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Abstract

The insufficiency to guarantee the existence of a state-space representation of the classical wide-sense Markov
condition for improper complex-valued signals is shown and a generalization is suggested. New characterizations for
wide-sense Markov signals which are based either on second-order properties or on state-space representations are
studied in a widely linear setting. Moreover, the correlation structure of such signals is revealed and interesting results
on modeling in both the forwards and backwards time directions are proved. As an application we give some
recursive estimation algorithms obtained from the Kalman filter. The performance of the proposed results is illustrated
in a numerical example in the areas of estimation and simulation.
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1 Introduction
Markov signals are characterized by the condition that
future development of these signals depends only on cur-
rent states and not their history up to that time. In general,
Markov processes are easier to model and analyze, and
they do include interesting applications. Among others,
estimation and detection are areas of signal processing
where this kind of process has provided efficient solu-
tions (see, e.g., [1,2]). Non-Markov processes in which
the future state of a process depends on its whole his-
tory are generally harder to analyze mathematically [3].
In linear minimum-mean square error (MMSE) estima-
tion theory, when the processes under consideration are
not Gaussian, the classes of stochastic processes which are
of practical importance are wide-sense Markov (WSM)
processes. The concept of WSM signal is easier to check
than the condition of (strictly) Markov since it involves
only second-order characteristics [4]. In general, WSM
processes (with the exception of Gaussian processes) are
not Markov in the strict sense. The equivalence between
theWSM condition and the state-space representation for
the signal is really what makes WSM signals especially
attractive in signal processing [1].
Widely linear (WL) processing is an emerging research

area in the complex-valued signal analysis which gives
significant performance gains with respect to strictly
linear (SL) processing (excellent account of the topic
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and the literature can be found in [5,6]). It has proved
to be a more useful approach than SL processing since
complex-valued random signals are in general improper
(i.e., they are correlated with their complex conjugates).
Thus, the improper nature of most signals forces us to
consider the so-called augmented statistics to entirely
describe their second-order properties. Using augmented
statistics means incorporating in the analysis the informa-
tion supplied by the complex conjugate of the signal and
examining properties of both the correlation and com-
plementary correlation functions. SL processing operates
ignoring this last function. Some areas of signal process-
ing in which the treatment of improper signals by using a
WL processing has proved to be beneficial are estimation
[5-11], detection [12], modeling [8], and simulation [13].
A general characteristic of the articles devoted to study-

ing WSM complex-valued signals is that they use a SL
processing approach (see e.g., [1,14-16]). We will show
by means of simple examples that the classical definition
and the associated characterizations of WSM signals are
incorrect for improper signals. The examples then moti-
vate the extension of the concept of WSM signal to a WL
setting and the study of new characterizations. Specifi-
cally, we introduce the concept of widely linear Markov
(WLM) signals and we give different characterizations
based either on second-order properties or on state-space
representations from a WL processing point of view. The
analysis is performed in both the forwards and back-
wards directions of time. We also provide a way to check
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the WLM condition, similar to the well-known triangu-
lar property, based on augmented statistics and determine
the correlation structure of WLM signals. The modeling
part is the focus of this article. In this sense, WL forwards
and backwards Markovian representations are suggested,
the interrelation between them is studied and the connec-
tion with the WL autoregressive representations defined
in [8] is established. TheseMarkovian representations also
become a starting point for the application of different
recursive estimation algorithms. Thus, the application of
the Kalman filter on the forwards and backwards rep-
resentations yields different WL prediction, filtering and
smoothing algorithms. The point, which is illustrated in
an example, is that besides the well-known performance
gain of the WL approach we also get more realistic results
in simulation and modeling.
The article is organized as follows. In Section 2, we

present some background material on complex-valued
Markov signals, illustrate the incapacity of the usualWSM
condition in order to characterize the state-space repre-
sentation for improper signals and suggest the concept
of WLM signal. Some preliminary characterizations are
also given. Section 3 studies the correlation structure of
WLM signals. In Section 4, we discuss the modeling prob-
lem for WLM signals and analyze the stationary case.
The estimation problem is treated in Section 5. We apply
our results in the fields of signal simulation and estima-
tion by considering a numerical example in Section 6. A
Section of conclusions ends the article. To preserve con-
tinuity in our presentation, all proofs are deferred to an
Appendix 1.

2 Preliminaries
In this section, we give the main definitions, notation and
auxiliary results. We also present two examples which
motivate the necessity of the new concept introduced.
Bold capital letters will be used to refer to matrices and

bold lower-case letters will be used to refer to vectors. The
row j of any matrix A(·) will be denoted by A[j](·), the n-
vector of zeros by 0n and the n × m-matrix of zeros by
0n×m. Furthermore, the superscripts ∗, T, andH represent
the complex conjugate, transpose, and complex transpose,
respectively.
Let {xt , t ∈ Z} be a zero-mean complex random signal

with correlation function r(t, s) = E[ xtx∗
s ] and comple-

mentary correlation function c(t, s) = E[ xtxs]. Most of
the results in this article are valid for nonstationary sig-
nals. However, for some of them the stationary condition
is necessary. The signal xt is said to be of second-order
wide-sense stationary (SOS) if the functions r(t, s) and
c(t, s) depend on t − s. A zero-mean stochastic process wt
is called a doubly white noise if E[wtw∗

s ]= e1δ(t − s) and
E[wtws]= e2δ(t − s) with |e2| ≤ e1 (see [8] for a complete
study of their characteristics). The linearMMSE estimator

of xt based on the set of observations {xt1 , xt2 , . . . , xtm}will
be denoted by x̂(t|t1, t2, . . . , tm) and we will refer to it as
the SL estimator.
The Markov condition on a signal {xt , t ∈ Z} establishes

the following identity for the conditional probability:

P(xt ≤ x|xt1 , xt2 , . . . , xtm) = P(xt ≤ x|xt1)
for all x and t > t1 > · · · > tm. Doob [4] introduced
a weaker concept based on the SL estimator which has
received great attention in the literature (e.g., [1,14-16]).
A signal xt is called WSM if x̂(t|τ ≤ s) = x̂(t|s) for
any s < t. Such signals have remarkable properties. For
example, Beutler [14] showed that a signal xt is WSM if,
and only if, the function k̄(t, s) = r(t, s)r−1(s, s) has the
triangular property, i.e.,

k̄(t, s) = k̄(t, τ)k̄(τ , s), t ≥ τ ≥ s (1)

Another characterization in terms of so-called Marko-
vian state-space models can be found in [1]. They showed
that a signal {xt , t ≥ 0} is WSM if, and only if, it has a
state-space model of the form

xt+1 = k̄(t + 1, t)xt + ut (2)

where ut is a white noise uncorrelated with x0. Doob’s
definition was later generalized in [16] in the following
sense: xt is a WSM signal of order n ≥ 1 if x̂(t|τ ≤ s) =
x̂(t|s, s − 1, . . . , s − n + 1) for any s < t. The authors also
studied the second-order properties of such signals.
All these studies have a common characteristic: the

information supplied by the complementary correlation
function is ignored, i.e., the results are derived assuming
implicitly that the signal is proper (c(t, s) = 0). As noted
above, nowadays, the research activity in the field of the
complex-valued signal is more and more focused on the
better performing and less familiar WL processing. In this
setting the SL MMSE estimator is replaced by the WL
MMSE estimator, denoted by x̂WL(t|t1, t2, . . . , tm), which
uses the information of the augmented vector of observa-
tions [ xt1 , x∗

t1 , xt2 , x
∗
t2 , . . . , xtm , x

∗
tm ]

T . The immediate ques-
tion that arises is whether the classical concept of WSM
signals remains valid in the WL processing approach. The
following two examples give us the answer.

Example 1. Consider a signal {xt , t ≥ 0} with corre-
lation function r(t, s) = 1

2 (e
3|t−s| + e|t−s|) and comple-

mentary correlation function c(t, s) = 1
2 (e

3|t−s| − e|t−s|).
It is easy to check that r(t, s) does not satisfy the triangu-
lar property (1) and then, the signal cannot be modeled by
a representation of the form (2). However, as we will show
later, it is possible to find a state-space representation for
such a signal given by (26). Thus, the classical WSM con-
dition is clearly insufficient in the improper case to find a
state-space representation for the signal involved.
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Example 2. Assume that {xt , 1 ≤ t ≤ 100} is a signal
with correlation and complementary correlation functions
given by r(t, s) = (t/100 + 1)1/6(s/100)4 and c(t, s) =
j(s/100)4, for s ≤ t, respectively, with j = √−1. Here,
the triangular property (1) holds and then xt has the
representation

xt+1 =
(
t + 101
t + 100

)1/6
xt + ut (3)

with xt uncorrelated with ut. However, this model presents
two important shortcomings in the WL processing frame-
work: the noise ut is correlated with x∗

t and the information
supplied by c(t, s) is ignored. Both problems can be avoided
by considering a more competitive model for xt obtained
with the additional information of x∗

t . In fact, we can write
an alternative state-space representation for xt given by
(27). An exhaustive study about the superiority of (27)
against (3) is presented in Section 6.

From these two simple examples we extract the fol-
lowing consequences: the classical definition of a WSM
signal must be extended to deal with improper signals, this
new concept must be characterized adequately to avoid
the drawback shown in Example 1 and new results about
modeling are necessary to exploit the information avail-
able in both xt and x∗

t thus attaining better models for the
signal as illustrated in Example 2. Next, we introduce such
a definition in a WL processing setting.

Definition 1. A complex-valued signal {xt , t ∈ Z} is said
to be WLM of order n ≥ 1, briefly a WLM(n) signal, if the
following condition holds

x̂WL(t|τ ≤ s) = x̂WL(t|s, s − 1, . . . , s − n + 1)

for any s < t.

Notice that this concept extends both the classical
notion of WSM introduced by Doob in [4] and the later
generalization given in [16].
In the rest of the section, we provide different charac-

terizations of WLM(n) signals. For that, we need to intro-
duce some additional notation. Denote the augmented
forwards vector of order n ≥ 1 of xt as the 2n-vector

xt =[ xt , x∗
t , xt−1, x∗

t−1, . . . , xt−n+1, x∗
t−n+1]T

and its correlation function by R(t, s) = E[ xtxHs ]. From
now on, we assume that det {Rt} �= 0 with Rt := R(t, t).
Moreover, we define the normalized correlation function
as

K(t, s) = R(t, s)R−1
s (4)

Similarly, we define the augmented backwards vector of
order n ≥ 1 of xt as the 2n-vector

xbt =[ xt+n−1, x∗
t+n−1, xt+n−2, x∗

t+n−2, . . . , xt , x∗
t ]T

The following results establish the relation between the
signals xt and their augmented forwards and backwards
versions. We start first with the augmented forwards vec-
tor and we give a test similar to (1) for a signal being
WLM(n).

Theorem 1. The following statements are equivalent:

1. {xt , t ∈ Z} is a WLM(n) signal.
2. For s < t, the WL MMSE estimator of xt on the basis

of the set {xτ , x∗
τ , τ ≤ s} is of the form

x̂WL(t|τ ≤ s) = K(t, s)xs (5)

3. For t ≥ τ ≥ s,

K(t, s) = K(t, τ)K(τ , s) (6)

Now, we suggest a characterization based on the aug-
mented backwards vector. This result also shows the
independence from the time direction of the Markov
condition.

Theorem 2. The following statements are equivalent:

1. {xt , t ∈ Z} is a WLM(n) signal.
2. x̂WL(t|τ ≥ s) = x̂WL(t|s, s + 1, . . . , s + n − 1) for any

s > t.
3. For s > t, the WLMMSE estimator of xbt on the basis

of the set {xbτ , xb∗
τ , τ ≥ s} is of the form

x̂b
WL

(t|τ ≥ s) = K(t + n − 1, s + n − 1)xbs (7)

3 Correlation structure of WLM(n) signals
In this section, the second-order properties of a WLM(n)
signal {xt , t ∈ Z} are analyzed. Specifically, we study the
structure of the matrices R(t, s), K(t, s), Rt , and K t :=
K(t + 1, t).

Proposition 1. 1. The following relations hold:

K [2(j+i)−1](t + j, t) =
⎡
⎢⎣0, . . . , 0︸ ︷︷ ︸

2i−2

, 1, 0, . . . , 0︸ ︷︷ ︸
2(n−i)+1

⎤
⎥⎦ ,

j < n, i = 1, . . . , n − j (8)

K [2(j+i)](t + j, t) =
⎡
⎢⎣0, . . . , 0︸ ︷︷ ︸

2i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2(n−i)

⎤
⎥⎦ ,

j < n, i = 1, . . . , n − j (9)

K [2+i](t + j + 1, t) = K [i](t + j, t),

j ≥ 0, i = 1, . . . , 2n − 2 (10)
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K [1](t + j + 1, t) = K [1](t + j + 1, t + j)K(t + j, t),

j ≥ 0 (11)

K [2](t + j + 1, t) = K [2](t + j + 1, t + j)K(t + j, t),

j ≥ 0 (12)

2. The matrix K t is of the form

K t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1,t k2,t k3,t k4,t · · · k2n−3,t k2n−2,t k2n−1,t k2n,t
k∗
2,t k∗

1,t k∗
4,t k∗

3,t · · · k∗
2n−2,t k∗

2n−3,t k∗
2n,t k∗

2n−1,t

1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where ki,t = ki(t + 1, t) for i = 1, . . . , 2n and
ki(t + 1, t) is defined in (28).

3. The matrices R(t, s) and K t satisfy the recursive
equation

R(t + 1, s) = K tR(t, s), s ≤ t (14)

which has the solution

R(t, s) = K t−1 · · ·K sRs, s < t (15)

Moreover,

Rt+1 = K tRtKH
t + Qt

where Qt is a 2n × 2n-matrix of the form

Qt =

⎡
⎢⎢⎣ At

∣∣∣∣ 02×2n−2

02n−2×2

∣∣∣∣ 02n−2×2n−2

⎤
⎥⎥⎦ (16)

with

At =
[
a1,t a2,t
a∗
2,t a1,t

]

where a1,t are real positive numbers and At is
nonnegative definite.

4 Modeling of WLM(n) signals
We aim to provide different ways of modeling forWLM(n)
signals. The connection between stationary WLM(n) sig-
nals and the autoregressive representations defined in [8]
is also established. First, we present a new characteriza-
tion in which the equivalence between a WLM signal of
order n and their forwards and backwards representations
is given. Such representations show that a WLM(n) signal
depends only on the n preceding or subsequent states and
their conjugates.

Theorem 3. A signal {xt , 0 ≤ t ≤ m} is a WLM(n) if,
and only if, it has the forwards and backwards representa-
tions

xt+1 = kTt xt + wt , t ≥ n − 1 (17)

xt = kbTt+1xbt+1 + wb
t+1, t ≤ m − n + 1 (18)

where kt , kbt are 2n-vectors, and wt, wb
t are doubly white

noises such that

E[wtxn−1] = 02n, t ≥ n − 1 (19)

E[wb
t xbm−n+1] = 02n, t ≤ m − n + 1

Now we state a parallel result to the classical one estab-
lished for stationary WSM processes and autoregressive
representations [16].

Corollary 1. If {xt , 0 ≤ t ≤ m} is a SOS WLM(n) signal,
then xt is the solution of the WL system defined in [8]

xt+1 =
n−1∑
i=0

g1,ixt−i +
n−1∑
i=0

g2,ix∗
t−i + wt (20)

where g1,i, g2,i ∈ C, i = 1, . . . , n − 1, and wt is a doubly
white noise such that E[wtw∗

t ]= a1 and E[wtwt]= a2.

We summarize the previous results in the following
steps which provides forwards and backwards models for
a WLM(n) signal:

Step 1: Define the 2n-vector kt such that kTt
coincides with the first row of the matrix

K t := R(t + 1, t)R−1
t (21)

Similarly, we define the 2n-vector kbt+1 such that
kbTt+1 is equal to the 2n − 1 row of the matrix

Kb
t+1 := K(t+n−1, t+n) = R(t+n−1, t+n)R−1

t+n
(22)

Step 2: Consider the matrices

Qt = Rt+1 − K tRtKH
t (23)

Qb
t+1 = Rt+n−1 − Kb

t+1Rt+nKbH
t+1 (24)

Step 3: The signal xt can be represented by the
following forwards and backwards models:

xt+1 = kTt xt + wt , t ≥ n − 1

xt = kbTt+1xbt+1 + wb
t+1, t ≤ m − n + 1

where wt is a doubly white noise uncorrelated with
xn−1 for all t ≥ n − 1 and wb

t is a doubly white noise
uncorrelated with xm−n+1 for all t ≤ m − n + 1.
Moreover, E[wtw∗

t ] and E[wtwt] are the
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(1,1)-element and (1,2)-element of the matrix Qt ,
respectively. Similarly, E[wb

t wb
t
∗] and E[wb

t wb
t ] are

the (2n − 1, 2n − 1)-element and
(2n − 1, 2n)-element of the matrix Qb

t , respectively.

In certain situations we have a forwards model of the
form (17) for the signal xt . It would be interesting to
be able to obtain a backwards model directly from the
forwards model. Next, we show a useful way to get our
objective.

Proposition 2. Given a forwards model of the form

xt+1 = kTt xt + wt , n − 1 ≤ t ≤ m (25)

with wt a doubly white noise uncorrelated with xn−1, then
{xt , 0 ≤ t ≤ m} has the backwards representation

xt = kbTt+1xbt+1 + wb
t+1, 0 ≤ t ≤ m − n + 1

where the 2n-vector kbt+1 satisfies that k
bT
t+1 is equal to the

2n − 1 row of the matrix Kb
t+1 = Rt+n−1KH

t+n−1R
−1
t+n and

wb
t is a doubly white noise with the properties given in Step

3 above.

Example 1 (continued). It is not difficult to check that
xt is a WLM(1) signal by using property (6). Hence, apply-
ing Steps 1–3 above, it has the state-space representation

xt+1 = 1
2
(e3 + e)xt + 1

2
(e3 − e)x∗

t + wt (26)

with wt a doubly white noise uncorrelated with x0 and x∗
0.

Moreover, as xt is also a SOS signal, this model is trivially
its WL autoregressive representation.

Example 2 (continued). From Theorem 1 and Steps 1–
3, it follows that xt is a WLM(1) signal and has the state-
space representation

xt+1 = 101/3(t + 101)1/6(t + 100)1/6 − 10
101/3(t + 100)1/3 − 10

xt

+ j
102/3(−(t + 101)1/6 + (t + 100)1/6)

101/3(t + 100)1/3 − 10
x∗
t +wt

(27)

with wt a doubly white noise uncorrelated with x1 and x∗
1.

5 Estimation problem ofWLM(n) signals
Once the modeling problem has been solved for WLM(n)
signals, we address the MMSE estimation problem of
such signals under a WL processing approach. The for-
wards and backwards representations given in Theorem 3
notably simplify the design of different recursive estima-
tion algorithms. To this end, we use the Kalman recursions
on the forwards representation to provide the solution for

the prediction and filtering problems and on the back-
wards representation for the smoothing problem (see, e.g.,
[17,18]).
Suppose that we observe a WLM(n) signal {xt , 0 ≤ t ≤

m} via the process
yt = htxt + vt , 0 ≤ t ≤ m

with vt a doubly white noise such that E[ vtv∗
t ]= n1,t and

E[ vtvt]= n2,t with n1,t > |n2,t|. Moreover, we assume that
vt is uncorrelated with xs and x∗

s for all t,s.
Consider the 2-vector yt =[ yt , y∗

t ]T , the 2 × 2nmatrix

Ht =
[
ht 0 0 · · · 0
0 h∗

t 0 · · · 0

]

and the 2 × 2 matrix

N t =
[
n1,t n2,t
n∗
2,t n1,t

]

5.1 Prediction and filtering cases
Denote the WL filtered estimator of xt by x̂WL

t and the
one-step-ahead predictor of xt+1 by x̂WL

t+1|t , both obtained
on the basis of the information provided by the set
{y0, y∗

0, . . . , yt , y∗
t }, and consider their associated errors

pt = E[ |xt − x̂WL
t |2] and pt+1|t = E[ |xt+1 − x̂WL

t+1|t|2].
Also denote the estimate of xn−1 obtained from the infor-
mation provided by [ yn−1, y∗

n−1, . . . , y0, y∗
0]T by x̂n−1 and

its associated error by Pn−1. By combining the forwards
representation (17) and the classical Kalman filter we
present Algorithm 1which provides these estimators in an
efficient way.

Algorithm 1. WL filter and prediction
Require: yt , Ht , N t , K t , Qt , g =[ 1, 0, . . . , 0]T , x̂n−1, and
Pn−1
Ensure: x̂WL

t+1|t , x̂WL
t+1, pt+1|t , and pt+1

5.2 Smoothing case
Next, we compute two WL smoothing estimators of xt
based on future data. The first smoother is obtained
from the set of observations {yt , y∗

t , yt+1, y∗
t+1, . . . , ym, y∗

m}
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and it will be denoted by x̂bWL
t . The second one

is derived from the information supplied by the set
{yt+1, y∗

t+1, . . . , ym, y∗
m} and we will refer to it as x̂bWL

t|t+1.
The errors of both estimators are pbt = E[ |xt − x̂bWL

t |2]
and pbt|t+1 = E[ |xt − x̂bWL

t|t+1|2], respectively. The ini-
tial condition x̂bm−n+1 is the estimate of xbm−n+1 obtained
from the 2n+2-vector [ ym−n+1, y∗

m−n+1, . . . , ym, y∗
m]T and

Pb
m−n+1 is its associated error. By applying the backwards

Kalman recursions on the backwards model (18) we get
Algorithm 2.

Algorithm 2. WL smoothing
Require: yt , Ht , N t , Kb

t+1, Qb
t+1, l =[ 0, . . . , 0, 1, 0]T ,

x̂bm−n+1, and Pb
m−n+1

Ensure: x̂bWL
t|t+1, x̂

bWL
t , pbt|t+1, and pbt

6 Numerical example

This section is devoted to showing the advantages of rep-
resentation (27) (model 2) in relation to (3) (model 1)
in two fields of signal processing: simulation and estima-
tion. Firstly, we use such models to simulate trajectories
of xt defined in Example 2. Specifically, 50,000 trajecto-
ries of both models have been generated via Montecarlo
simulation. To assess the performance of the simulations
we compare the true correlation and complementary cor-
relation functions with the simulated ones. Figure 1a,b
depicts the true correlation and complementary correla-
tion functions of xt , Figure 1c,d the simulated simulated
ones corresponding to model 1 and Figure 1e,f the sim-
ulated ones for model 2. We can see that the simulated
trajectories of model 1 pick up adequately the behavior of
the correlation function. However, these trajectories are
unable to show the basic characteristics of the comple-
mentary correlation function. This shortcoming does not
appear with model 2 whose simulated trajectories yield
accurate representations of the second-order moments of
xt . For more detail, the 2D sections of the true comple-
mentary function and the simulated ones with models 1

and 2 for t = 60 and t = 90, respectively, are shown in
Figure 2a,b.
Finally, we compare the SL smoother obtained with

model 1 and the WL smoother derived in Algorithm 2
for model 2. For the particular case in which ht = 1
and n1,t = 1, Figure 3a compares the error pbt obtained
for n2,t = 0.25 (dotted line) and n2,t = 0.8 (solid line)
with the counterpart SL error (dashed line). On the other
hand, considering n2t = n2 and denoting the errors of
the improper and proper smoothers for every value of n2
by pbt (n2) and p̄bt (n2), respectively, Figure 3b displays the
mean of the difference between the SL andWL estimation
errors, that is, DE(n2) = 1

100
∑100

t=1(p̄bt (n2) − pbt (n2)) with
n2 varying within the interval [ 0, 1). As expected, both
figures show that WL estimation outperforms SL estima-
tion, that is, they illustrate the better performance of the
improper smoother in relation to the proper one. From
Figure 3b, we also come to the conclusion that this gain in
performance decreases as n2 reduces.

7 Conclusions
The limited utility of the classicalWSMdefinition to char-
acterize the existence of a state-space representation for
improper random signals has been revealed. By means of
two simple examples, we have shown that in some cases
the triangular condition fails to hold for signals with a
state-space representation or that there exist signals with
autocorrelations satisfying the triangular property for
which the associated state-space representations present
drawbacks in relation to their WL counterparts. Thus, the
definition of a WSM signal has been extended to deal
with improper signals providing new characterizations
for WLM signals based either on second-order proper-
ties or on state-space representations. Moreover, a way to
check the WLM condition has been given and the corre-
lation structure of WLM signals has been devised. Finally,
WL forwards and backwards Markovian representations
have been presented from which some applications are
illustrated in the signal estimation and simulation fields.

Appendix 1
Proof of Theorem 1
To prove the implication 1) ⇒ 2) observe that if xt is a
WLM(n) signal then for any s < t,

x̂WL(t|τ ≤ s) = k1(t, s)xs + k2(t, s)x∗
s + · · ·

+ k2n−1(t, s)xs−n+1 + k2n(t, s)x∗
s−n+1

(28)

which implies that x̂WL(t|τ ≤ s) is of the form (5) with
K(t, s) defined in (4). Moreover, the rows are of the form
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Figure 1 (a) True correlation function: (b) True complementary correlation function: (c) Simulated correlation function for model 1: (d)
Simulated complementary correlation function for model 1: (e) Simulated correlation function for model 2: (f) Simulated complementary
correlation function for model 2.
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Figure 2 (a) 2D section of true and simulated complementary functions for t = 60: (b) 2D section of true and simulated complementary
functions for t = 90.

K [2i−1](t, s) = [k1(t − i + 1, s), k2(t − i + 1, s), . . . , k2n−1

× (t − i + 1, s), k2n(t − i + 1, s)]

K [2i](t, s) = [
k∗
2 (t − i + 1, s), k∗

1 (t − i + 1, s), . . . , k∗
2n

× (t − i + 1, s), k∗
2n−1(t − i + 1, s)

]
(29)

for i = 1, . . . , n. The inverse implication, 2) ⇒ 1), is
checked similarly.
Finally, the proof of 2) ⇔ 3) is similar to the one given

in Theorem 1 of [16].

Proof of Theorem 2
The proof of 2) ⇔ 3) is similar to that of Theorem 1 by
taking into account that E[ xbt xbs

H ]= R(t+n−1, s+n−1).
Now, we prove 1) ⇔ 3). Following a similar reasoning to
that used in the proof of Theorem 1 in [16], we have that

(7) is equivalent to the condition

K(t, s) = K(t, τ)K(τ , s), t ≤ τ ≤ s

and thus,

KH(s, t) = KH(τ , t)KH(s, τ) = (K(s, τ)K(τ , t))H ,

t ≥ τ ≥ s

from which, applying Theorem 1, it follows that xt is a
WLM(n) signal. In a similar way the implication 1) ⇒ 3)
is proven.

Proof of Proposition 1
Taking into account that x̂WL(t + j − i|τ ≤ t) = xt+j−i for
j ≤ i ≤ n − 1 we obtain (8) and (9). Likewise, (13) follows
from (29), (8), and (9).
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Figure 3 (a) Smoothing errors: WL smoothing errors pbt for n2,t = 0.25 (dotted line) and n2,t = 0.8 (solid line), and the SL smoothing error
(dashed line): (b) Performance of the smoother estimate.Mean of the difference between the SL and WL estimation errors DE(n2).

Now, from (6) we get

K(t+ j+ 1, t) = K(t+ j+ 1, t+ j)K(t+ j, t), j ≥ 0

and together with (13) we demonstrate (10), (11), and (12).
On the other hand, (14) and (15) can be proven follow-

ing a similar reasoning to that of Theorem 2 in [16].
Finally, by using the Hilbert projection theorem and (5)

we have

xt+1 = K txt + wt (30)

where wt =[wt ,w∗
t , 0, . . . , 0]T is the innovations process

which, by construction, is uncorrelated with xs for t ≥ s.
Thus,

Rt+1 = E
[
xt+1xHt+1

] = E
[
(K txt + wt) (K txt + wt)

H]
= K tRtKH

t + Qt

with E[wtwH
t ]= Qt given in (16).
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Proof of Theorem 3
If xt is a WLM(n) signal then, from (13) and (30), we have

xt+1 = k1,txt + k2,tx∗
t + · · · + k2n−1,txt−n+1

+ k2n,tx∗
t−n+1 + wt

(31)

where wt is the first component of wt . Hence, denoting
kt = KT

[1](t + 1, t) =[ k1,t , . . . , k2n,t]T we obtain (17). On
the other hand, from the Hilbert projection theorem and
(7) we get

xbt = K(t + n − 1, t + n)xbt+1 + wb
t+1 (32)

where wb
t =[ 0, . . . , 0,wb

t ,wb
t
∗]T is the backwards innova-

tions process which, from construction, is uncorrelated
with xs for t ≤ s. Hence, xt = K [2n−1](t + n − 1, t +
n)xbt+1 + wb

t+1 with wb
t+1 the 2n − 1 component of wb

t+1.
Thus, denoting kbTt+1 = K [2n−1](t + n − 1, t + n), (18) is
obtained.
Conversely, suppose that xt has the representation (17).

DenoteH the closed span generated by the set {xτ , x∗
τ , τ ≤

t}. By using Proposition 2.3.2 of [19], to prove that
x̂WL(t|τ ≤ s) = x̂WL(t|s, s−1, . . . , s−n+1) for any s < t is
equivalent to x̂WL(t+1|τ ≤ t) = x̂WL(t+1|t, t−1, . . . , t−
n + 1) for all t. Thus, projecting (17) onto H and taking
Proposition 2.3.2 of [19] into account we have

x̂WL(t + 1|τ ≤ t) = kTt xt + ŵWL(t|τ ≤ t)

where ŵWL(t|τ ≤ t) is the projection of wt onto H. The
hypothesis (19) guarantees that wt is uncorrelated with xs
and x∗

s for t ≥ s. Hence, ŵWL(t|τ ≤ t) = 0 and xt is a
WLM(n) signal.
The proof for the backwards representation (18) is

similar.

Proof of Corollary 1
Since xt is a SOS signal then the matrices R(t + h, t), h =
1, 2, . . . , are independent of t. Thus, from (4) we obtain
ki,t = ki for all i and t. Finally, taking (31) into account we
have

xt+1 =
n−1∑
i=0

k2i+1xt−i +
n−1∑
i=0

k2i+2x∗
t−i + wt

which gives (20) defining g1,i = k2i+1 and g2,i = k2i+2.

Proof of Proposition 2
From (25) and Theorem 3 it follows that xbt has the
representation (32). Then by using (22) we obtain

Kb
t+1 = K(t + n − 1, t + n) = R(t + n − 1, t + n)R−1

t+n

= RH(t + n, t + n − 1)R−1
t+n = Rt+n−1KH

t+n−1R
−1
t+n

and thus the result follows.

Abbreviations
MMSE, Minimum-mean square error; SL, Strictly linear; WL, Widely linear; WLM,
Widely linear Markov; WSM, Wide-sense Markov.
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