we may apply a deflation step by eliminat-
ing every local extrema after they are detected preventing
from multiple detections. However, this deflation step is
not trivial in the dependent case since the sources are not
orthogonal and the classical deflation technique used in
ICA is not longer valid. For the particular case of the NG
measure, in [12] a special deflation step was developed by
transforming the data in order to make it Gaussian at the
location of any detected source.

We highlight that computing the derivatives of the SE
based on Parzen windows produces numerically unsta-
ble results because %log(f(x,@)) = f(ai,f)) df;’;’m, thus,
the errors in the estimation of the pdf are amplified in
the derivative. On the other hand, the estimation of the
derivatives for GA moments and NG measure do not suf-
fer this problem and showed to be numerically stable in
our simulations.

Source separation experiments

Separation performance evaluation on different datasets
In this section, we show the results of applying our
N-R algorithm based on GA moments (order B =
0.5,1,1.5,2.5,...,10) and NG measure (MaxNG) com-
pared with FastICA® (with g(x) = #® and g(x) = tanh(x)
nonlinearities) and the BCA algorithm recently proposed
in [22]. FastICA is a classic, very fast algorithm developed
for ICA, on the other side, BCA algorithm is a power-
ful geometric method for ICA/DCA based on the idea
that the mixture of bounded sources increases the vol-
ume of the support of random variables. BCA obtains the
separation by minimizing the volume of the support of
estimated sources by assuming that the support of the
sources is equal to the cartesian product of the individual
supports [11]. The last condition is valid for independent
sources and can be seen as a strong condition for depen-
dent sources, for instance, sources found in the blind
spectral unmixing do not meet this condition as Figure 2
illustrates.

In Figure 4, we present the performance results in terms
of the obtained signal to interference ratio (SIR) which
is defined as SIR; = —10log, (% Zthl(s}t—sit)z).
We used the following datasets: (a) Independent Sub-
Gaussian sources, generated by applying the function
sinh(z)~! to zero-mean Gaussian independent signals;
(b) Independent Super-Gaussian sources, generated by
applying the function sinh(x#) to zero-mean Gaussian
independent signals; (c) Independent bimodal sources,
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where each of the independent sources were generated
by mixing two Gaussians with (u1,01) = (0.5,0.2) and
(12, 09) = (—0.5,0.2), respectively; (d) Independent and
uniformly distributed zero-mean sources; () Dependent
constrained sources, generated by using s;; = gz
Zp:l Mpy
with i = 1,2, where signals n,, (p = 1,2,.. ., 4) were gen-
erated as independent uniform distributions in [0, 1]. (f)
Dependent sources with Copula-t distributions, where s;,
and sy; were generated from a Copula-t with 4 degrees of
freedom and with linear correlation p = 0.8 which makes
them highly dependent.f We observe that, for the case of
Sub-Gaussian independent sources (a), GA moments with
B = 3,4,...,10 give a similar performance as FastICA
and MaxNG. For the case (b) (Super-Gaussian indepen-
dent sources), the performance of GA moments is slighter
less than FastICA and MaxNG. For bimodal independent
sources (c) and uniformly distributed independent sources
(d), the performance of GA moment is similar to FastICA
and MaxNG for values 8 = 1.0,1.5,2.5,...,6.5. For con-
strained dependent sources (e), the best performance is
obtained for 8 = 6.0,6.5,...,10 and MaxNG with a SIR
of approximately 40 dB. It is noted that the LCE condi-
tion holds exactly, thus the separation is almost perfect by
using NG measure. On the other hand, in case (f) sources
modelled with Copula-t distribution with correlation p =
0.8 where the LCE condition holds only approximately as
the Figure 2c illustrated, for this reason, the quality of
separation by using the NG measure is degraded (SIR of
approximately 20 dB) and BCA outperforms all the other
methods because sources fulfil the BCA conditions. It is
important to mention that dataset (e) does not fulfil the
assumptions for FastICA (independence) neither for BCA
(support of sources is not equal to the cartesian product
of individual supports). It is also interesting to note that
for B = 4, the performance drops because the second
order derivative is zero (not a maximum neither a mini-
mum). It is clear that, thse lower performance of BCA for
cases (a), (b), (e) and (d) can be attributed to the fact that
these sources do not fulfil the conditions for BCA, i.e. or
they have not bounded support or the support of sources
can not be written as the cartesian product of individual
supports.

Robustness to the sample size T

We have theoretically proved that several objective func-
tions are valid to separate sources verifying the LCE con-
dition. Nevertheless, in practice, the GA moments and the
NG measure are estimated from available samples which
implies that the measures are sensible to the size of the
dataset 7. In Figure 5, the robustness of the measures is
shown by evaluating the mean SIR of the separation versus
the sample size T In the small dataset size case, the errors
on the estimation of the moments and their derivatives
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Sub-Gaussian Independent Sources
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(C) Bimodal Independent Sources
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(e) Constrained Dependent Sources

80 F S S ]
707 o o 7
60 | e . ]
B 5ol . v |
r4of i ]
w30+ % é . |
20 % 1
oh g | ﬁ 1
(] B

[

2 c

o C

ag

(5<<\(’
nmomnmomomnomononono eSS o
[ R R Vo Vo = I Vo B N S - - I 7 a3

{1 | | | | | | 1 | S | R 1 A © ©
ol o oW o W oo M- o W o Wc o W= o W o W e o W W= o <o W' M=o Wc' W= N0 N N M2
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Figure 4 Results of applying GA moment (order 8 =0.5,1,1.5,2.5, . . .,10) and NG measure (MaxNG) compared with FastICA (with g(x) = x3
and g(x) = tanh(x) nonlinearities) and the BCA algorithm proposed in [22] for the case of # = 2 sources and m = 2 mixtures. The mixing
matrix A € R?*? was generated using independent Gaussian random numbers. We performed a total number of 50 Monte Carlo simulations and
we use a total number of T = 8,000 samples in each case. On each box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually with circles.

can be significant, on the other side, the NG measure
showed to be significantly more robust.

Blind spectral unmixing example

In order to have a realistic set of sources for testing our
method in the context of the blind spectral unmixing
problem, we used a set of material abundances generated
as follows. Based on a real ground-truth (see Figure 6
(left)) of a selected area of Rome city, we assign a source to
each one of the classes. For the estimation of each source
(abundance) we divide the map in 8 x 8 pixel subareas

and we calculated the material abundances as the per-
centages of the classes within each subarea. As a result
we obtained nine sources with a total of T = 2814
(67 x 42) samples each (in Figure 7a scatter plots for some
examples of pair of sources are shown). In Figure 7b, the
performance results are shown for MaxNG, FastICA and
BCA algorithms applied to different combinations of two
sources and using randomly selected mixing matrices over
a total of 50 simulations. We note that the results with GA
moments are not included because their performance was
poor (similar to FastICA). We think this is because the
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Mean SIR vs sample size (T)

showed to be the most robust measure.
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Figure 5 Robustness to sample size T: Mean SIR values versus T was computed for the case of constrained sources. The NG measure

sample size is too small (7" = 2814) and the distributions
are very irregular. On the other hand MaxNG showed
the best performance. BCA and FastICA has lower than
MaxNG because sources does not fulfill the conditions
required by the algorithms i.e. they are not independent
and their support can not be written as the cartesian
product of individual supports.

Conclusions and discussion

This article contributes to shed light on the theoretical
aspects of the separation of independent and dependent
sources based on the maximization (or minimization) of
objective functions by filling the gaps existing among pre-
vious works and giving rigorous theoretical answers to
important questions. Furthermore, this new theoretical
framework opens the possibility to analyze new objec-
tive functions for BSS problems. We have shown that,
under the LCE assumption, several objective functions
such as GA moments, NG measure and SE are valid for the
separation of dependent sources. However, among these
measures, we showed that GA moments are less robust
to the sample size T than the NG measure but has much
lower computational complexity. We have also shown that
simple and efficient algorithms can be developed based
on these measures by using Parzen windows technique
combined with a N-R iterative search of local extrema.
Nevertheless, it was noted that estimations of derivatives
of the SE, based on Parzen windows, becomes numerically
unstable.

Another disadvantage of the GA moments is that addi-
tional information about the sources is needed in order
to determine if the separation is obtained at a maxi-
mum or a minimum. When sources are independent, we
can determine the sign of the second order derivative by
just evaluating Equation (33) which can be done quickly

and easily from data. On the other side, for dependent
sources, it is necessary to know the second order condi-
tional expectations, i.e. E[ Si2 |S;]. Additionally, it is needed
to chose the proper order 8 which could be not simple and
it is out of scope of this article. On the other hand, the NG
measure does not require any extra parameter, it is very
robust to the sample size T" and usually the separation is
obtained at local maxima (except in pathological cases as
shown in our example in Figure 3d).

As a main conclusion, we have found that the sep-
aration of dependent sources is possible but additional
constraints, or assumptions, on the type of dependence
among sources must be taken into account. For example,
if we know that the support of sources can be writ-
ten as the cartesian product of the individual supports,
then an elegant and very efficient method is to apply the
BCA algorithm, or if sources have LCE, as in the case
of abundances in the blind spectral unmixing application,
then the methods presented in this article are the most
appropriate.

Appendix 1

Applying the differentiator operator under the integral
sign in Equation (18) for the case of n = 2 sources, we
to obtain the partial derivatives of the pdf evaluated at
(a1, 3) = (0,1) as follows:

fx () = — (fs, WE[S114] ), A1)
8a1 oa=0g
82 "
g?) = (st 42
fx (x) '
3);2 a=ag - (xfsz (x)) ’ (43)
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Figure 6 Real radiometrically corrected hyper spectral image of a Rome city area as provided by the Airborne Laboratory for
Environmental Research at IIA-CNR in Rome, Italy [19]. This 540 x 337 pixels image was obtained with an airborne imaging spectrometer
containing 102 channels. The RGB version (left-upper), the classification map or ground-truth considering pure pixels (left-bottom) and the nine
material abundances (67 x 42 pixels) computed by using a 8 x 8 window (right) are shown.

we obtain the desired result of Equation (27).

82
% = 2f5, (%) + dofi, (%) + 2°f5, (%), (44)
s Appendix 2
The second order derivative of the SE at T = 0 is:
o / ! d*fx (x;0)
0102 loa 2 (fs, ELS1Ix] ) + (fs, GE[Sul] ) gse(0) = / fji(T (log(fx (x; 7)) + 1) dx. (48)

(45) In the following, in order to simplify the notation we

replace f(x) = fso(x) and gsg = — f f(x) log(f (x))dx.

Using the chain rule of derivatives we have that
Now, by using Equation (27) into (48) and, taking into

Afx(xT)  3%f (@l ))2 a%f o) + 2 3%f  account the following results:
—_— = ot T)oy (T
dr? g2~ ! 8 100y 1 2 D2 NG
1 2 1 f' %) ) (f' %) JURC
of af (FE[STIAT) = — | E[S})a] x
/ o f(x) fx)
X (az(f)) T o {1+ Dy 2
a1 " o2
(46) + /E [ STIx]f (x)dx,
And, using the fact that /xf’(x) (log(f(x)) + 1) dx = gsr,
’ _ " _ / _ " 2 . / 2
a1(0) = 1,7 (0) =0,a5(0) = —p, a9 (0) = p* — 1; / 9 2(f )
x°f"(x) (log(f(x)) + 1) dx = —2gsg — dx,
(47) ( ) S
a . b
( ) Examples of pairs of sources ( ) Material abundances extraction performance
50 B
40
@ T
S 30 — — ‘
o i 1 '
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o §
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Figure 7 Results for blind spectral unmixing based on DCA. Material abundances computed based on a real world map (Rome city image in
Figure 6) were artificially and randomly mixed and separated by MaxNG, FastICA and BCA. In (a) selected examples of normalized sources pairs are
shown. In (b) the performance results are shown in terms of the obtained SIR.
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we finally arrive at the desire result of Equation (29).

Appendix 3
By using Equation (27) into (30) and, taking into account
the following results:

[@E[SHa]) i = pis -1 [ FIE [l
/xlxlﬂf’(x)dx =—(B+Dup,
f &P @)dx = (B +2)(B + Dug,
we finally arrive at the desire result of Equation (31).

Endnotes

2For ease of the presentation, we consider here only the
case of two sources which correspond to have only one
parameter 6. For the case of n > 2 a hyper-spheric coor-
dinate system can be used as shown in [12].

PIn order to solve the problem of possible zero sec-
ond order derivatives, more sophisticated methods well
known in the literature can be implemented as, for exam-
ple, by using the Conjugated Gradient method.

¢g’(.) and g'’(.) are the first and second order derivatives
of a selected measure and can be computed by taking
derivatives on Equations (36), (37) or (39) for the case of
SE, NG or GA moment, respectively. Sign ‘+’ and sign
‘" correspond to maximum or minimum search, respec-
tively.

4If the same local extremum is found then a new search
starts (up to Ny attempts).

®FastlCA package was downloaded from the author’s
webpage http://research.ics.tkk.fi/ica/fastica/.

fWe used the Matlab command s=copularnd(‘t,0.8,4,T).
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