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Abstract

View-plus-depth is a scene representation format where each pixel of a color image or video frame is augmented
by per-pixel depth represented as gray-scale image (map). In the representation, the quality of the depth map
plays a crucial role as it determines the quality of the rendered views. Among the artifacts in the received depth
map, the compression artifacts are usually most pronounced and considered most annoying. In this article, we
study the problem of post-processing of depth maps degraded by improper estimation or by block-transform-
based compression. A number of post-filtering methods are studied, modified and compared for their applicability
to the task of depth map restoration and post-filtering. The methods range from simple and trivial Gaussian
smoothing, to in-loop deblocking filter standardized in H.264 video coding standard, to more comprehensive
methods which utilize structural and color information from the accompanying color image frame. The latter
group contains our modification of the powerful local polynomial approximation, the popular bilateral filter, and an
extension of it, originally suggested for depth super-resolution. We further modify this latter approach by
developing an efficient implementation of it. We present experimental results demonstrating high-quality filtered
depth maps and offering practitioners options for highest-quality or better efficiency.

1 Introduction

View-plus-depth is a scene-representation format where
each pixel of the video frame is augmented with depth
value corresponding to the same viewpoint [1]. The
depth is encoded as gray-scale image in a linear or loga-
rithmic scale of eight or more bits of resolution. An
example is given in Figure 1a,b. The presence of depth
allows generating virtual views through so-called depth
image based rendering (DIBR) [2] and thus offers flex-
ibility in the selection of viewpoint as illustrated in Fig-
ure lc. Since the depth is given explicitly, the scene
representation can be rescaled and maintained as to
address parallax issues of 3D displays of different sizes
and pixel densities [3]. The representation also allows
generating more than two virtual views which is
demanded for auto-stereoscopic displays.

Another advantage of the representation is its back-
ward compatibility with conventional single-view broad-
casting formats. In particular, MPEG-2 transport stream
standard used in DVB broadcasting allows transmitting
auxiliary streams along with main video, which makes
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possible to enrich a conventional digital video transmis-
sion with depth information without hampering the
compatibility with single-view receivers.

The major disadvantages of the format are the appear-
ance of dis-occluded areas in rendered views and inabil-
ity to properly represent most of the semi-transparent
objects such as fog, smoke, glass-objects, thin fabrics,
etc. The problems with occlusions are caused by the
lack of information about what is behind a foreground
object, when a new-perspective scene is synthesized.
Such problems are tackled by occlusion filling [4] or by
extending the format to multi-view multi-depth, or to
layered depth [3].

Quality is an important factor for the successful utili-
zation of depth information. Depth map degraded by
strong blocky artifacts usually produces visually unac-
ceptable rendered views. For successive 3D video trans-
mission, efficient depth post-filtering technique should
be considered.

Filtering of depth maps has been addressed mainly
from the point of view of increasing the resolution [5-7].
In [6], a joint bilateral filtering has been suggested to
upsample low-resolution depth maps. The approach has
been further refined in [7] by suggesting proper anti-
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(d)

(e) synthesized view using compressed depth from (d).

Figure 1 Example of view-plus-depth image format and virtual view rendering (no occlusion filling applied for rendered images). (a)
True color channel; (b) true depth channel; (c) synthesized view using true depth; (d) highly compressed depth (H.264 I-frame with QP = 51);

aliasing and complexity-efficient filters. In [5], a prob-
abilistic framework has been suggested. For each pixel
of the targeted high-resolution grid, several depth
hypothesizes are built and the hypothesis with lowest
cost is selected as a refined depth value. The procedure
is run iteratively and bilateral filtering is employed at
each iteration to refine the cost function used for com-
paring the depth hypotheses.

In this article, we study the problem of post-proces-
sing of depth maps degraded by improper estimation or

by block-transform-based compression. A number of
post-filtering methods are studied, modified, and com-
pared for their applicability to the task of depth map
restoration and post-filtering. We consider methods ran-
ging from simple and trivial smoothing and deblocking
methods to more comprehensive methods which utilize
structural and color information from the accompanying
color image frame. The present study is an extension of
the study reported in [8]. Some of the methods included
in the comparative analysis in [8] have been further
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modified and for one of them, a more efficient imple-
mentation has been proposed. We present extended
experimental results which allow evaluating the advan-
tages and limitations of each method and give practi-
tioners options for trading-off between highest quality
and better efficiency.

2 Depth map characteristics

2.1 Properties of depth maps

Depth map is gray-scale image which encodes the dis-
tance to the given scene pixels for a certain perspective.
The depth is usually aligned with and ac-companies the
color view of the same scene [9].

Single view plus depth is usually a more efficient
representation of a 3D scene than two-channel stereo. It
directly encodes geometrical information contained
otherwise in the disparity between the two views thus
providing scalability and possibility to render multiple
views for displays with different sizes [1]. Structure-wise,
the depth image is piecewise smooth (as representing
gradual change of depth within objects) with delineated,
sharp discontinuities at object boundaries. Normally, it
contains no textures. This structure should be taken
into account when designing compression or filtering
algorithms.

Having a depth map given explicitly along with color
texture, a virtual view for a desired camera position can
be synthesized using DIBR [2]. The given depth map is
first inversely-transformed to provide the absolute dis-
tance and hence the world 3D coordinates of the scene
points. These points are projected then onto a virtual
camera plane to obtain a synthesized view. The techni-
que can encounter problems with dis-occluded pixels,
non-integer pixel shifts, and partly absent background
textures, which problems have to be addressed in order
to successfully apply it [1].

The quality of the depth image is a key factor for suc-
cessful rendering of virtual views. Distortions in the
depth channel may generate wrong objects contours or
shapes in the rendered images (see, for example, Figure
1d,e) and consequently hamper the visual user experi-
ence manifested in headache and eye-strain, caused by
wrong contours of familiar objects. At the capture stage,
depth maps might be not well aligned with the corre-
sponding objects. Holes and wrongly estimated depth
points (outliers) might also exist. At the compression
stage, depth maps might suffer from blocky artifacts if
compressed by contemporary methods such as H.264
[10]. When accompanying video sequences, the consis-
tency of successive depth maps in the sequence is an
issue. Time-inconsistent depth sequences might cause
flickering in the synthesized views as well as other 3D-
specific artifacts [11].
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At the capture stage, depth can be precisely estimated
in floating-point hight resolution, however, for compres-
sion and transmission it is usually converted to integer
values (e.g., in 256 gray-scale gradations). Therefore, the
depth range and resolution have to be properly main-
tained by suitable scaling, shifting, and quantizing,
where all these transformations have to be invertible.

Depth quantization is normally done in linear or loga-
rithmic scale. The latter approach allows better preser-
vation of geometry details for closer objects, while
higher geometry degradation is tolerated for objects at
longer distances. This effect corresponds to the parallax-
based human stereo-vision, where the binocular depth
cue losses its importance for more distanced objects and
is more important and dominant for closer objects. The
same property can be achieved if transmitting linearly
quantized inverse depth maps. This type of depth repre-
sentation basically corresponds to binocular disparity
(also known as horizontal parallax), including again
necessary modifications, such as scaling, shifting, and
quantizing.

2.2 Depth map filtering problem formulation

This section formally formulates the problem of filtering
of depth maps and specifies the notations used here-
after. Consider an individual color video frame in YUV
(YCbCr) or RGB color space y(x) = [y'(x), y“(x), y"(x)]
or y(x) = [yR(x),yG(x),yB (x)], together with the asso-
ciated per-pixel depth z(x), where & = [x;, x,] is a spatial
variable, x € X, X being the image domain.

A new, virtual view n(x) = [n7(x), n“(x), n"(x)] can be
synthesized out of the given (reference) color frame and
depth by DIBR, applying projective geometry and
knowledge about the reference view camera, as dis-
cussed in Section 2.1 [2]. The synthesized view is com-
posed of two parts, § = 1, + 1,, where 1, denotes the
visible pixels from the position of the virtual view cam-
era and 7, denotes the pixels of occluded areas. The
corresponding domains are denoted by X, and X, corre-
spondingly, X, € X, X, = X\X,.

Both y(x) and z(x) might be degraded. The degrada-
tions are modeled as additive noise contaminating the
original signal

vy =7 e, (1)

Zg =2+ €, (2)

where C = Y, U, V or R, G, B. Both degradations are
modeled as independent white Gaussian processes:
e€(-)~N(0,02),&(-)~N(0,0?%). Note that the variance
of color signal noise (63) differs from the one of the
depth signal noise (A?).
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If degraded depth and reference view are used in
DIBR, the result will be a lower-quality synthesized view
n. Unnatural discontinuities, e.g., blocking artifacts, in
the degraded depth image cause geometrical distortions
and distorted object boundaries in the rendered view.
The goal of the filtering of degraded depth maps is to
mitigate the degradation effects (caused by e.g., quanti-
zation or imperfect depth estimation) in the depth
image domain, i.e., to obtain a refined depth image esti-
mate 2, which would be closer to the original, error-free
depth, and would improve the quality of the rendered
view.

2.3 Depth map quality measures
Measuring the quality of depth maps has to take into
account that depth maps are type of imagery which are
not visualized per-se, but through rendered views.

In our study, we consider two types of measures:

« measures based on comparison between processed
and ground truth (reference) depth;

+ measures based on comparison between virtual
views rendered from processed depth and from
ground truth one.

Measures for the first group have the advantage of
being simple, while measures from the second group are
closer to subjective perception of depth. For both of
these groups we suggest and test new measures.

PSNR of Restored Depth

Peak signal-to-noise ratio (PSNR) measures the ratio
between the maximum possible power of a signal
(within its range) and the power of corrupting noise.
PSNR is commonly used as a measure of fidelity of
image reconstruction. PSNR is calculated via the mean
squared error (MSE):

1
MSE= 3 (2(x) — 2(x))", (3)
MAX?
PSNR = 10log,, ( MSEZ ) (4)

where z(x) and z(x) are the reference and processed
signals; N is number of samples (pixels) and MAX, is
the maximal possible pixel value, assuming the minimal
one is zero. In this metric higher value means better
quality. Applying PSNR to depth images must be done
with care and with proper rescaling, as most of depth
maps have a sub-range of the usual 8-bit range of 0 to
255 and PSNR might turn to be unexpectedly high.
PSNR of rendered view
PSNR is calculated to compare the quality of rendered
view using processed depth versus that of using original
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depth [10]. It essentially measures how close the ren-
dered view is to the ‘ideal’ one. In our calculations, pix-
els, dis-occluded during the rendering process, are
excluded so to make the comparison independent on
the particular hole fitting approach. For color images,
we calculate PSNR independently for each color channel
and then calculate the mean between three channels.
Percentage of bad pixels

Bad pixels percentage metric is defined in [12] to mea-
sure directly the performance of stereo-matching algo-
rithms.

BAD =~ ° 3" (Ja(x) — 2(x)| > Ag),

X

where 2 is the computed depth, z is the true depth
and A, is a threshold value, (usually equal to 1). Figure
2 shows thresholding results for some highly com-
pressed depth maps. We include this metric to our
experiments in an attempt to check its applicability for
comparing post-filtering methods. For this metric, lower
value means better quality.

Depth consistency

Analysing the BAD metric, one can notice that the
thresholding imposed there, does not emphasize the
importance of small or big differences. It is equally
important, when the error is just a quantum above the
threshold and when it is quite high.

In a case of depth degraded by compression artifacts,
almost all pixels are quantized thus changing their origi-
nal values and therefore causing the BAD metric to
show very low quality while the quality of the rendered
views will not be that bad.

Starting from the idea that the perceptual quality of
rendered view will depend more on the amount of geo-
metrical distortions than on the number of bad depth
pixels, we suggest to give preference to areas where the
change between ground truth depth and compressed
depth is more abrupt. Such changes are expected to
cause perceptually high geometrical distortions.

Consider the gradient of the difference between true
depth and approximated depth V& = V(z — z). By depth
consistency we denote the percentage of pixels, having
magnitude of that gradient higher than a pre-specified
threshold.

100
CONSIST =~ "> (V& > oconsia) - ®)

The measure favors non-smooth areas in the restored
depth considered as main source of geometrical distor-
tion, as illustrated in Figure 3.

Gradient-Normalized RMSE
As suggested in [13], the performance of optical flow
estimation algorithms can be evaluated using gradient-
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(a)

(b)

Figure 2 BAD pixels mask for “Cones” dataset (|z(x) — 2(x)| > Ad) caused by H.264 Intra compression with QP = 51.

normalized RMSE metric. Such measure decreases the
over-penalization of errors caused by fine textures.

In our implementation, we calculate this metric for
the luminance channels of reference and rendered views
and exclude occluded areas determined by the DIBR on
the ground truth data.

1/2
(M@ =" @)* [ ©

NRMSE, = | 3 [ @ 1

xeX,

where 1" () is the luminance of the virtual image gen-
erated by ground truth depth and 4" (x) is the luminance
of virtual image generated by processed depth. For bet-
ter quality, the metric shows low values.
Discontinuity Falses
We propose using a measure based on counting of
wrong occlusions in the view rendered out of processed
depth. If all occlusions between true and processed vir-
tual images coincide, then depth discontinuities are pre-
served correctly.

DISC = 1[(\)]0# ((Xo U 5(0) \ (Xo mf(o)) , )

where #(X) is cardinality (number of elements) of a
domain X. The measure decreases with improving the
quality of the processed depth.

3 Depth filtering approaches

A number of post-processing approaches for restoration
of natural images exist [14]. However, they are not
directly applicable to range images due to differences in
image structure.

In this section, we consider several existing filtering
approaches and modify them for our need. First group
of approaches works on the depth map images with
using no structural information from the available color
channel. Gaussian smoothing and H.264 in-loop
deblocking filter [15] are the filtering approaches
included in this group. The approaches of the second
group actively use available color frame to improve
depth map quality. While there is an apparent

()

(b)
Figure 3 Distortions in depth “Teddy” dataset (||VE||2 > Oconsist) caused by H.264 Intra compression with (a) QP = 51 and the same
after de-blocking with super-resolution filter (b).




Smirnov et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:25

http://asp.eurasipjournals.com/content/2012/1/25

correlation between the color channel and the accompa-
nying depth map, it is important to characterize which
color and structure information can help for depth
processing.

More specifically, we optimize state-of-the-art filtering
approaches, such as local polynomial approximation
(LPA) [16] and bilateral filtering [17] to utilize edge-pre-
serving structural information from the color channel
for refining the blocky depth maps. We suggest a new
version of the LPA approach which, according to our
experiments, is most appropriate for depth map filtering.
In addition, we suggest an accelerated implementation
of the method based on hypothesis filtering as in [5],
which shows superior results for the price of high com-
putational cost.

3.1 LPA approach
The anisotropic LPA is a pixel-wise method for adaptive
signal estimation in noisy conditions [16]. For each pixel
of the image, local sectorial neighborhood is con-
structed. Sectors are fitted for different directions. In the
simplest case, instead of sectors, 1D directional esti-
mates of four (by 90 degrees) or eight (by 45 degrees)
different directions can be used. The length of each sec-
tor, denoted as scale, is adjusted to meet the compro-
mise between the exact polynomial model (low bias)
and sufficient smoothing (low variance). A statistical cri-
terion, denoted as intersection of confidence intervals
(ICI) rule is used to find this compromise [18,19], i.e.,
the optimal scale for each direction. These optimal
scales in each direction determine an anisotropic star-
shape neighborhood for every point of the image well
adapted to the structure of the image. This neighbor-
hood has been successfully utilized for shape-adaptive
transform-based color image de-noising and de-blurring
[14].

In the spirit of [14], we use the quantized luminance
channel y}; =yY + &Y as source of structural information.
The image is convolved with a set of 1D directional

polynomial kernels {ghi,gk }, where {h}][:1 is the set of dif-

ferent lengths (scales) and 6 = kZ'k =1,2,...,8are

the directions, thus the
Yy 6, (x) = (y}; * ghj,9k> (x). The ICI rule helps to find the

optimal scale %, (x) for each direction (the notation of
direction is omitted). This is the largest scale (in num-
ber of pixels), which ensures a non-empty ICI

[18,19]); = n/_, I; where

obtaining estimates

i = [y () = To¥ lgu |y () + T ¥ gn )] ®)

After finding optimal scales /,(x) for each direction at
pixel x( a star shape neighborhood €2, is formed, as
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illustrated in Figure 4a. There is a clear evidence that
there is a relation between the adaptive neighborhoods
and the (distorted) depth, as examplified in Figure 4b.
Adaptive neighborhoods are formed for every pixel in
the image domain X. Once adaptive neighborhoods are
found, one must find some modeling for depth channel
before utilizing this structural information.

Constant depth model

For our initial implementation of LPA-ICI depth filter-
ing scheme, the depth model is rather simple. The
depth map is assumed to be constant in the neighbor-
hood of the filtering pixel xy, where neighborhood is
found by the LPA-ICI procedure. This modeling is
based on the assumption that the luminance channel is
nearly planar at areas where the depth is smooth
(close to constant). Whenever the depth has a disconti-
nuity, the luminance is most likely to have a disconti-
nuity too. The constant-modeling results in simple
weighted average over the region of optimal neighbor-
hood

VX0, 3%, , 24(x) & const, x € Qy,, 9)

R 1

2x) = D (), (10)
erxO

where N is the number of pixels inside adaptive sup-
port €y, Note, that the scheme depends on two para-
meters: the noise variance of the luminance channel ¢
and the positive threshold parameter I'. The latter can
be adjusted so to control the smoothing in restored
depth map.
Linear regression depth model
In a more sophisticated approach we apply pixelwise-
planar depth assumption, stating of planarity of depth
inside some neighborhood of processing pixel. This is a
higher order extension of the previous assumption.

VX0, 3%, 2g(x) = AX, X = [x, 1], x € Qy,, (11)

where % is homogeneous coordinate.

Based on this assumption, instead of simple averaging
in depth domain we apply plane fitting (linear regres-
sion). A = dB™', where d is a row-vector of depth values
z(x), x € Qy, B is a 3-by-N matrix of their homogeneous
coordinates in image space and B™' is Moore-Penrose
pseudoinverse of rectangular matrix. Estimated depth
values are found with a simple linear equation:

Z(x) = AX, X = [x, 1], x € Qy,. (12)

Aggregation procedure
Since for each processed pixel we may have multiple
estimates due to overlapping neighborhoods, we aggre-
gate them as follows:
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(d)

Figure 4 Example of adaptive neighborhoods: (a) luminance channel with some of found optimal neighborhoods; (b) compressed depth
with the same neighborhoods overlaid; (c) optimal scales for one of the direction (black for small scale and white for big scale); (d) example of
highly compressed depth map; (e) the same depth map filtered with LPA-ICI (constant depth model with aggregation).

(e)

2% (x0) =

1\14 > #(xo),

j=1.M

(13)

where M is number of estimates coming from overlap-
ping regions in particular coordinate xy. A result of
depth, filtered by LPA-ICI is given in Figure 4e.
Color-driven LPA-ICI
Luminance channel of the color image is usually consid-
ered as the most informative channel for processing and
also as the most distinguishable by the human visual
system. That is why many image filtering mechanisms
use color transformation to extract luminance and then
process it in different way to compare with chrominance
channels. This also may be explained by the fact that
luminance is usually the less noisy component and thus
it is most reliable. Nevertheless, for some color proces-
sing tasks pixel differentiation based only on luminance
channel is not appropriate due to some colors may have
the same luminance whereas they have different visual
appearance.

Our hypothesis is that a color difference signal will
better differentiate color pixels, as illustrated in Figure
5. L, norm is used to form a color difference map
around pixel xy:

€ = (Ve = Vel + (U — U + (Vey = Vi), (1)

where &, is the currently processing pixel, and x € Qy,

The color difference map is used as a source of struc-
tural information, i.e., the LPA-ICI procedure is run
over this map instead over the luminance channel. Dif-
ferences are illustrated in Figure 5. In our implementa-
tion, we calculate color-difference only for those pixels
of the neighborhood which participate in 1D directional
convolutions. Additional computational cost of such
implementation is about 10% of the overall LPA-ICI
procedure.

For all mentioned LPA-ICI based strategies the main
adjusting parameter, capable to set proper smoothing
for varying depth degradation parameter (e.g., varying
QP in coding) is the parameter I'.

3.1.1 Comparison of LPA-ICI approaches The perfor-
mance of different versions of the LPA-ICI approach are
compared in Figure 6. The ‘normalized RMSE’ (equation
6) and ‘depth consistency’ (equation 5) metrics have
been computed and averaged over a set of test images.
The parameters of the filters were empirically optimized
with ‘depth consistency’ (equation 5) as a cost measure.
As it can be seen, the color-driven LPA-ICI approach
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(c) (d)
Figure 5 Example of different LPA-ICI implementations: (a) luminance channel; (b) color-difference channel for central pixel of a red square;

(c) LPA-ICI filtering result, optimal scales were found in luminance channel; (d) LPA-ICI filtering result, optimal scales were found in color-
difference channel.

-

with plane fitting and encapsulated aggregation is the  experiments from now on. All experiments and compar-
best performing approach, while also having the most  isons involving LPA-ICI presented in the following sec-
stable and consistent results. Because of the superior tions refer to the optimized color-driven LPA-ICI
performance of color-driven LPA-ICI, we use it in the implementation.

6 T 0.08 T
No Filtering No Filtering
—— LPA-ICI Constant Model —— LPA-ICI Constant Model
~———— LPA-ICI Linear Regression| ~———— LPA-ICI Linear Regression|
LPA-ICI Color Diff LPA-ICI Color Diff

Depth Consistency (%)
w
T
Normalized RMSE (dB)

0 I I I I I I 0.02 I I I I
20 25 30 35 40 45 50 20 25 30 35 40 45 50

H.264 Quantization Parameter H.264 Quantization Parameter

Figure 6 Comparison of different LPA-ICI approaches.

\
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3.2 Bilateral filter

The bilateral filter is a non-linear filter which smooths
the image while preserves strong edges [17]. Filtered
pixel value is obtained by weighted averaging of its
neighborhood combined with color weighting. For gray-
scale images, filter weights are calculated based on both
spatial distance and photometric similarity, favoring
near values to distant values in both spatial domain and
range. For color images, bilateral filtering uses color dis-
tance to distinguish photometric similarity between pix-
els, which affects in reducing phantom colors in the
resulting image. In our approach, we calculate filter
weights using information from color frame in RGB,
while applying filtering on depth map. Our design of
bilateral filter has been inspired by [5], as follows:

S o5 (1x = ul)) we (y(x) — y(w)]]) 24 (1)
S o (lx = ul) o (|y(x) — y(u)])
t

2(x) = . (15)

where and u € Q, are neigh-

wa(t)=e Ya,(a=s,c)
borhood pixels of point x. This design allows for rela-
tively fast implementation by storing all possible color
and distance weights as look-up tables. Parameters ¥, 7.
and processing window size Q, are adjustable para-
meters of the filter. Figure 7 illustrates the filtering. The
color channel (Figure 7a) provides the color difference
information, with respect to the processed pixel position
(Figure 7b). It is further weighted by spatial Gaussian fil-
ter to determine the weights of pixels from the depth
map taking part in estimating the current (central) pixel
(Figure 7f).

3.3 Spatial-depth super resolution approach

A post-processing approach was suggested aimed at
increasing the resolution of low-resolution depth images,
given high-resolution color image as a reference [5]. In
our study, we study the applicability of this filter for
suppression of compression artifacts and restoration of
true discontinuities in the depth map. The main idea of
the filter is to process depth in probabilistic manner,
constructing 3D cost volume from several depths
hypothesizes. After bilateral filtering of each slice of the
volume, the hypothesis with the lowest cost is selected
as a new depth value. The procedure is applied itera-
tively, calculating cost volume using the depth estimated
in previous step. The cost volume on ith iteration is
constructed to be quadratic function of the current
depth estimate:

Cly (o d) = min {L,, (d = 2 ()} (16)

where L, denotes tunable search range.
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The bilateral filtering, defined as in Equation 15
enforces an assumption of piecewise smoothness. The
procedure is illustrated in Figures 8 and 9. The
approach resembles the local depth estimation idea,
where a volumetric cost volume is further aggregated
with bilateral filter.

Since cost function is discrete on d, the depth
obtained by winner-takes-all approach will be discrete as
well. To tackle this effect, the final depth estimate is
taken as the minimum point of quadratic polynomial
which approximates the cost function between three dis-
crete depth candidates: d, d - 1 and d + 1

f(d) = ad® +bd + ¢, (17)
P 2’;. (18)

f(d,n) is the minimum of quadratic function f(d),
thus given d, fld), id -1) and fild + 1), value d,,,;, can be
calculated:

L f@+D -1
2(f(d+1) — f(d— 1) - 2f(d)

After the bilateral filtering is applied to the cost
volume, the depth is refined and true depth discontinu-
ities might be completely recovered.

In our implementation of the filter, we have suggested
two simplifications:

dmin = (19)

« we use only one iteration of the filter;

« before processing we scale the depth range by fac-
tor of 20, thus reducing the number of slices, and
subsequently reducing the processing time.

The main tunable parameters of the filter are the
parameters of the bilateral filter ¥, and 7. As long as
the processing time of the filter still remains extremely
high, we do not perform optimization of this filter
directly, but assume that the optimal parameters ¥, = f;
(QP) and ¥, = f.(QP) found for the direct bilateral filter
are optimal or nearly optimal for this filter as well.

3.4 Practical implementation of the super resolution
filtering

In this section, we suggest several modifications to the
original approach to make it more memory-efficient and
to improve its speed. It is straightforward to figure out
that there is no need to form cost volume in order to
obtain the depth estimate for a given coordinate x at
the ith iteration. Instead, the cost function is formed for
the required neighborhood only and then filtering
applies, i.e.,
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(e)

for the same scene; (f) the same block filtered with bilateral filter.
A\

Figure 7 Example of bilateral filtering: (a) color channel; (b) color-difference for central pixel (marked red); (c) color-weighed component of
bilateral product; (d) complete weights for selected window ((c) multiplied with spatial Gaussian component); (e) example of blocky depth map

(f)

S ee, W u)G(u, d)
2 ueq, W ) :| '

W, 1) = o (ke = ull) o ([y(x) = y(w)]

G(u,d) = min {n *L, (d— z(i)(u))z} .

Z(i+1)(x) = argmin [
d
(20)
) !

Furthermore, the computation cost is reduced by
assuming that not all depth hypotheses are applicable
for the current pixel. A safe assumption is that only
depths within the range d € [dyin dmax] Where dp;, =
min(z(u«)), dma = max(z(u)), u € Q, have to be checked.

Additionally, depth range is scaled with the purpose to
further reduce the number of hypothesizes. This step is

especially efficient for certain types of distortions such
as compression (blocky) artifacts. For compressed depth
maps, the depth range appears to be sparse due to the
quantization effect.

Figure 10 illustrates histograms of depth values before
and after compression so to confirm the use of rescaled
search range of depth hypotheses. This modification
speeds up the procedure and relies on the subsequent
quadratic interpolation to find the true minimum. A
pseudo-code of the suggested procedure in Equation 20
is given in following listing.

Require: C, the color image; D, the depth image; X, a
spatial image domain
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Slice-wise Bilateral
Filtering

Figure 8 Principle of super-resolution filtering.

for all x € X do else
dmin = min Du/ dmax = maXDu ”Cu - Cx” ”u - x”
ueQd, ueQy F(x, u) =
Y oulICu = Cill flu — x|
Spest < Smax {Smax 1S maximum reachable value
for S}

sl
L2\ 2

(c) (d)
Figure 9 Super-resolution filtering example. (a) Compressed depth map; (b) same depth, processed by super-resolution filter; (c) single cost

volume slice, constructed from (a); (d) result of bilateral filtering for same slice.
A\

{bilateral weights}
if diax - dimin <Yine then

Dy = Dy
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Figure 10 Histograms of non-compressed (a) and compressed (b) depth maps.
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(b)

for d = | diin] to [dimax] do
§«0
forall u e Q, do
E < min{(d - D,)% nL}
S« S+ Fx, u)*E
end for
if S <Spesc then
Sbest « S
dbest —d
end if
end for
Dx = dbest
end if
end for
The memory foot-print required by our implementa-
tion is significantly lower than the one imposed by a
direct implementation. A straightforward implementa-
tion would require a large memory buffer to store the
complete cost volume in order to process it pixel-by-
pixel and avoid computing (the same) color weights
across different slices. In the proposed implementation,
two memory buffers with relatively low sizes are
required: a memory buffer which is equal to the proces-
sing window size to store current color weights, and a
buffer to store the cost values for the current pixel
along the ‘d’ dimension. In case of multi-thread (paralle-
lized) implementation, these memory buffers are multi-
plied by the number of processing threads. More
information about platform-specific optimization of the
proposed algorithm is given in [20].
Figure 11 illustrates the performance in terms of
speed. The figure shows experiments with different

implementations of the filtering procedure. The ‘Teddy’
dataset has been processed (see also Figure 12 for refer-
ence). All filter versions have been implemented in C
and then compiled into MEX files to be run within
Matlab environment. The experiments have been run
on a 1.3 GHz Pentium Dual-Core processor with 1 Gb
of RAM under MS Windows XP operating system. In
the figure, the vertical axis shows the execution time in
seconds and the horizontal line shows the number of
slices processed (i.e., the depth dynamic range assumed).
The dotted curve shows single-pass bilateral filtering. It
does not depend on the dynamic range, but on the win-
dow size, thus it is a constant in the figure. The red line
shows the computational time for the original approach
implemented as a three step procedure for the full
dynamic range. Naturally, it is a linear function with
respect to the slices to be filtered. Our implementation
(blue curve) applying a reduced dynamic range is also
linearly depending on the number of slices, but with
dramatically reduced steepness.

4 Experimental results

4.1 Experimental setting

In our experiments, we consider depth maps degraded
by compression. Thus degradation is characterized by
the quantization parameter (QP). For better comparison
of selected approaches, we present two types of experi-
ments. In the first set of experiments, we compare the
performance of all depth filtering algorithms assuming
the true color channel is given (it has been also used in
the optimization of the tunable parameters). This shows
ideal filtering performance, while in practice it cannot
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Figure 11 Execution time of different implementations of filtering approach.
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be achieved due to the fact that the color data is also
degraded by e.g., compression.

In the second set of experiments, we compare the
effect of depth filtering in the case of mild quantization
of the color channel. General assumption is that color
data is transmitted with backward compatibility in
mind, and hence most of the bandwidth is occupied by
the color channel. Depth maps in this scenario are heav-
ily compressed, to consume not more than 10-20% of
the total bit budget [21,22].

We consider the case where both y and z are to be
coded as H.264 intra frames with some QPs, which
leads to their quantized versions y, and z,. The effect of
quantization of DCT coefficients has been studied thor-
oughly in the literature and corresponding models have
been suggested [23]. Following the degradation model in
Section 2.2, we assume quantization noise terms added
to the color channels and the depth channel considered
as independent white Gaussian  processes:
eC(-)~N(0,02),(-)~N(0,2). While this modeling is
simple, it has proven quite effective for mitigating the
blocking artifacts arising from quantization of transform
coefficients [14]. In particular, it allows for establishing
a direct link between the QP and the quantization noise

variance to be used for tuning deblocking filtering algo-
rithms [14].

Training and test datasets for our experiments (see
Figure 12) were taken from Middlebury Evaluation Test-
bench [12,24,25]. In our case, we cannot tolerate holes
and unknown areas in the depth datasets, since they
produce fake discontinuities and unnatural artifacts after
compression. We semi-manually processed 6 images to
fill holes and to make their width and height be multi-
ples of 16.

4.1.1 Parameters optimization

Each tested algorithm has a few tunable parameters
which could be modified according particular filtering
strategy related with a quality metric. So, to make com-
parison as fair as possible, we need to tune each algo-
rithm to its best, according such a strategy and within
certain range of training data.

Our test approach is to find empirically optimal para-
meters for each algorithm over a set of training images.
It is done separately for each quality metric. Then, for
each particular metric we evaluate it once more on the
set of test images and then average. Then comparison
between algorithms is done for each metric
independently.
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-

Figure 12 Training (upper row) and testing (lower row) datasets used in study.

Particularly, for bilateral filtering and hypothesis
(super-resolution) filtering we are optimizing the follow-
ing parameters: processing window size, 7, and 7. For
the Gaussian Blurring we are optimizing parameters o
and processing window size. For LPA-ICI based
approach we are optimizing the I" parameter.

4.2 Visual comparison results
Figures 13 and 14 present depth images paired with
consecutive rendered frames (no occlusion filling is

applied). This approach helps to illustrate artifacts in
the depth channel as well as their effect on the rendered
images.

As it is seen in the top row (a), rendering with true
depth, results in sharp and straight object contours, as
well as in continuous shapes of occlusion holes. For
such holes, a suitable occlusion filling approach will pro-
duce good estimate.

Row (b) shows unprocessed depth after strong com-
pression (H.264 with QP = 51) frame and its rendering
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(d)

Figure 13 Visual results for “Teddy” dataset. Left column: depth, right column: respective rendered result (no occlusion filling applied). (a)
Ground truth depth; (b) depth compressed H.264 Intra with QP = 51; (c) loop-filtered depth; (d) Gaussian-filtered depth.

\

capability. Objects edges are particularly affected by does not recover geometrical properties of depth,
block distortions. which results in incorrect contours of the rendered
With respect to occlusion filling, the methods behave images.
as follows. « Internal H.264 in-loop deblocking filtering was
performed similarly to the Gaussian smoothing, with
« Gaussian smoothing of depth images is able to no improvement of geometrical properties.
reduce number of occluded pixels, making occlusion + LPA-ICI based filtering technique performs signifi-

filling simpler. Nevertheless, this type of filtering cantly better both is sense of depth frame and
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()

implementation) filtered.

Figure 14 Visual results for “Teddy” dataset (continued). (a) LPA-ICI filtered depth; (b) bilateral filtered depth; (c) super-resolution (modified

rendered frame visual quality. Geometrical distor-
tions are less pronounced, however, still visible in
rendered channel.

« Bilateral filter almost recovers the sharp edges in
depth image, while has minor artifacts (for instance,
see chimney of house).

+ Super-resolution depth filter recovers discontinu-
ities as good as bilateral or even better. Resulted
depth image does not have artifacts as in the pre-
vious methods. Geometrical distortions in rendered
image are not pronounced.

Among all filtering results, the latter one contains
occlusions which are most similar to the occlusions of
the original depth rendering result. Visually, super-reso-
lution depth approach is considered to be the best. The
numerically estimated results for all presented
approaches are presented in following section.

4.3 Numerical results for ideal color channel
Figure 15 summarizes averaged results over the three
test datasets: ‘venus’, ‘sawtooth’, and ‘teddy’.

X-axis on all the plots represents varying QP para-
meters of the H.264 Intra coding, while each Y -axis
shows a particular metric. On the most of the metric
plots it is visible that there is no need to apply any kind
of filtering before QP reaches some critical value. Before
that value, the quality of the compressed depth is high
enough, so no filtering could improve it.

The group of structurally-constrained methods clearly
outperforms the simple methods working on the depth
image only. The two PSNR-based metrics and the BAD
metric seem to be less reliable in characterizing the perfor-
mance of the methods. The three remained measures,
namely depth consistency, discontinuity falses and gradi-
ent-normalized RMSE perform in a consistent manner.
While Normalized RMSE is perhaps the measure closest
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Figure 15 Performance results averaged between test datasets. All metrics are optimized for best performance.
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to the subjective perception, we favor also the other two
measures of this group as they are relatively simple and do
not require calculation of the warped (rendered) image.

4.4 Numerical results for compressed color channel
So far, we have been working with uncompressed color
channel. It has been involved in the optimizations and

comparisons. Our aim was to characterize the pure
influence of the depth restoration only.

In practice, when ‘color-plus-depth’ frame is com-
pressed and then transmitted over a channel, the color
frame is also compressed with a pre-specified bit-rate,
aiming at maximizing visual quality of the video. Trans-
mission of ‘color plus depth’ stream has also to be
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channel.
A\

Figure 16 Visual results of experiments with compressed color channel (testing dataset). First row: compressed color channels, second
row: depth filtered with hypothesis filter using compressed color channel, third row: depth filtered with hypothesis filter using true color

constrained within a given bit-budget. Thus, receiver-
side device has to cope with compressed color and com-
pressed depth.

In the second experiment, we assume mild quantiza-
tion of the color image, e.g., by QP = 30. For our test
imagery, the first depth QP corresponds to about 10%
of the total bit-rate. ‘Depth consistency’, ‘Discontinuity
falses’ and ‘PSNR of rendered channel” are calculated for
different depth maps: compressed, post-filtered with
LPA-ICI filtering approach, post-processed with the
bilateral filter and post-filtered with our implementation
of the super-resolution approach. The resulting numbers
are averaged over three dataset images. Visual results of
hypothesis filtering are presented in Figure 16 which
shows comparison between higly-compressed depth fil-
tered with compressed color (second row) and same, fil-
tered with ideal color (last row). The numerical results

are given in Figures 17, 18, and 19. Cases with post-pro-
cessed depth are marked with color. One can see that
the depth postprocessing clearly makes a difference
allowing to use stronger quantization of the depth chan-
nel and still to achieve good quality.

5 Conclusions

In this article, the problem of filtering of depth maps
was addressed and the case of processing of depth map
images impaired by compression artifacts was
emphasized.

Before proceeding with the actual depth processing
task, the characteristics of the representation view-plus-
depth were overviewed, including methods of depth
image based rendering for virtual view generation, and
formulation of the depth map filtering problem. In addi-
tion, number of quality measures for evaluating the
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Figure 17 Results of filtering with compressed color. Optimization done by “Depth consistency” metric.
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depth quality were studied and new ones were
suggested.

For the case of post-filtering of depth maps impaired
by compression artifacts, a number of filtering
approaches were studied, modified, optimized, and com-
pared. Two groups of approaches were underlined. In
the first group, techniques working directly on the
depth map and not taking into account the accompany-
ing color frame were studied. In the second group, fil-
tering techniques utilizing structural or color
information from the accompanying frame were consid-
ered. This included the popular bilateral filter as well as
its extension based on probabilistic assumptions and ori-
ginally suggested for super-resolution of depth maps.
Furthermore, the LPA-ICI approach was specifically
modified for the task of depth filtering and a few ver-
sions of this approach were proposed. The techniques
from the second group have shown better performance
over all measures used. More specifically, the method

based on probabilistic assumptions showed superior
results for the price of very high computational cost. To
tackle this problem, we have suggested practical modifi-
cations leading to faster and higher memory-efficient
version which adapts to the true depth range and its
structure and is suitable for implementation on a mobile
platform. The competitive methods, i.e., LPA-ICI and
bilateral filtering, should not be, however, discarded as
fast implementations of those do exist as well. They
demonstrated competitive performance and thus form a
scalable set of algorithms. Practitioners can choose
between the algorithms in the second group of methods
depending on the requirements of their applications and
available computational resources. The de-blocking tests
demonstrated that it is possible to tune the filtering
parameters depending on the QP of the compression
engine. It is also feasible to allocate really small fraction
of the total bit budget for compressing the depth, thus
allowing for high-quality backward compatibility and
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channel fidelity. The price for this would be some addi-
tional post-processing at the receiver side.
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