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Abstract

from a field trial for different scenarios.

This article presents a pedestrian tracking methodology using an infrared sensor for surveillance applications. A
distinctive feature of this study compared to the existing pedestrian tracking approaches is that the road network
information is utilized for performance enhancement. A multiple model particle filter, which uses two different
motion models, is designed for enabling the tracking of both road-constrained (on-road) and unconstrained (off-
road) targets. The lateral position of the pedestrians on the walkways are taken into account by a specific on-road
target model. The overall framework seamlessly integrates the negative information of occlusion events into the
algorithm for which the required modifications are discussed. The resulting algorithm is illustrated on real data

Keywords: pedestrian tracking, infrared sensor, road network, particle filter, multiple model, occlusion

1 Introduction

Accurate pedestrian tracking and anomaly detection are
important hot topics in surveillance applications in the
security area (see the surveys [1,2] and the special issue
[3]), where currently the demands on the operator are
very high. Further, the tracking algorithms integrated in
the sensors have the potential to solve some of the
integrity problems currently associated with video sur-
veillance. In order to obtain efficient solutions, in terms
of both performance and cost, there is a need for auto-
matic processing and analysis of imagery. Multiple
pedestrian tracking is a very challenging task due to
clutter, occlusion, etc. The exploitation of contextual
information, such as maps and terrain information, is
therefore highly desirable not only for the enhancement
of the tracking performance, but also for behavior analy-
sis and anomaly detection.

This article presents a sensor system with an infrared
camera and sophisticated algorithms for pedestrian
detection and tracking. The focus is here on the track-
ing part rather than the detector which is a classifier
that is trained using a variant of boosting. The multiple
pedestrian tracker is proposed to be a multiple-model
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particle filter that uses prior information about walkways
to enhance the estimation performance. The state of the
art multiple model particle filters are used with two dif-
ferent models, namely, an on-road (road-constrained)
model and an off-road (unconstrained) model to per-
form tracking in 3D global coordinates. The proposed
algorithms are applied to real-world imagery data where
a number of pedestrians are walking around in a park-
like environment.

The related literature is vast and spans the areas of
research related to several academic communities. For
this reason, we defer a more comprehensive survey until
Section 2.4 and summarize below just the main contri-
butions of this study compared to the existing literature.

1. The use of the road network for pedestrian track-
ing, enabling multiple model approaches is novel. This
has, to the best of the authors’ knowledge, not been pre-
sented in literature before.

2. The road network information use in target track-
ing have indeed been proposed earlier for road vehicles
observed by a radar sensor, typically GMTI (ground
moving target indicator). Compared to the state of
the art GMTI based approaches, the following distinct
properties of the pedestrian tracking make our study a
significant contribution to road-constrained tracking lit-
erature (see [4] and the references therein):
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- Better angular resolution of the sensors (compared
to radar) enables tracking the lateral position on the
road.

- Pedestrians move much more freely and indepen-
dently than cars, so the algorithm cannot rely on the
motion model to the same extent.

- Switches between on-road and off-road modes
occur more frequently, increasing the need for
robust mode tracking.

3. The multiple model framework with on-road and
off-road modes

- gives better tracking performance, independently of
which state of the art algorithm that is used (MMPF
or IMMPF);

- provides improved predictions during occlusion by
using the concept of negative information;

- serves well for planning the pan/tilt/zoom of the
camera via improved predictions;

- includes statistical tools that can be used to calcu-
late the switching times, frequency, corresponding
positions, and correlation for such events between
different pedestrians which makes it possible to
learn what is normal behavior. This is in fact a tech-
nical enabler for future anomaly detection
algorithms.

4. Although the road network information has been
used in GMTI based target tracking before, the number
of examples in which real world experiments were per-
formed is very few. Our algorithm presented in this
study is applied to a real world data set and the result-
ing estimates are compared to GPS data which answers
some fundamental questions as to what the achievable
accuracy in this type of application would be.

We finalize this section with a brief outline of the
remaining parts of the article as follows. Section 2 intro-
duces the elements of the surveillance problem consid-
ered in this article such as surveillance environment,
prior knowledge, and sensor system. In particular, a glo-
bal overview of the multiple pedestrian motion models
is given, and the pedestrian image detector is described.
The section ends with a literature survey of the related
research. Section 3 gives a brief introduction to estima-
tion theory and multiple target tracking from a particle
filter perspective. In Section 4 the specific models of on/
off-road pedestrian motion and the infrared sensor are
described in detail and the proposed multiple model
pedestrian tracking particle filter is presented. The filter
is applied to a real-world data set and the results are
illustrated in Section 5. Finally, in Section 6 some con-
clusions are drawn along with the discussion of the
results.
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2 Problem description

We consider a surveillance scenario where a sensor sys-
tem with an infrared camera is monitoring a certain
area with a number of known walkways. Detected
pedestrians must be tracked simultaneously. The detec-
tor and tracking modules would be an essential part of
(semi-)autonomous surveillance systems corresponding
to the autonomous unmanned aerial vehicle (UAV) fra-
mework presented in [5,6] where also sensor manage-
ment is an important part. The sensor management
controls the movement of the sensor platform and the
pointing direction of the pan/tilt infrared camera such
that the performance of the tracking and monitoring is
as good as possible.

One major tool for providing a “situation awareness”
of the scene is to estimate interesting states of the envir-
onment. These states can have very different properties,
depending on the mission and the user requirements,
but in this study the position, velocity, etc., of the pedes-
trians are important. In order to improve the tracking
performance prior knowledge about the walkway net-
work will facilitate the estimation process.

2.1 Multiple pedestrian motion models

The walkway network is available for a park like envir-
onment, see the or-thophoto with the network overlaid
in Figure 1. An infrared sensor is located south of the
area pointing upwards, the approximate sensor footprint
on the ground is also shown. One image frame is shown
in Figure 2 with the walkway network projected onto
the image. We will use the symbolic notation Zpy to
denote the road network information. (The terms road
and walkway are used interchangeably in this article.
The terms pedestrian and target are also used
interchangeably.)

y [m]

600 650 700
% [m]

Figure 1 Orthophoto with walkway network and IR sensor
footprint.
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Figure 2 An IR image frame with the projected walkway
network.

Suppose we would like to track pedestrians which can
move both on-road and off-road. We consider two dif-
ferent state space representations corresponding to on-
road and off-road target modes,

x{H =fT (XI,IRN, T}[T, l)tr) , (1)

oy =ft (xtgr ’TE): (2)

where the vectors x] € R" and x‘f c R™ represent the
state vectors of the target in on-road and off-road (glo-
bal) coordinates, respectively. The functions f(-) and f()
are in general nonlinear functions. The process noise
terms 5] € R" and '7? c R™ are assumed to be white.
The process noise v/,; € {1,2,...,N;(x])} determines
which road segment the target will follow in the next
sampling interval in case more than one alternative
exists. We assume the availability of prior probability
density functions (or probability mass functions in the
discrete case) py(+), p,¢(*), and py(-) for the random
variables 57, n$, and V], respectively.

In order to be able to use both models at the same
time, one always needs the appropriate functions to con-
vert the state vectors given in one of the representations
into the other representation. For this purpose we
assume the availability of two transformation functions
named T¥'() (transformation from road coordinates to
global coordinates) and T'%(:) (transformation from glo-
bal coordinates to road coordinates).

The measurements associated with the target are
modeled according to relations

yi = h8 () + €, (3)

where /8(-) is in general a nonlinear function of the
global state of the target and ¢ is white measurement
noise. We assume that the probability density function
pe(:) is available. Note that with this notation, the
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measurements related to on-road coordinates of the tar-
get can be written to satisfy

Ye = h8 (Tgr (xffl,IRN)) + e‘f (4)

The hypothesis (event) that the target is moving on-
road or off-road is modeled by a discrete variable ¢, €
{1,2} where the events {q; = 1} and {g, = 2} correspond
to the hypotheses that the target is on-road and off-
road, respectively. According to the value of the variable
q; the corresponding dynamics of the target given in (1)
and (2) must be used. It is assumed that ¢, is a homoge-
neous possibly state dependent Markov chain with tran-
sition probability matrix denoted as /7 = [17;;] where

i £ P (g = jlqir =i, 55, Trw) - (5)

This modeling framework where the underlying
dynamics of the target evolves based on a Markov chain
belongs to the class of so called jump Markov nonlinear
systems in the literature (see [7] and the references
therein).

2.2 Infrared sensor system

The experimental sensor system consists of a gyro-stabi-
lized gimbal with IR and CCD video sensors, and an
integrated high-performance navigation system. The
navigation system combines GPS with data from an
inertial measurement unit (IMU) mounted with refer-
ence to the optical sensors. However, in the experiments
presented in this article external landmarks with known
location have also been used to estimate the orientation
of the camera relative the world frame by using standard
camera calibration techniques [8].

The IR sensor in the gimbal is a FLIR systems Ther-
maCAM SC3000, which is a long-wave infrared (LWIR)
sensor with a quantum well infrared photode-tector
(QWIP) focal plane array. It has a low noise equivalent
temperature difference (NETD) of 30 mK. The detector
array is composed of 320 x 240 pixels with a compara-
tively narrow spectral sensitivity of 8.0 - 9.2 um, which
corresponds to the wavelength peak of an equivalent
black body radiator at 25°C. The digital output has a
resolution of 14 bits/pixel and a frame rate of 50 Hz.
The mounted optics has a field-of-view of 20° x 15°
which gives a spatial angular resolution of 1.1 mrad per
pixel.

2.3 Target detector

The detection problem is to find targets in cluttered
backgrounds and the output from the detector is a set
of image coordinates for all detections in each video
frame. In this study a sliding window approach is used
to detect pedestrians in cluttered backgrounds [9]. At
each image position, the content of a local image region



Skoglar et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:26

http://asp.eurasipjournals.com/content/2012/1/26

is fed into a classifier that decides whether or not the
region contains a target.

The classifier is trained using a variant of boosting
[10]. Boosting iteratively builds a highly discriminative
classifier by combining the outputs of many component
functions often referred to as “weak learners”. Applying
the resulting classifier to an image window «, the output
can be written as F(x) = Z; fi(x) and the window is clas-
sified as containing a target if the confidence sum F(x)
is greater than a threshold that is set to achieve an
acceptable false alarm rate. Viola and Jones [11] pro-
posed a highly efficient cascade-structured detector
architecture where each stage is a boosting classifier
that is trained to reject a moderate fraction of the
remaining background examples, while retaining a large
fraction of the target examples. This leads to an expo-
nential decay in the probability that a retained window
belongs to the background class. Another important
contribution by [11] is the design of weak learners that
can be computed very efficiently.

In the Viola-Jones detection framework each weak
learner bases its decision on the response of a single
Haar-like image feature, which can be computed very
efficiently using a so-called integral image representa-
tion. In addition to Haar-like features, our implementa-
tion also uses more discriminative (but computationally
more expensive) gradient histogram features, similarly
to Laptev [12]. We adopt the soft cascade detector
architecture [13] which allows for efficient trade-off
between accuracy and speed.

Figure 3 shows an infrared image frame with a num-
ber of pedestrian detections. The false alarm rate is very
low, and persistent false alarms can easily be handled by
the tracking filter, or ignored if the detection location is
in unreasonable areas according to prior information of
the buildings and environment. Non-persistent clutter is

Figure 3 An image frame from the QWIP LWIR infrared sensor.

A number of pedestrians are detected and marked by rectangles.
A
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handled by a suitable initiator logic that prevents the
false alarms to give rise to new tracks.

2.4 Related research

Visual surveillance and crowd analysis in dynamic
scenes with humans are very active research topics in
computer vision [2,14]. The possible applications are
numerous, and so are the number of publications in the
area.

This article’s focus is on the object tracker part of
the surveillance system, see [15] and the references
therein for an overview. The study [16] is an early pub-
lication where a particle filter is used for visual contour
tracking. In [17] a mixture particle filter and an Ada-
boost detector is used to track multiple objects (hockey
players) in a video stream. Visual tracking is often per-
formed in the image plane with the benefit of keeping
the state dimension low and avoiding the calibration of
extrinsic camera parameters, i.e., the location and
orientation of the camera relative a world reference
frame. In this study, tracking is performed in global
coordinates which simplifies the motion model of the
target and also makes it easier to combine with other
tracking systems and contextual knowledge about the
environment. Tracking in global coordinates with a
vision sensor is essentially equivalent to tracking with a
bearings-only sensor which has been traditionally trea-
ted in the target tracking community, see [18, Chapter
6] and the references therein.

Association is a hard problem, especially with a single
camera in crowded environments with occlusions. A
hierarchical association approach is proposed in [19] to
form the trajectories of the pedestrians. The method
also contains an automatic scene structure estimator.
The study [20] estimates the probabilities of the occu-
pancy bins in the ground plane represented as a grid.
The Viterbi algorithm is then used to estimate target
trajectories in a sequence of frames. One common
approach for handling occlusion is to use multiple views
in order to be able to utilize the depth information. In
[21] a planar homography constraint is used to locate
the targets on the ground plane. Only the types of
occlusion which are due to stationary and known
objects like buildings and trees are considered in this
study.

In a classic surveillance setup the vision sensors are
stationary, but in recent years a number of pedestrian
detection and tracking systems have been proposed for
moving cameras in automotive applications, see e.g.,
[22]. The study [23] uses structure-from-motion to esti-
mate the ground plane that supports the target tracking.

Target tracking with road network information
requires methodologies which can keep the inherent
multi-modality of the underlying probability densities.
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The first attempts [24-26] used the jump-Markov (non)
linear systems in combination with the interacting mul-
tiple model (IMM) algorithm [27,28] with extended Kal-
man filters (EKFs) as sub-blocks. Since the different
road segments correspond to different modes in these
IMM algorithms, there are too many of them to be con-
sidered at a single step of the multiple model filter.
Hence, these algorithms applied the so-called variable
structure interacting multiple model (VS-IMM) algo-
rithm [29] which adds/removes modes into/from the fil-
ter when necessary.

Important alternatives to IMM based methods appear
in [30],[18, Chapter 10] which propose variable structure
multiple model particle filters (VS-MMPF) as an exten-
sion of the VS-IMM approaches. Since the particle fil-
ters can handle nonlinear and non-Gaussian models, the
user has much more freedom than in VS-IMM model-
ing. The road constraints are handled using the concept
of directional process noise. In [31] the roads are 3D
curves represented by linear segments and the road net-
work is represented as a graph with roads and intersec-
tions as the edges and nodes, respectively. The position
and velocity along a single road are modeled by a stan-
dard linear Gauss-Markov model. The target can be
masked both by the clutter notch of the sensor and by
terrain obstacles. The results for a Gaussian sum filter
(see also [32]) and a standard bootstrap particle filter
approach are presented.

A considerable amount of research effort has been
made in the literature for improving particle filter based
methods in terms of both performance and computa-
tional efficiency. The so-called optimal proposals and
Rao-Blackwellization have been utilized to produce
more efficient particle filters. In this respect [33] pro-
poses an unscented particle filter (UPF) in a GMTI con-
text and it is shown that fewer particles are needed
compared to VS-MMPEF. Optimal proposal densities are
also used in [34]. However, the use of them unfortu-
nately requires the combinatorial enumeration of all the
possible models and the road segments the target can
use in the next sampling period which might, at the
same time, be a computational bottleneck. The proposed
filter is applied to a GMTI target tracking example and
it also utilizes Rao-Blackwellization of the full kinematic
state in order to minimize the number of particles, i.e.,
given the road segment the target is on, the whole kine-
matic target state is represented by a Gaussian density.
A more recent example of the Rao-Blackwellized parti-
cle filter is given in [35] to solve the road target tracking
problem with a bearings-only observation model. Com-
pared to other Rao-Blackwellized and filter bank
approaches [33,34], this study treats not only the road
identity, but also the position along the road as a non-
linear state. This means that the probability densities
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with multiple modes along a single road can be handled,
and this is often the case in tracking applications with a
vision sensor when buildings and vegetation are possibly
occluding the road.

In the standard bootstrap version of the particle filter,
the number of particles in each mode is determined by
the posterior probability of that mode. In the case of
some unexpected events, like a sudden on-road to off-
road transition, particle degeneracy happens if the new
mode has too few particles. There are already some
alternatives in the literature proposed for establishing
robustness against this phenomenon with road net-
works. An example using the VS-MMPF methodology is
presented in [36] where user selected number of parti-
cles can be used in each mode of the filter by making
use of the so-called “variable-mass” idea. Another
important alternative is the interacting multiple model
particle filter (IMM-PF) of [7] which is applied to the
road target tracking case in [37] with an on-road and
off-road mode.

Recent advances in multiple target tracking [38,39]
have resulted in random set theoretic methods [40] and
in [41], an instance of such methods, namely a cardina-
lized probability hypothesis density (CPHD) filter [42]
was presented for multiple ground target tracking. An
example, with two groups of targets with four single tar-
gets in each group, is given. Track extraction is shown
to be faster if the road information is used with the
same road network model and observation model
(GMTI) as in [31].

3 Multi-target tracking

Classical multi-target tracking consists of three sub-pro-
blems; detection, association, and estimation [39,28].
The multi-target tracker used in this study follows this
structure, i.e., the detections are treated by an associa-
tion step where each observation is associated with a
known target track. The state of each target is estimated
and predicted by a single target filter, and the observa-
tions are used to improve the result. If an observation
cannot be associated with a known target, a new tenta-
tive filter is initialized.

In this section the target tracking problem is described
by presenting first the general estimation solution and
then the particle filter that is used to compute the pos-
terior estimates. The association problem is briefly
described and, in particular, a classical association tech-
nique is tailored to the particle representation.

3.1 The general estimation solution

The aim of this section is to introduce the recursive
state estimation theory. Let x, denote the state of the
target at time ¢ and let y, be an observation of the target
at time ¢. Assume that the target state evolution can be



Skoglar et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:26

http://asp.eurasipjournals.com/content/2012/1/26

represented as a hidden Markov model composed of the
transition model p(x;,,|%;) and the observation likeli-
hood function p(y,|x,). Let y1.; = {y1, ¥o,..., :} denote the
set of all observations up to and including time ¢. A
recursive state estimator is given by the Bayes rule and
can be expressed as the well-known measurement
update formula

p (xclyre) = o 'p (velxe) p (xelyr—1) (6)

and the one step ahead prediction

p (xt|}’1:t—1) = / p(xe|xe—1) p (xt—l |}’1:t—1) dx;—1. 7)

The normalizing factor ¢ can be calculated as

ap=p (Yilyru—1) = /p(yzlxz)p(xtlylm)dxt. (8)

The above equations represent the so called Bayesian
filter and there are only few cases when it is possible to
derive the analytical solutions for them. One case is the
linear Gaussian case, leading to the well known Kalman
filter (KF). In the general case, numerical approxima-
tions are necessary. One common technique is to
approximate the target density p(x;|y;.;) by a particle
mixture as in the particle filter (PF).

3.2 Particle filter

In a PF the target density p(x;|y1.) is approximated by a

N
and

particle mixture, containing N particles {x,(i)}
i=1

AN
their corresponding importance weights {wgl)} . Thus,
i=1

the approximation is expressed as

N
p (xtlylzt) ~ Z wfl)é (xt _ x?)) ©)
i=1
where

N
YwP =1, wP=>o0, vi (10)
i=1

and J(-) is the Dirac delta distribution. This approxi-
mation is very suitable for calculating the integral in (7)
and it can be shown that this approximation converges
to the true solution as the number of particles goes to

infinity, see [43] and [44] for the details on particle fil-
SN
tering. The importance weights [wgl)} are computed
i=1
N
using importance sampling where samples {xgl)] are
i=1
drawn from a proposal density g(x;|x,.1,y,). The filter

recursion (6) and (7) can be expressed as
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9 g (40, )
()0

()
Wy X N Wiy
q (xgl) |x§?1, Yt)

where the weights are normalized such that

(11)

N .
Z~ 1w£]) = 1. If the proposal density is selected as the
j=

state transition model, the filter recursion is simplified
to

0 p (x00)

al? o p ()

(12)
This is perhaps the simplest particle filter and is called
Bootstrap particle filter (BSPF) [44].
A resampling step is needed to prevent degeneration,
see [45] for details. The so called systematic resampling
algorithm was used in this study.

3.3 Association

The detector provides image coordinates of the mea-
surements in each video frame, but it does not provide
any information about the correspondence between the
measurements at different times. An association method
is used to handle this problem. Association is the pro-
cess of assigning measurements to existing tracks, or
existing tracks to measurements.

The association method used in this study is based on
the global nearest neighbor (GNN) algorithm [39], but
in contrast to the classical GNN where the target densi-
ties are assumed to be Gaussians, a more general
approach is here used with the particle mixture approxi-
mation. Basically, the method computes the likelihood
of each possible measurement to track correspondence
and chooses the most likely global association hypoth-
esis which gives the origins of all the measurements in
current measurement set. The most likely association of
measurements and tracks (or false alarms) is determined
using the auction algorithm [39]. Letting Pp be the
probability of detection, the log likelihood that the mea-
surement j belongs to target k is defined as

Pop* (yilyr:-1)
I 21
ik og ( 1-Pp

A suitable approximation, in the particle filter context,

of the predictive likelihood p* (y’;|y1;t,1) is

(13)

(14)

P ()’“Yl:t—l) = /P ()’“xt) P (xt|)’1:t—1) dx,
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/p(ytlxt)Zwtlt 10 0x — t\t ) dx, (15)

N
k(i i k(i
=S wl pid P ) (16)
k(i)

i are sampled from a proposal

where the particles x

density q(xk(l) f(’i, y}) and the predictive weights are

k(i) (xz 2 |~ ) 1) (17)
-1 = %
(1) It (11 ) )’1

A similar calculation was used in [46] in a joint prob-
abilistic data association framework. If observation
h(x;) +e, e ~ N(e;0,R)
then p(y’t|xk('zl) =,/\/(y’t;h(xk(lll),R). If the bootstrap

tle t|t

model is represented as y’t =

particle filter is used, the weights are wﬁ([l)l = wf(li and

the particles x ki)

[i_1 are obtained by simulating the parti-

cles xfﬂ according to the motion model.

It is assumed that the non-persistent false alarms are
uniformly distributed in the image plane and their num-
ber is Poisson distributed with rate Bgz4. The log likeli-
hood that measurement j belongs a non-persistent false
alarm, is then given as [z 2 log(Bra).

Measurements that are not associated to any con-
firmed or tentative tracks are used to create new tenta-
tive tracks. A basic M/N-logic [28] is used for
determining when a tentative track will be considered as
confirmed. If a tentative track is updated with measure-
ments for M out of N consecutive frames, it is consid-
ered as a confirmed track. Furthermore, a target is
considered as lost and the track is deleted if no mea-
surements are associated to the track for a number of
consecutive frames, or the state covariance is too large.

Remark 1 Classical target tracking also uses a gating
step to exclude very unlikely measurement to the track
assignments. The main purpose is to reduce the overall
computational load since the gating is much cheaper to
evaluate compared to association. In this study the gat-
ing step is removed since a reasonable gating criterion
needs a similar amount of computational power as the
log likelihood measures above. Furthermore, the number
of detections and targets are quite low in our applica-
tion, hence, the number of possible assignments are rea-
sonably low.

Example 1 (Association: Particle mixtures vs. Gaus-
sianity assumption) Note that classical association meth-
ods often assume Gaussian target densities. The
association method presented here does not have such
assumptions and will handle the possible multi-modal
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Figure 4 Fictive example to illustrate the proposed association
method. Particle mixtures of two targets are shown. The means of
the particle mixtures are indicated by a plus-symbol and a circle-
symbol, respectively. Two detections are illustrated by stars. A
Gaussian density assumption would result in the switched version
of the association decisions given by the particle based approach
presented in this work.

and/or non-Gaussian target densities in a reasonable
way. See the example in Figure 4 where the particle
mixtures of two targets are shown. The means of the
particle mixtures are indicated by a plus-symbol and a
circle-symbol, respectively. Now assume that two detec-
tions, which are denoted by stars, have been received.
The association methods proposed here will associate
the lower right detection with target 1 (if the measure-
ment noise is reasonably small, and the Pg, is low). This
is despite the fact that the mean of target 2 is very close
to that detection. A Gaussian density assumption would
in fact switch the association decisions yielding an
unreasonable matching.

4 Road constrained pedestrian tracking with
MMPF

In this section the on-road and off-road motion models
and the observation model are described in more detail
compared to the introduction in Section 2.1. After the
specific models are presented, the multi-model particle
filter algorithm is described and some implementation
issues will also be considered.

4.1 On-road motion model

In a geographic information system (GIS) different
forms of geographically referenced information can be
analyzed and displayed. There are two classical methods
to store GIS data: raster data (images) and vector data.
Different geometrical types can be described by vector
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data and basically there are three broad type categories;
zero-dimensional points are used to represent points-of-
interest, lines are used to represent linear features such
as roads and topological lines, and polygons are used to
represent particular areas such as lakes. There exist
many approaches to store geo-spatial vector data and
one common representation is the environmental sys-
tems research institute (ESRI) shapefile [47].

For target tracking purposes it is sometimes conveni-
ent to have a slightly different representation with
redundant information to facilitate and speed up the
data processing. In such a case, one data structure
represents the roads and this structure contains the
road stretch and the corresponding attributes. This
structure is more or less the raw shape data plus an ID
number for each road and an intersection ID for the
each road end. An additional structure is used for the
intersections and it contains the location and all con-
nected roads (IDs) of each intersection. The exact struc-
ture of the data depends on what type of additional
information is included, such as travel direction and
prior probabilities for roads at an intersection.

In this study the road network information Iyy con-
tains the two data structures mentioned above. The
road information structures contain the following fields

- ID - unique road ID

- N - number of road segments

- X - (3 x N) vector with 3D coordinates

-d - (1 x N) vector with the cumulative distances of
all road segments

- w - width of the road

- i1 - (1 x Ny) vector containing the intersection ID of
N; roads connected to the start intersection

- iy - (1 x N,) vector containing the intersection ID of
N, roads connected to the end intersection

- p1 - (1 x N;) vector containing prior probabilities of
each connected road to the start intersection

- pa - (1 x Ny) vector containing prior probabilities of
each connected road to the end intersection and the
intersection structure contains

- ID' - unique intersection ID

- X* - (3 x 1) 3D location of the intersection.

- N" - number of connecting roads

- ID" - (1 x N") vector with IDs of the connecting
roads

Assume that a road network description as defined
above is available. The target is assumed to be on one
of the roads all the time. A curve-linear coordinate sys-
tem is defined for each road. Which road a target cur-
rently travels on is described by a mode parameter m.
Let " € [0, [d]n] be the longitudinal position along the
road relative the road start ([d]y is the last element in
the cumulative distance vector d, or in other words, the
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total length of the road). v" is the longitudinal speed and
y" and z" are the lateral and the vertical deviation rela-
tive the road, respectively.

The on-road state vector is defined as ™ £ (x" y" 2" V)
T and the dynamic target model f7(x}, Zrn, 1}, v}) in (1)
can, as long as the target stays on the same road, be
expressed as the linear discrete-time model

10 0T
0 00

St =W Tav D) = [ 007 5 o [xn @9)
00 0 1

where the process noise is 7 ~ N'(0,Q") and f3; € {f]
0<B <1},i=y,7, are constants.

Thus, the target state is updated according to the lin-
ear model in (18), but a feasibility check is needed after
every update. If the target has passed an intersection
and is outside the current road, a nonlinear state update
is also needed. A new road connected to that intersec-
tion is selected randomly among the roads i/, according
to some discrete random variable " given the road
probabilities p;,,. In such a case, the mode parameter
my,1 is set to the new road and the longitudinal distance
outside the old road is used to update X}, ;. Note that the
direction of the old and new roads affects the update of
X}, ;. Furthermore, the sign of the longitudinal velocity
v,; needs to be changed if the travel directions on the
roads are opposite.

The standard choice for the constants By and B is 1,
but B; < 1 can be used to constrain the standard devia-
tion of the state i. In practice, if 0 <f8; < 1 and no obser-
vations of the target is received, the state i will approach
zero. This is in general a reasonable behavior since we
do not want the prediction to deviate too much from
the actual road network.

4.2 Off-road motion model

The off-road motion model f&(xf, n?) in (2) is selected
to be the following constant velocity model with the
state vector x% = (x¢ y¢ 28 v¢ w)', where x%y%,2¢ is the 3D
location in a global Cartesian reference system, v* is the
translational speed in the x®y%-plane, and y is the
course. The model is expressed as

x¢ + Vi T cos (i)
Ytg +V‘§Tsin(1//t)
X =130 mf) = Bzt + 1} 19)
v
Y

where B, € {B|0 < B < 1} is a constant design para-
meter. The process noise is distributed as 1 ~ N(0, Q3)
and ideally Q¥ is state dependent, but in this study only
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constant covariance matrices are considered for
simplicity.

Remark 2 (Incorporating the ground model) The
default value of the constant B, is 1, but in the case of
a stationary bearings-only sensor the constant needs to
be less than 1 to make the estimation problem observa-
ble. An implicit incorporation of a known ground model
into the problem is possible here by defining the state z°
as the deviation from the ground model.

4.3 On/off-road transformations

As mentioned in Section 2.1 we need appropriate func-
tions to convert the state vectors given in one of the
representations into the other representation.

The function T¥(-) converts a state vector given in on-
road coordinates to off-road (global) coordinates. This is
generally an easy task and the global 3D position is
found by interpolation. The underlying function is given
by the array X in Zgy in the points d.

The function T'%(:), on the other hand, has to find the
closest on-road coordinate state corresponding to a
state vector in global coordinates. This is more involved
in that one generally has to search in the road database
for the closest point on the road network to the position
component of the global state vector and has to project
the velocity and other quantities onto their equivalents
in the road network. It might also be useful to have a
feasibility test by just checking if the lateral deviation
state |y"| is smaller than the road width (denoted as w
in IRN)'

A globalization function T¥(.,-) is defined for later use
as

- 19 (xD) g = 1
() g0y 2 %{)%

; 20
OO} (20)

4.4 Observation model

A detection consists of the image coordinate and the
height and width of the detection window. In the track-
ing filter the location of the feet of the pedestrian is
used, so a foot detector is also needed. The position of
the feet are transformed to azimuth and inclination
angles given the perspective projection formula and
knowledge of the sensor orientation and the intrinsic
camera parameters. Thus, the observation model is a
bearings-only model where the azimuth and inclination
describe the direction to the target relative the sensor
platform.

Let #° = (x* y* z°)T be the position of the sensor rela-
tive to a global Cartesian reference system. An observa-
tion at time ¢ is the relative angles between the sensor
in &’ and the target in 5, ie,
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Ve = h(xf;x}) + e
arctan, (5 — v}, %8 —x}) (21)
arctana (2 — 75,/ (6 %) + (F —y))

where e, is the measurement noise modeled according
to the Student’s T-distribution

e ~ pe(x) = Si(x4; 0, (73212x2, V) (22)

where v is the degree-of-freedom. Note that the Gaus-
sian probability distribution N(x; u, ¥) is a special case
of Student’s T-distribution St(x;u, ¥£,v) when the
degree-of-freedom v is e. For 1 < v < oo the distribu-
tion resembles a Gaussian function but with heavier
tails. The reason for selecting the Student’s T-distribu-
tion is that it has been seen in early empirical trials to
make the PF more robust to outliers.

Remark 3 (Observability) It is a well known fact that
the observability in bearings-only tracking is highly
dependent on the sensor trajectory, see [6] and refer-
ences therein. In particular, for a stationary camera
some additional information is required, e.g., a road net-
work or a ground elevation model, see Remark 2.

4.5 Multiple-model PF
In a multi-model particle filter (MMPF) one keeps the

particles {xt("),qgi)}i"l and their weights {wEi)}iq’ where
xgi) is the state of the particle with respect to either road
coordinates (x?(i)) or global coordinates (xf'(i)) according
to the value of the on-road/off-road hypothesis variable
qgi) ie.,

o_ [« q” =1

X = 20 0y (23)

Having these particles one can always calculate the
density of the state of the target in global coordinates as

N
p(xilyod) = Y ws(T3(x”, i) — x).

i=1

(24)

Using the density function (24), the minimum mean
square error estimate of the target state in global coor-
dinates is given by

Np
Xyje = ZWEI)TX(XF)’ a")

i=1

(25)
with a covariance

Ny . . . . . T
Py =Y w (13, ") = e) (T2, ") — ) (26)
i=1
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The particle filter calculates with each measurement
the updated particles {xgl),q(’)}Np and their weights
{w(i)}Nf’ from the corresponding previous particles
{xg’)l, qg’)l N and weights {w(l)l}

A single step of the bootstrap version of the MMPF is
summarized below.

Algorithm 1 (MMPF) Suppose we have the previous

particles {x(l)l, qgl)l}ﬁ"land weights {wl(?l}g”lamilable and
we have received a new measurement y,.

1. Resampling: {g”ct(l)l, qt(l)l }N"}from
{xg')l,qg’)l N"accordmg to weights {w(l) A "such that

Sample

P(xt(l)l =X 1rqz(l)1 qz 1) w(]) (27)
foreachi=1, .. N,

2. Prediction Step:
(a) Sample q[(i)from aglsuch that

4 (28)

for each i = 1,.., N,
(b) For each i = 1, ..,

(}Qland E]l(i)lby using samples from the process noise

N,, generate xgi) rom

sequences 77:'(1) ~py ()t D P (Jand
v{'(i) ~ py (-)according to:
_ Ifq(’) 1, qgi) = 1 then

i) = f (xgl)l,f N 11 r(l) r(i)) (29)
G =1, ¢ = athen
Doy (Tgf(scﬁ?l, Tan),s n;“'“)) , (30)
- lfq(') =2, ¢V = 1then
fr (Trg(xgl)llIRN)rIRNr U:/(i)/ v:/(i)) ’ (31)
- Ifq(’) =2, qgi) = Dthen
D g (50, 80) )
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3. Update Step: Set wgi)as

wf! —h(15",q)))

o< pe (1 (33)

such that Zi”l wgi) =1

Remark 4 (Feasibility Check) When a particle is
selected to be transformed from the off-road mode to
the on-road mode, a feasibility check of the new on-
road state is done according to Section 4.3 (basically,
check if the particle close to a road or not). If the state
is not feasible, that particle will not be transformed and
will therefore continue being in the off-road mode.
Since an on-road state can always be transformed to an
off-road state, a similar feasibility test is not needed in
the opposite case. This will formally mean that the tran-
sition probability matrix (5)

T
= (™72
TT21 722
is state dependent where

_J( 1) ing(x ,2) is infeasible, 5-
(w21 722) {(nm 77) otherwise, (35)

(34)

and 7114, 7119, 21 and 7,y are constants.

Remark 5 (Initialization) Measurements that are not
associated to any confirmed or tentative tracks are used
to create new tentative tracks. When a new filter is cre-
ated, N particles are generated for both models using
different Gaussian prior distributions, one for each
model. The initial position is computed by projecting
the observation onto the ground plane. The feasibility
check in Remark 4 is here also used for all the on-road
particles, so particles outside the roads are discarded.
The prior should be quite flat since the initial measure-
ment is directly used in a measurement update step plus
a resampling step to set the total number of particles to
N in the MMPF.

Remark 6 (Other Multiple Model Particle Filters)
There are other instances of multiple model particle fil-
ters in the literature [7,36]. The particular selection of
MMPF in our study was made only because of the fact
that it is the most well-known and the earliest of its
kind. In general, all of the different multiple model par-
ticle filters are expected to give similar performance
results for our application, which is also confirmed by
the comparison between MMPF and IMM-PF of [7] we
present in Section 5.3. Nevertheless, it must still be
noted that there might be pathological examples (see e.
g., [37]) for which these algorithms would yield signifi-
cantly different performances especially during mode
transitions.
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4.6 Occlusion and information from non-detections

The standard approach in target tracking is to update
the filter statistics if an observation is received, other-
wise, if no observation is received the target state
remains intact in the update step. However, a measure-
ment indicating no target in the field of view can also
be considered as an observation and this is sometimes
called “negative information” [48,49]. Negative informa-
tion represents conclusions that are drawn from
expected but actually missed detections. Despite that no
observation data is available, these conclusions can be
used to improve the current target estimate. Let y, =
denote that no detection was obtained at time ¢. The
density p(x}ly; = @,y14-1) is not just the prediction
p(xily1.—1) it also has to incorporate the (negative)
information of a non-detection as

p(xtlye = B, y1a—1) o< p(ye = Dlxp)p(xty1:e-1) (36)

where p(y: = 9Ix}) = 1 — Pp(x}). In the particle filter
this means that the weight i is updated according to

(37)

) e (1~ abolold)

where o = 1. When the possibly occluded regions in
the scene are known, this information can be used as a
form of negative information in the particle filter at
time instants with no detection. In such a case, the
(negative information) update (37) tends to increase the
weights of the particles in the occluded regions and
reduce the weights of particles in the non-occluded
regions.

Note that this requires that the model of the probabil-
ity of detection be correct, otherwise, the risk of degen-
eracy increases in a particle filter with a limited number
of particles. In practice a more conservative approach
with 0 < @ < 1 is recommended when P,(-) may have
significant modeling errors.

5 Results

In this section some results of the proposed pedestrian
tracker are presented. First, in Section 5.1 the multiple-
pedestrian tracker is applied to a real-world data set of
an infrared sensor placed on top of a roof and pointing
at a parklike environment with some trees, buildings
and walkways. In Section 5.2 the comparison between
MMPF and a standard off-road tracker is made on a
similar data set with a GPS trajectory as the ground
truth. A Monte-Carlo (MC) study based on synthetic
data is presented in Section 5.3 where the IMM-PF
[37,7] is also evaluated in order to come to a judgement
about the expected differences between different multi-
ple model particle filters. Finally, in Section 5.4 an
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example illustrating the use and the performance gain of
negative information is shown.

5.1 Pedestrian tracking field trial

The task presented in this section is to track a number
of pedestrians in an infrared image sequence acquired
by the infrared sensor described in Section 2.2. The
pedestrians were walking both on and off the walkways
and trees/buildings were occluding the pedestrians in
some areas. The detector in Section 2.3 is used and the
resulting detections are fed into the multi-target tracker
based on the MMPF of Section 4.

The infrared sensor is located south of the surveillance
area on a roof and the sampling frequency is 50 Hz, but
just every 5th frame is used, i.e., the sampling frequency
of the filter is 10 Hz. This makes it possible to use a
time interleaved approach for increased robustness,
where the same algorithm runs in parallel, each one
time interleaved and operating on different data.

The number of particles in the MMPF is 1000 and the
transition probabilities in (5) and (35) are

T =(0.950.05 0.1 0.9). (38)

The measurement noise is assumed to be distributed
as

e, ~ St (0,0.004°I,10) . (39)

When the standard deviation of the angle noise is set
to be 0, = 0.004 as above, the projected uncertainty on
the ground plane (with 68% confidence) corresponds to
4 m and 9 m for Gaussian distributions when a target is
130 m and 200 m away from the sensor, respectively.
These uncertainty values become slightly larger for Stu-
dent’s T distributions (v = 10) due to its heavier tails.
The covariance matrices of the process noise are

Q' =diag(6.25-107%,6.25-107%,2.5-107%,6.25 - 1073)
Q8 = diag (6.25-107%,6.25- 6.25-10,2.5-107,6.25 - 107%,3 - 10~*)

(40)

for the on-road and the off-road models, respectively.
The p parameters are set to By =0.96 and
B, = Bz = 0.99. The initial state distribution is selected
as Gaussian. It has been observed that the tracking
results are quite insensitive to the initial state covar-
iance. A target must be detected for three consecutive
frames after its first appearance, and then for two out of
three consecutive frames (after the first three consecu-
tive frames) in order to be confirmed. A target is deleted
if no detection is received for 5 s.

The results of the experiment are illustrated in a num-
ber of figures below. (Movies are available, see [50].) A
snapshot where the particle mixtures can be seen is
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Figure 5 A snapshot from the pedestrian tracking application. In the filter overview, to the left, the walkway network and the sensor
footprint are illustrated. The pedestrians are represented with particle mixtures. Six pedestrians have been detected, but just three are detected
in the current frame, seen in the image to the right. Those detections are marked by rays from the sensor location to each target in the filter
overview. One target is outside the field-of-view and its particle cloud is more outspread.

shown in Figure 5. In Figures 6, 7, and 8 the focus is
only on three selected pedestrians for the sake of clarity.

The estimated paths, based on the point estimates
(25), for these three pedestrians are shown in Figure 6.
One target is starting off-road, but ending on-road and
vice-versa for another pedestrian. This mode transition
can easily be seen in Figure 7 where the on-road mode
probabilities are shown. Note that when a pedestrian is
off-road, the on-road mode probability is very close to
zero, but when the pedestrian is on-road the mode
probability is just about 0.7-0.8. The reason for this is
that the off-road model is valid when the pedestrian is
on-road as well, but the opposite is not true if the tar-
get is too far from the road. The improvement of using
a road network model can be seen in Figure 8 where

6801 —target 1
- - -target 2
670l - - target 3

620 640 660 680 700
x[m]

Figure 6 Estimated paths for three pedestrians. Start locations
(where the pedestrians were first observed) are marked with a
square. Pedestrian 1 is walking toward south on a walkway, but is
suddenly going off-road. Pedestrian 2 starts off-road, but eventually
approaches a walkway moving north. Pedestrian 3 is on the
walkway for the whole sequence.

the uncertainty is shown. The uncertainty is here
defined as

\/tr P

where PP is the position part of the state covariance
matrix (26).

(41)

5.2 Performance evaluation with GPS ground truth
In this section a similar real data set to the one
described above is used to evaluate the tracking perfor-
mance for a single pedestrian by using the GPS trajec-
tory of the pedestrian as ground truth. The MMPF
pedestrian tracker with both on-road and an off-road
models is compared with a standard off-road PF with no
road network knowledge.

The scenario and the filter parameters of the MMPF
and the PF are similar to those in Section 5.1, but the
frame rate of the filters here is 12.5 Hz. The number of
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Figure 7 The on-road mode probability. The on/off-road

transitions can be clearly seen around 25-30 s.
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Figure 8 The position state uncertainty (square root of trace of
position covari-ance) for three pedestrians. The uncertainty on
the roads is significantly lower. The peak for pedestrian 3 at around
28 s is due to the on-road to off-road transition, and the peak at
around 34 s is due to occlusion.

particles in both filters is 1000 and the transition prob-
abilities in MMPF are

T =(0.950.05 0.05 0.95) . (42)
The covariance matrices of the process noise are
" = diag (8-107%,4-107%,1.6-107°,8 - 1074
Q' = diag( ) (43)

Q% =diag(8-107%,8-107%,3.2-107°,8-107%,3.8 - 107?)

for the on-road and the off-road models, respectively.
The f parameters are set to Py =0.95 and
Bz = Bue = 0.99. The altitudes of the roads are given by
GPS measurements. Since no ground model is available,
in order to get observability for the off-road model, the
ground is simply assumed to be a plane. For each
Monte-Carlo run, the fixed ground plane elevation is
selected randomly by sampling uniformly from an inter-
val of length 0.3 m which is determined by the altitude
range for the closest road segment.

Since there is only a single set of measurements in the
experiment (as opposed to the Monte-Carlo runs where
a different realization of the measurement process is
generated for each run) and since the results of the par-
ticle filters hardly differ for different runs, only 10
Monte-Carlo runs were found to be trustable. The true
(GPS) path of the pedestrian with the expected accuracy
around 0.1 - 0.2 m is shown in Figure 9. In addition,
Figure 9 illustrates the average path estimate of each fil-
ter over the Monte-Carlo runs. The RMS position errors
corresponding to both filters are presented in Figure 10.
Figure 11 shows the average on-road mode probabilities
provided by MMPEF. As expected, the tracking result is
significantly better for the MMPF when the target is on-
road. When the target switches to off-road motion, the

640

630

620

630 640 650 660 670 680
x[m]

Figure 9 The GPS ground truth (with 0.1-0.2 m accuracy) and
the average tracks of MMPF and PF over 10 Monte-Carlo runs.
When the pedestrian is on-road the MMPF is significantly better, but
once the pedestrian is walking on the grass field the filter results
becomes more and more similar.

accuracy difference between the filters starts to get
smaller. The peak in the MMPF error occurs at the on-
road to off-road switching of the target during which
the on-road model of MMPF pulls the overall estimate
towards the road segment. As soon as the mode prob-
abilities of MMPF converge, the MMPF estimate
becomes slightly better than that of PF. The PF esti-
mates are more erroneous than those of MMPF during
the off-road motion of the pedestrian. The reason is
that the initial error of PF (just after the switching
occurs) takes some time before decaying to the steady
state level where both filters are expected to reach the

5r —FPF
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Figure 10 The position error of the tracking estimates relative
the GPS trajectory. The MMPF with both an off and an on-road

model performs better than the PF with just an off-road model.
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Figure 11 On-road mode probability. The vertical line indicates
when the pedestrian leaves the walkway according to the GPS data.

same performance. The short period around 15 s where
the PF error curve makes a dip below the MMPF error
curve is a scenario specific phenomenon which is con-
firmed by the average path of PF intersecting the true
GPS path in Figure 9.

5.3 Monte-Carlo simulation study

In order to compare the performance of different multi-
ple model particle filters, and different mode transition
probabilities in a controlled manner, a Monte-Carlo
simulation based on synthetic data is presented in this
section. The task is to track a single pedestrian that is
walking both on and off the walkways according to Fig-
ure 12. The main objective in this section is to show the
advantage of using a multiple model particle filter with
road network knowledge over a standard PF. In addition
to MMPF another multiple model particle filter, the
IMMPF [7,37], is also evaluated. IMMPF is similar to

710] =0 1
1=0 t=80

700+ t=10

690

t=70
£
> 680/ ]
670
t=60
660 8

600 61‘ 0 SéO 630 Sd‘fO 650 GéO 670 680
x[m]
Figure 12 The pedestrian trajectory used in the MC simulation.
Note that the pedestrian is off-road between 19-55 s. The sensor is
placed about 200 m south of this area.
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MMPF, but the number of particles is constant and pre-
defined for each mode, unlike the MMPF where the
number of particles in each mode is varying according
to the posterior mode probabilities. We here emphasize
that the IMMPF-MMPF comparison is included here
only to show whether the particular selection of MMPF
as the tracking algorithm in this study is critical or not.
In fact, IMMPF, being a well-known method, was not
used in pedestrian tracking before either and might as
well have been selected as the tracking algorithm in this
study.

In the MC-simulation the total number of particles is
1000 for all filters: PF, MMPF, and IMMPF. For the
IMMPYF, the total number of particles is divided equally
between the modes, i.e., each model has 500 particles.
The vision sensor is running at 10 fps and is located
about 200 m south and 17 m above the surveillance
area in Figure 12. To achieve a better triangulation
behavior the sensor is moving slowly with 1 m/s to the
east. The measurement noise of the vision sensor is dis-
tributed as

e, ~ N (0,0.004%]). (44)

The projected uncertainty (with 68% confidence) on
the ground corresponds to 9 m.

We run two instances of each multiple model parti-
cle filter with different transition probabilities in order
to see the algorithms sensitivity. In the literature, the
convention for selecting the transition probabilities
for multiple model methods is to use almost always
diagonally dominant transition probability matrices
(TPM). We here follow the same tradition and select
the different transition probabilities for MMPF and
IMMPF as

11! = (0.95 0.05 0.05 0.95)

_ (45)
117 = (0.99 0.01 0.01 0.99)

where [T %2 (my my, @y @2y) whose elements are
defined in (5) and (35).

In this MC simulation, the covariance matrices of the
process noise are set as

Q =diag(1-1073,1-1073,2.5-107%,2.25-107%)

46
Q¢ =diag(1-1073,1-1073,2.5-107%,2.25-1073,8.3 - 107°) (46)

for the on-road and the off-road models, respectively.
Suitable value of the model parameter By depends on
the target behavior, but also the width of the road/walk-
way Low value of By will decrease the state uncertainty
and force the state estimate towards the center line of
the road, but at the cost of possible state bias and
decreased ability of on-road to off-road change detec-
tion. A value between 0.95 and 0.99 is reasonable in
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Figure 13 The RMSE position errors of the MC simulation. Five different filters are considered: one PF with a single off-road model, two
MMPFs and two IMMPFs with transition probabilities 71" and I7°, respectively. The MMPF results are compared to the off-road PF filter on the
left and the IMMPF filters results are compared to the off-road PF filter on the right. The results of the MMPF and IMMPF are very similar.
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most cases. In this MC simulation, the 8 parameters are
set to Byr = 0.95 and B = Bz = 0.99.

The position RMSE values for the MC simulation with
100 runs are shown in Figure 13. Five different filters
are considered: one PF with a single off-road mode, two
MMPFs and two IMMPFs with transition probabilities
1! and 72, respectively. When the pedestrian is off-
road the performances of all filters are basically identical
once the effects of the mode transition have died out.
The only part where the single mode filter is best is at
the on-road to off-road transition which is due to the
fact that PF has no particles locked to the on-road
model pulling the estimates towards the road. The dif-
ferences between the MMPF and the IMMPF are quite
small, even during the mode transitions. When the tar-
get is on-road the MMPF on-road mode probability is
about 0.5 and, hence, the number of particles in each
mode is then similar to IMMPF and the behavior during
the on-road to off-road transition becomes similar. In
the off-road to on-road transition the IMMPF cannot
benefit from the reserved on-road particles since those
are infeasible, therefore the behavior of the two filters
will be similar for this case too. The MMPF is slightly
better when the target is off-road since it can use twice
as many particles, but the difference is too small to be
clearly visible in the figure. The direction of the roads
affects significantly how much the multiple model filters
would gain from the on-road model. The more perpen-
dicular the road stretch is to the line of sight of the sen-
sor, the more useful the road information is. For
example, compare the errors of the MMPF (or IMMPF)
during the time intervals 70-80 s and 80- 90 s. Although
the effects of the transition probabilities on the perfor-
mance of the two multiple model particle filters are
quite visible, the changes due to different transition
probabilities seem to be rather small compared to the
gain in using the road network information (i.e., the on-
road model).

5.4 Use of negative information in pedestrian tracking

In Section 4.6 the concept of negative information was
introduced, i.e., how one can draw conclusions from
non-detections. This section will provide a simple exam-
ple to illustrate the gain in using the negative informa-
tion. Note, that in this study we are only considering
occlusions caused by stationary objects, like trees and
buildings, with known locations. Occlusions caused by
other pedestrians are not handled.

Two particle filters using the on-road motion model
are applied to a scenario where a fictitious building is
placed in the area in front of the path of one pedestrian.
The detections are removed manually when the pedes-
trian is occluded by the hypothetical building. The only
difference between the filters is that one filter is using
the so-called negative information. The position RMSE
for the two filters are compared in Figure 14. A non-
occluded filter result is used as ground truth.

——with negative info
- - -without negative info
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Figure 14 The position RMSE for two almost identical filters,
the only difference is that one filter is using the so-called

negative information.
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The filter that is using negative information performs
better since the effect of the particles that are visible
from the point-of-view of the sensor is suppressed. An
intuitive explanation for reducing the effect of the visible
particles is given as follows. If the particles that are visi-
ble represented the true state, then the pedestrian would
have been detected, but he/she is not, and therefore
such particles should be less probable.

6 Conclusions

The pedestrian tracker proposed in this study is a multi-
ple-model particle filter that uses prior information
about the walkways to enhance the estimation perfor-
mance. The tracking is performed in 3D global coordi-
nates by utilizing the road network information. The
states of the pedestrians are estimated by separate filters.
Thus, the correlation between pedestrians are neglected,
but experiments show that this is a reasonable approxi-
mation. For example, cars on a road are in general
much more correlated than pedestrians.

The sampling based GNN association method works
very well since the detector performs well with few false
detections and the measurement noise is quite small for
vision/infrared sensors compared to, for instance, radar.
Using the Student’s T-distribution for the measurement
noise makes the filter more robust against minor out-
liers caused by the detector.

There are a number of advantages of using a road
model. The tracking performance is significantly better
if the road network information is used. On the other
hand, filters based only on an off-road model perform
quite well too as long as the detections are received on
a regular basis and a reliable ground model is available.
The gains in incorporating an on-road model into the
estimation are significant not only for pedestrian motion
prediction (e.g., due to occlusion or not in the field-of-
view), but also for enhanced sensor management, track
analysis, and anomaly detection.

On the other hand, there can also be some unpre-
dicted disadvantages of using a road model. Using con-
textual information that is described relative a global
reference system requires that the knowledge of the
location and the orientation of the sensor be very accu-
rate, otherwise unmodeled navigation error biases can
have severe effects on the tracking performance. For a
sensor system, in a known environment with known
landmarks, the location and the orientation are usually
straightforward to estimate with good accuracy. If this is
not the case, algorithms that rely much on prior infor-
mation should always be used with a fail-safe algorithm
that can take over when the prior information is wrong
or erroneous. In our case the off-road model provides
the filter with both an off-road tracking capability and
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increased robustness against model and navigation
errors in on-road target tracking.

Observability is always an issue in vision based target
tracking. Since the infrared sensor was stationary in the
field trial, the off-road filter also needs a ground eleva-
tion model. This external information can be included
explicitly by computing a range measurement or impli-
citly in the motion model. Regardless of the method
used, erroneous orientation estimate and/or ground
model will cause problems as in the erroneous road
model case. However, note that a road network model is
in general much easier to acquire and verify than a
complete ground model. If no shape data exists for the
roads of interest, it is quite straightforward to use GPS
or orthophotos to create the road network and then to
verify the result by projecting the network onto the
camera image. If the sensor platform is moving the
observability improves and the robustness against road
and ground plane model errors increases.

In tracking applications, the performance depends
always on a number of tuning parameters which are
usually scenario dependent. As usual, there is a compro-
mise between low uncertainty and robustness against
unexpected events. In the end, it is the user, with certain
experiences and preferences, that decides which models
and parameter values to use. Our conclusion here is that
if a reliable road network model is available, it is very
beneficial to use it even in a pedestrian tracking applica-
tion where the apparent gains, at first sight, might be
shadowed by the properties of the accurate sensor.

According to our simulation results, incorporating
both on-road and off-road models into the tracking
seems to be much more important than the specific
multiple model particle filter (MMPF or IMMPF) that is
used for implementing the incorporation. Similarly, the
sensitivity to the transition probabilities used in multiple
model filters proves to be less important compared to
the gain obtained by using an additional on-road model.

In this article it has also been shown how a probability
of detection model, e.g., 3D models of buildings etc., can
be used to draw conclusions from non-detections. In
practice the gain in using negative information depends
on several factors, e.g., the environment (many or few
buildings and trees), the target motion characteristics
(highly predictable or not) etc., and the decision to use
negative information must be made after taking such
factors into consideration.
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