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Abstract

A practical problem addressed recently in computational photography is that of producing a good picture of a
poorly lit scene. The consensus approach for solving this problem involves capturing two images and merging
them. In particular, using a flash produces one (typically high signal-to-noise ratio [SNR]) image and turning off the
flash produces a second (typically low SNR) image. In this article, we present a novel approach for merging two
such images. Our method is a generalization of the guided filter approach of He et al., significantly improving its
performance. In particular, we analyze the spectral behavior of the guided filter kernel using a matrix formulation,
and introduce a novel iterative application of the guided filter. These iterations consist of two parts: a nonlinear
anisotropic diffusion of the noisier image, and a nonlinear reaction-diffusion (residual) iteration of the less noisy
one. The results of these two processes are combined in an unsupervised manner. We demonstrate that the
proposed approach outperforms state-of-the-art methods for both flash/no-flash denoising, and deblurring.

1 Introduction
Recently, several techniques [1-5] to enhance the quality
of flash/no-flash image pairs have been proposed. While
the flash image is better exposed, the lighting is not soft,
and generally results in specularities and unnatural
appearance. Meanwhile, the no-flash image tends to have
a relatively low signal-to-noise ratio (SNR) while contain-
ing the natural ambient lighting of the scene. The key
idea of flash/no-flash photography is to create a new
image that is closest to the look of the real scene by hav-
ing details of the flash image while maintaining the ambi-
ent illumination of the no-flash image. Eisemann and
Durand [3] used bilateral filtering [6] to give the flash
image the ambient tones from the no-flash image. On the
other hand, Petschnigg et al. [2] focused on reducing
noise in the no-flash image and transferring details from
the flash image to the no-flash image by applying joint
(or cross) bilateral filtering [3]. Agrawal et al. [4] removed
flash artifacts, but did not test their method on no-flash
images containing severe noise. As opposed to a visible
flash used by [2-4], recently Krishnan and Fergus [7]
used both near-infrared and near-ultraviolet illumination
for low light image enhancement. Their so-called “dark
flash” provides high-frequency detail in a less intrusive

way than a visible flash does even though it results in
incomplete color information. All these methods ignored
any motion blur by either depending on a tripod setting
or choosing sufficiently fast shutter speed. However, in
practice, the captured images under low-light conditions
using a hand-held camera often suffer from motion blur
caused by camera shake.
More recently, Zhuo et al. [5] proposed a flash deblur-

ring method that recovers a sharp image by combining a
blurry image and a corresponding flash image. They
integrated a so-called flash gradient into a maximum-a-
posteriori framework and solved the optimization pro-
blem by alternating between blur kernel estimation and
sharp image reconstruction. This method outperformed
many states-of-the-art single image deblurring [8-10]
and color transfer methods [11]. However, the final out-
put of this method looks somewhat blurry because the
model only deals with a spatially invariant motion blur.
Others have used multiple pictures of a scene taken at

different exposures to generate high dynamic range
images. This is called multi-exposure image fusion [12]
which shares some similarity with our problem in that it
seeks a new image that is of better quality than any of the
input images. However, the flash/no-flash photography is
generally more difficult due to the fact that there are only
a pair of images. Enhancing a low SNR no-flash image* Correspondence: seoha@sharplabs.com
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with a spatially variant motion blur only with the help of
a single flash image is still a challenging open problem.

2 Overview of the proposed approach
We address the problem of generating a high quality
image from two captured images: a flash image (Z ) and
a no-flash image (Y ; Figure 1). We treat these two
images, Z and Y , as random variables. The task at hand
is to generate a new image (X) that contains the ambi-
ent lighting of the no-flash image (Y ) and preserves the
details of the flash-image (Z ). As in [2], the new image
X can be decomposed into two layers: a base layer and a
detail layer;

X̂ = Ŷ︸︷︷︸
base

+τ (Z − Ẑ)︸ ︷︷ ︸
det ail

. (1)

Here, Y might be noisy or blurry (possibly both), and

Ŷ is an estimated version of Y, enhanced with the help
of Z. Meanwhile, Ẑ represents a nonlinear, (low-pass)
filtered version of Z so that Z − Ẑ can provide details.
Note that τ is a constant that strikes a balance between
the two parts. In order to estimate Ŷ and Ẑ, we employ

local linear minimum mean square error (LMMSE) pre-
dictorsa which explain, justify, and generalize the idea of
guided filteringb as proposed in [1]. More specifically,
we assumed that Ŷ and Ẑ are a liner (affine) function of
Z in a window ωk centered at the pixel k:

ŷi = G(yi, zi) = azi + b,

ẑi = G(zi, zi) = czi + d,∀i ∈ ωk,
(2)

where G(·) is the guided filtering (LMMSE) operator,
ẑi , ẑi , zi are samples of Ŷ , Ẑ,Z respectively, at pixel i,
and (a, b, c, d) are coefficients assumed to be constant
in ωk (a square window of size p × p) and space-variant.
Once we estimate a, b, c, d, Equation 1 can be rewritten
as

x̂i = ŷi + τ (zi − ẑi),

= azi + b + τ zi − τ czi − τd,

= (a − τ c + τ )zi + b − τd,

= αzi + β .

(3)

In fact, x̂i is a linear function of zi. While it is not pos-
sible to estimate a and b directly from (equation (3);

Figure 1 Flash/no-flash pairs. No-flash image can be noisy or blurry.
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since they in turn depend on xi), the coefficients a, b
can be expressed in terms of a, b, c, d which are opti-
mally estimated from two different local linear models
shown in Equation 2. Naturally, the simple linear model
has its limitations in capturing complex behavior.
Hence, we propose an iterative approach to boost its
performance as follows:

x̂i,n = G(x̂i,n−1, zi) + τn(zi − ẑi) = αnzi + βn, (4)

where x̂i,0 = yi and an, bn, and τn are functions of the
iteration number n. A block-diagram of our approach is
shown in Figure 2. The proposed method effectively
removes noise and deals well with spatially variant
motion blur without the need to estimate any blur ker-
nel or to accurately register flash/no-flash image pairs
when there is a modest displacement between them.
A preliminary version [13] of this article is appeared

in the IEEE International Conference on Computer
Vision (ICCV ‘11) workshop. This article is different
from [13] in the following respects:

(1) We have provided a significantly expanded statis-
tical derivation and description of the guided filter
and its properties in Section 3 and Appendix.
(2) Figures 3 and 4 are provided to support the key
idea of iterative guided filtering.
(3) We provide many more experimental results for
both flash/no-flash denoising and de- blurring in
Section 5.
(4) We describe the key ideas of diffusion and resi-
dual iteration and their novel relevance to iterative
guided filtering in the Appendix.
(5) We prove the convergence of the proposed itera-
tive estimator in the Appendix.
(6) As supplemental material, we share our project
websitec where flash/no-flash relighting examples are
also presented.

In Section 3, we outline the guided filter and study its
statistical properties. We describe how we actually esti-
mate the linear model coefficients a, b, c, d and a, b,
and we provide an interpretation of the proposed itera-
tive framework in matrix form in Section 4. In Section
5, we demonstrate the performance of the system with
some experimental results, and finally we conclude the
article in Section 6.

3 The guided filter and its properties
In general, space-variant, nonparametric filters such as
the bilateral filter [6], nonlocal means filter [14], and
locally adaptive regression kernels filter [15] are esti-
mated from the given corrupted input image to perform
denoising. The guided filter can be distinguished from
these in the sense that the filter kernel weights are com-
puted from a (second) guide image which is presumably
cleaner. In other words, the idea is to apply filter kernels
Wij computed from the guide (e.g., flash) image Z to the
more noisy (e.g., no-flash) image Y. Specifically, the filter
output sample ŷ a pixel i is computed as a weighted
averaged:

ŷi =
∑
j

Wij(Z)yj. (5)

Note that the filter kernel Wij is a function of the
guide image Z, but is independent of Y. The guided fil-
ter kernele can be explicitly written as

Wij(Z) =
1

|ω|2
∑

k:(i,j)∈ωk

(
1 +

(zi − E[Z]k)(zj − E[Z]k)

var(Z)k + ε

)
, i, j ∈ ωk, (6)

where |ω| is the total number of pixels (= p2) in ωk, ε

is a global smoothing parameter, E[Z]k ≈ 1
|ω|

∑
l∈ωk

zl,

and var(Z)k ≈ 1
|ω|

∑
l∈ωk

z2l − E[Z]2k. Note that Wij are nor-

malized weights, that is, ∑jWij(Z) = 1 Figure 5 shows
examples of guided filter weights in four different

Figure 2 System overview. Overview of our algorithm for flash/no-flash enhancement.
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patches. We can see that the guided filter kernel weights
neatly capture underlying geometric structures as do
other data-adaptive kernel weights [6,14,15]. It is worth
noting that the use of the specific form of the guided fil-
ter here may not be critical in the sense that any other
data-adaptive kernel weights such as non-local means
kernels [16] and locally adaptive regression kernels [15]
could be used.
Next, we study some fundamental properties of the

guided filter kernel in matrix form.
We adopt a convenient vector form of Equation 5 as

follows:

ŷi = wT
i y, (7)

where y is a column vector of pixels in Y and
wT

i = [W(i, 1),W(i, 2), . . . , W(i,N)] is a vector of
weights for each i. Note that N is the dimensionf of y.
Writing the above at once for all i we have,

ŷ =

⎡⎢⎢⎢⎣
wT

1
wT

2
...

wT
N

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
W(1, 1) W(1, 2) . . . W(1,N)
W(2, 1) W(2, 2) . . . W(2,N)

...
...

. . .
...

W(N, 1) W(N, 2) . . . W(N,N)

⎤⎥⎥⎥⎦ = W(z)y, (8)

where z is a vector of pixels in Z and W is only a
function of z. The filter output can be analyzed as the
product of a matrix of weights W with the vector of the
given the input image y.

Figure 3 Iteration improves accuracy. Accuracy of (α̂20, β̂20) is improved upon (α̂1, β̂1).

Figure 4 Effect of iteration. As opposed to X̂1, noise in Y was more effectively removed in X̂20.
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The matrix W is symmetric as shown in Equation 8
and the sum of each row of W is equal to one (W1N =
1N ) by definition. However, as seen in Equation 6, the
definition of the weights does not necessarily imply that
the elements of the matrix W are positive in general.
While this is not necessarily a problem in practice, we
find it useful for our purposes to approximate this ker-
nel with a proper admissible kernel [17]. That is, for the
purposes of analysis, we approximate W as a positive
valued, symmetric positive definite matrix with rows
summing to one, as similarly done in [18]. For the
details, we refer the reader to the Appendix A.
With this technical approximation in place, all eigen-

values li (i = 1, ..., N) are real, and the largest eigenvalue
of W is exactly one (l1 = 1), with corresponding eigen-
vector v1 = (1/

√
N)[1, 1, . . . , 1]T = (1/

√
N)1N as shown

in Figure 6. Intuitively, this means that filtering by W
will leave a constant signal (i.e., a “flat” image)
unchanged. In fact, with the rest of its spectrum inside
the unit disk, powers of W converge to a matrix of rank
one, with identical rows, which (still) sum to one:

lim
n→∞Wn = 1NuT

1. (9)

So u1 summarizes the asymptotic effect of applying
the filter W many times. Figure 7 shows what a typical
u1 looks like.
Figure 8 shows examples of the (center) row vector

(wT) from W’s powers in one patch of size 25 × 25. The
vector was reshaped into an image for illustration pur-
poses. We can see that powers of W provide even better
structure by generating larger (and more sophisticated)
kernels. This insight reveals that applying W multiple
times can improve the guided filtering performance,
which leads us to the iterative use of the guided filter.
This approach will produce the evolving coefficients an,
bn introduced in (4). In the following section, we
describe how we actually compute these coefficients
based on Bayesian mean square error (MSE) predictions.

4 Iterative application of local LMMSE predictors
The coefficientsg ak, bk, ck, dk in (3) are chosen so that
“on average” the estimated value Ŷ is close to the
observed value of Y (= yi) in ωk, and the estimated value

Ẑ is close to the observed value of Z (=zi) in ωk. More
specifically, we adopt a stabilized MSE criterion in the
window ωk as our measure of closenessh:

Figure 5 Examples of guided filter kernel weights in four different patches. The kernel weights well represent underlying structures.
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MSE(ak, bk) = E[(Y − Ŷ)2] + ε1a2k = E[(Y − akZ − bk)2] + ε1a2k ,

MSE(ck, dk) = E[(Z − Ẑ)2] + ε2c2k = E[(Z − ckZ − dk)2] + ε2c2k ,
(10)

where ε1 and ε2 are small constants that prevent âk, ĉk
from being too large. Note that ck and dk become simply
1 and 0 by setting ε2 = 0. By setting partial derivatives of
MSE(ak, bk) with respect to ak, bk, and partial derivatives
of MSE(ck, dk) with respect to ck, dk, respectively, to
zero, the solutions to minimum MSE prediction in (10)
are

âk =
E[ZY] − E[Z]E[Y]
E[Z2] − E2[Z] + ε1

=
[

cov(Z,Y)
var(Z) + ε1

]
k
,

b̂k = E[Y] − âkE[Z] = E[Y]k −
[

cov(Z,Y)
var(Z) + ε1

]
k
E[Z]k,

ĉk =
E[Z2] − E2[Z]

E[Z2] − E2[Z] + ε2
=

[
var(Z)

var(Z) + ε2

]
k
,

d̂k = E[Z] − ĉkE[Z] = E[Z]k −
[

var(Z)
var(Z) + ε2

]
k
E[Z]k,

(11)

where we compute
E[Z] ≈ 1

|ω|
∑

l∈ωk
zl,E[Y] ≈ 1

|ω|
∑

l∈ωk
yl,E[ZY] ≈ 1

|ω|
∑

l∈ωk
zlyl,E[Z2] ≈ 1

|ω|
∑

l∈ωk
z2l .

Note that the use of different ωk results in different
predictions of these coefficients. Hence, one must com-
pute an aggregate estimate of these coefficients coming
from all windows that contain the pixel of interest. As
an illustration, consider a case where we predict ŷi using
observed values of Y in ωk of size 3 × 3 as shown in
Figure 9. There are nine possible windows that involve
the pixel of interest i. Therefore, one takes into account
all nine ak, bk’s to predict ŷi . The simple strategy sug-
gested by He et al. [1] is to average them as follows:

â =
1

|ω|
|ω|∑
k=1

âk, b̂ =
1

|ω|
|ω|∑
k=1

b̂k. (12)

As such, the resulting prediction of Ŷ given the out-
come Z = zi is

ŷi = âzi + b̂ =
1

|ω|
|ω|∑
k=1

(âkzi + b̂k),

ẑi = ĉzi + d̂ =
1

|ω|
|ω|∑
k=1

(ĉkzi + d̂k).

(13)

Figure 6 Examples of W in one patch of size 25 × 25. All eigenvalues of the matrix W are nonnegative, thus the guided filter kernel matrix is
positive definite matrix. The largest eigenvalue of W is one and the rank of W asymptotically becomes one. This figure is better viewed in color.

Figure 7 Examples of the first left eigenvector u in three patches. The vector was reshaped into an image for illustration purpose.
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The idea of using these averaged coefficients â, b̂ is
analogous to the simplest form of aggregating multiple
local estimates from overlapped patches in image
denoising and super-resolution literature [19]. The
aggregation helps the filter output look locally smooth
and contain fewer artifacts.i Recall that ŷi and ẑi − zi
correspond to the base layer and the detail layer, respec-
tively. The effect of the regularization parameters ε1 and
ε2 is quite the opposite in each case in the sense that
the higher ε2 is, the more detail through ẑi − zi can be

obtained; whereas the lower ε1 ensures that the image
content in Ŷ is not over-smoothed.
These local linear models work well when the window

size p is small and the underlying data have a simple
pattern. However, the linear models are too simple to
deal effectively with more complicated structures, and
thus there is a need to use larger window sizes. As we
alluded to earlier, the estimation of these linear coeffi-
cients in an iterative fashion can deal well with more
complex behavior of the image content. More

Figure 8 The guided filter kernel matrix. The guided filter kernel matrix W captures the underlying data structure, but powers of W provides
even better structure by generating larger (but more sophisticated) kernel shapes. w is the (center) row vector of W. w was reshaped into an
image for illustration purposes.

Figure 9 Explanation of LMMSE. âk, b̂k are estimated from nine different windows ωk and averaged coefficients â, b̂ are used to
predict ŷi. This figure is better viewed in color.
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specifically, by initializing x̂i,0 = yi, Equation 3 can be
updated as follows

x̂i,n = G(x̂i,n−1, zi) + τn(zi − ẑi),

= (an − τnc + τn)zi + bn − τnd,

= αnzi + βn,

(14)

where n is the iteration number and τn >0 is set to be a
monotonically decaying functionk of n such that

∑∞
n=1 τn

converges. Figure 3 shows an example to illustrate that the
resulting coefficients at the 20th iteration predict the
underlying data better than a1, b1 do. Similarly, X̂20

improves upon X̂1 as shown in Figure 4. This iteration is
closely related to diffusion and residual iteration which are
two important methods [18] which we describe briefly
below, and with more detail in Appendix.
Recall that Equation 14 can also be written in matrix

form as done in Section 3:

x̂n = Wx̂n−1︸ ︷︷ ︸
base layer

+τn (z − Wdz)︸ ︷︷ ︸
det ail layer

,
(15)

where W and Wd are guided filter kernel matrices
composed of the guided filter kernels W and Wd respec-
tively.l Explicitly writing the iterations, we observe

x̂0 = y

x̂1 = Wy + τ1(I − Wd)z,

x̂2 = Wx̂1 + τ2(I − Wd)z = W2y + (τ1W + τ2I)(I − Wd)z,

...

x̂n = Wx̂n−1 + τn(I − Wd)z = Wny + (τ1Wn−1 + τ2Wn−2 + · · · + τnI)(I − Wd)z,

= Wny︸︷︷︸
diffusion

+Pn(W)(I − Wd)z︸ ︷︷ ︸
residual iteration

= ŷn + ẑn,

(16)

where Pn is a polynomial function of W. The block-dia-
gram in Figure 2 can be redrawn in terms of the matrix
formulation as shown in Figure 10. The first term ŷn in
Equation 16 is called the diffusion process that enhances
SNR. The net effect of each application of W is essen-
tially a step of anisotropic diffusion [20]. Note that this
diffusion is applied to the no-flash image y which has a
low SNR. On the other hand, the second term ẑn is con-
nected with the idea of residual iteration [21]. The key
idea behind this iteration is to filter the residual signalsm

to extract detail. We refer the reader to Appendix B and
[18] for more detail. By effectively combining the diffu-
sion and residual iteration [as in (16)], we can achieve the
goal of flash/no-flash pair enhancement which is to gen-
erate an image somewhere between the flash image z and
the no-flash image y, but of better quality than both.n

5 Experimental results
In this section, we apply the proposed approach to flash/
no-flash image pairs for denoising and deblurring. We
convert images Z and Y from RGB color space to CIE

Lab, and perform iterative guided filtering separately in
each resulting channel. The final result is converted back
to RGB space for display. We used the implementation of
the guided filter [1] from the author’s website.o All fig-
ures in this section are best viewed in color.p

5.1 Flash/no-flash denoising
5.1.1 Visible flash [2]
We show experimental results on a couple of flash/no-
flash image pairs where no-flash images suffer from
noiseq. We compare our results with the method based
on the joint bilateral filter [2] in Figures 11, 12, and 13.
Our proposed method effectively denoised the no-flash
image while transferring the fine detail of the flash
image and maintaining the ambient lighting of the no-
flash image. We point out that the proposed iterative
application of the guided filtering in terms of diffusion
and residual iteration yielded much better results than
one application of either the joint bilateral filtering [2]
or the guided filter [1].
5.1.2 Dark flash [7]
In this section, we use the dark flash method proposed
in [7]. Let us call the dark flash image Z. Dark flash
may introduce shadows and specularities in images,
which affect the results of both the denoising and detail
transfer. We detect those regions using the same meth-
ods proposed by [2]. Shadows are detected by finding
the regions where |Z - Y| is small, and specularities are
found by detecting saturated pixels in Z. After combin-
ing the shadow and specularities mask, we blur it using
a Gaussian filter to feather the boundaries. By using the
resulting mask, the output X̂n at each iteration is alpha-
blended with a low-pass filter version of Y as similarly
done in [2,7]. In order to realize ambient lighting condi-
tions, we applied the same mapping function to the final
output as in [7]. Figures 14, 15, 16, 17, 18, and 19 show
that our results yield better detail with less color arti-
facts than the results of [7].

5.2 Flash/no-flash deblurring
Motion blur due to camera shake is an annoying yet com-
mon problem in low-light photography. Our proposed
method can also be applied to flash/no-flash deblurringr.
Here, we show experimental results on a couple of flash/
no-flash image pairs where no-flash images suffer from
mild noise and strong motion blur. We compare our
method with Zhuo et al. [5]. As shown in Figures 20, 21,
22, 23, and 24, our method outperforms the method by
[5], obtaining much finer details with better color contrast
even though our method does not estimate a blur kernel
at all. The results by Zhuo et al. [5] tend to be somewhat
blurry and distort the ambient lighting of the real scene.
We point out that we only use a single blurred image in
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Figure 24 while Zhuo et al. [5] used two blurred images
and one flash image.

6 Summary and future work
The guided filter has proved to be more effective than
the joint bilateral filter in several applications. Yet we

have shown that it can be improved significantly more
still. We analyzed the spectral behavior of the guided fil-
ter kernel using a matrix formulation and improved its
performance by applying it iteratively. Iterations of the
proposed method consist of a combination of diffusion
and residual iteration. We demonstrated that the

Figure 10 Diagram of the proposed iterative approach in matrix form. Note that the iteration can be divided into two parts: diffusion and
residual iteration process.

Figure 11 Flash/no-flash denoising example compared to the state of the art method [2]. The iteration n for this example is 10.
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Figure 12 Flash/no-flash denoising example compared to the state of the art method [2]. The iteration n for this example is 10.

Figure 13 Flash/no-flash denoising example compared to the state of the art method [2]. The iteration n for this example is 2.
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Figure 14 Dark flash/no-flash (low noise) denoising example compared to the state of the art method [7]. The iteration n for this
example is 10.

Figure 15 Dark flash/no-flash (mid noise) denoising example compared to the state of the art method [7]. The iteration n for this
example is 10.
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Figure 16 Dark flash/no-flash (high noise) denoising example compared to the state of the art method [7]. The iteration n for this
example is 10.

Figure 17 Dark flash/no-flash (low noise) denoising example compared to the state of the art method [7]. The iteration n for this
example is 10.
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Figure 18 Dark flash/no-flash (mid noise) denoising example compared to the state of the art method [7]. The iteration n for this
example is 10.

Figure 19 Dark flash/no-flash (high noise) denoising example compared to the state-of-the-art method [7]. The iteration n for this
example is 10.
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proposed approach yields outputs that not only preserve
fine details of the flash image, but also the ambient
lighting of the no-flash image. The proposed method
outperforms state-of-the-art methods for flash/no-flash
image denoising and deblurring. It would be interesting
to see if the performance of other nonparametric filer
kernels such as bilateral filters and locally adaptive
regression kernels [15] can be further improved in our
iterative framework. It is also worthwhile to explore sev-
eral other applications such as joint upsampling [22],
image matting [23], mesh smoothing [24,25], and specu-
lar highlight removal [26] where the proposed approach
can be employed.

Appendix
Positive definite and symmetric row-stochastic
approximation of W
In this section, we describe how we approximate W
with a symmetric, positive definite, and row-stochastic

matrix. First, as we mentioned earlier, the matrix W
can contain negative values as shown in Figure 3. We
employ the Taylor series approximation (exp (t) ≈ 1 +
t) to ensure that W has both positive elements, and is
positive-definite. To be more concrete, consider a sim-
ple example; namely, a local patch of size 5 × 5 as fol-
lows:

Z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z1 z6 z11 z16 z21
z2 z7 z12 z17 z22
z3 z8 z13 z18 z23
z4 z9 z14 z19 z24
z5 z10 z15 z20 z25

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (17)

In this case, we can have up to 9 ωk of size |ω| = 3 ×

3. Let M
(
zi, zj

)
=

∑
k:(i,j∈ωk)

(
zi − E[Z]k

) (
zj − E[Z]k

)
var (Z)k+ε

in

Equation 6. Then, W centered at the index 13 can be
written and approximated as follows:

Figure 20 Flash/no-flash deblurring example compared to the state-of-the-art method [5]. The iteration n for this example is 20.
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Figure 21 Flash/no-flash deblurring example compared to the state-of-the-art method [5]. The iteration n for this example is 20.

Figure 22 Flash/no-flash deblurring example compared to the state-of-the-art method [5]. The iteration n for this example is 20.
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Figure 23 Flash/no-flash deblurring example compared to the state-of-the-art method [5]. The iteration n for this example is 5.

Figure 24 Flash/no-flash deblurring example compared to the state-of-the-art method [5]. The iteration n for this example is 20.
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W13,j =
1
81

⎡⎢⎢⎢⎢⎣
1 +M(z13, z1)2(1 + 1

2M(z13, z16))3(1 + 1
3M(z13, z11))2(1 + 1

2M(z13, z16))1 +M(z13, z21)
2(1 + 1

2M(z13, z2))4(1 + 1
4M(z13, z7))6(1 + 1

6M(z13, z12))4(1 + 1
4M(z13, z17))2(1 + 1

2M(z13, z22))
3(1 + 1

3M(z13, z3))6(1 + 1
6M(z13, z8))9(1 + 1

9M(z13, z13))6(1 + 1
6M(z13, z18))3(1 + 1

3M(z13, z23))
2(1 + 1

2M(z13, z4))4(1 + 1
4M(z13, z9))6(1 + 1

6M(z13, z14))4(1 + 1
4M(z13, z19))2(1 + 1

2M(z13, z24))
1 +M(z13, z5)2(1 + 1

2M(z13, z10))3(1 + 1
3M(z13, z15))2(1 + 1

2M(z13, z20))1 +M(z13, z25),

⎤⎥⎥⎥⎥⎦

≈ 1
81

⎡⎢⎢⎢⎢⎣
exp(M(z13, z1))2 exp(12M(z13, z6))3 exp(13M(z13, z11))2 exp(12M(z13, z16))exp(M(z13, z21))

2 exp(12M(z13, z2))4 exp(14M(z13, z7))6 exp(16M(z13, z12))4 exp(14M(z13, z17))2 exp(12M(z13, z22))
3 exp(13M(z13, z13))6 exp(16M(z13, z8))9 exp(19M(z13, z13))6 exp(16M(z13, z18))3 exp(13M(z13, z23))
2 exp(12M(z13, z4))4 exp(14M(z13, z9))6 exp(16M(z13, z14))4 exp(14M(z13, z19))2 exp(12M(z13, z24))

exp(M(z13, z5))2 exp(12M(z13, z10))3 exp(13M(z13, z15))2 exp(13M(z13, z15))exp(M(z13, z25))

⎤⎥⎥⎥⎥⎦ ,

Next, we convert the matrix W (composed of strictly
positive elements now) to a doubly-stochastic, sym-
metric, positive definite matrix as again done in [18].
The algorithm we use to effect this approximation is
due to Sinkhorn [27,28], who proved that given a matrix
with strictly positive elements, there exist diagonal
matrices R = diag(r) and C = diag(c) such that

Ŵ = R W C
is doubly stochastic. That is,

Ŵ1N = 1N and 1TNŴ = 1TN (18)

Furthermore, the vectors r and c are unique to within
a scalar (i.e., a r, c/a.) Sinkhorn’s algorithm for obtain-
ing r and c in effect involves repeated normalization of
the rows and columns (see Algorithm 1 for details) so
that they sum to one, and is provably convergent and
optimal in the cross-entropy sense [29].
Algorithm 1 Algorithm for scaling a matrix A to a

nearby doubly-stochastic matrix Â
Given a matrix A, let (N, N) be size(A) and initialize

r = ones(N, 1);
for k = 1 : iter;
c = 1./(AT r);
r = 1./(A c);

end
C = diag(c); R = diag(r);

Â = RAC

Diffusion and residual iteration
Diffusion
Here, we describe how multiple direct applications of
the filter given by W is in effect equivalent to a non-
linear anisotropic diffusion process [20,30]. We define
ŷ0 = y, and

ŷn = Wŷn−1 = Wny. (19)

From the iteration (19) we have

ŷn = Wŷn−1, (20)

= ŷn−1 − ŷn−1 +Wŷn−1, (21)

= ŷn−1 + (W − I)ŷn−1, (22)

which we can rewrite as

ŷn − ŷn−1 = (W − I)ŷn−1 ←→ ∂ ȳ(t)
∂t

= ∇2ȳ(t) Diffusion Equation (23)

where ȳ is a scaled version of by, and therefore the
left-hand side of the above is a discretization of the deri-

vative operator
∂ ȳ(t)
∂t

, and as detailed in [18], W - I is

effectively the nonlinear Laplacian operator correspond-
ing to the kernel in (6).
Residual iteration
An alternative to repeated applications of the filter W is
to consider the residual signals, defined as the difference
between the estimated signal and the measured signal.
This results in a variation of the diffusion estimator
which uses the residuals as an additional forcing term.
The net result is a type of reaction-diffusion process
[31]. In statistics, the use of the residuals in improving
estimates has a rather long history, dating at least back
to the study of Tukey [21] who termed the idea “twi-
cing”. More recently, the idea has been suggested in the
applied mathematics community under the rubric of
Bregman iterations [32], and in the machine learning
and statistics literature [33] as L2-boosting.
Formally, the residuals are defined as the difference

between the estimated signal and the measured signal:
rn = z − zn−1, where here we define the initializations

ẑ0 = Wz. With this definition, we write the iterated esti-
mates as

ẑn = ẑn−1 +Wrn = ẑn−1 +W(z − ẑn−1). (24)

Explicitly writing the iterations, we observe:

ẑ1 = ẑ0 +W(z − ẑ0) = Wz +W (z − Wz) = (2W − W2)z,

ẑ2 = ẑ1 +W(z − ẑ1) = (W3 − 3W2 + 3W)z,

...

ẑn = Fn(W)Z,

(25)

where Fn is a polynomial function of W of order n +
1. The first iterate ẑ1 is precisely the “twicing” estimate
of Tukey [21].

Convergence of the proposed iterative estimator
Recall the iterations:

x̂n = Wny + (τ1Wn−1 + τ2Wn−2 + · · · + τnI)︸ ︷︷ ︸
Pn(W)

(I − Wd)z. (26)

where Pn is a polynomial function of W. The first
(direct diffusion) term in the iteration is clearly stable
and convergent as described in (9). Hence, we need to
show the stability of the second part. To do this, we
note that the spectrum of Pn can be written, and
bounded in terms of the eigenvalues li of W as follows:

λi(Pn) = eig(Pn) = τ1λ
n−1
i + τ2λ

n−2
i + · · · + τn,

≤ τ1λ
n−1
1 + τ2λ

n−2
1 + · · · + τn = τ1 + τ2 + τ3 + · · · + τn ≤ c.

(27)
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where the inequality follows from the knowledge that
0 ≤ lN ≤ ... l3 ≤ l2 <l1 = 1. Furthermore, in Section 4
we defined τn to be a monotonically decreasing sequence
such that

∑∞
n=1 τn = c < ∞. Hence, all eigenvalues li(Pn)

are upper bounded by the constant c, independent of
the number of iterations n, ensuring the stability of the
iterative process.

End notes
aMore detail is provided in Section 4. bThe guided filter
[1] reduces noise while preserving edges as bilateral fil-
ter [6] does. However, the guided filter outperforms the
bilateral filter by avoiding the gradient reversal artifacts
that may appear in such applications as detail enhance-
ment, high dynamic range (HDR) compression, and
flash/no-flash denoising. chttp://users.soe.ucsc.edu/
~milanfar/research/rokaf/.html/IGF/. d ŷ in Equation 2
can be rewritten in terms of filtering and we refer the
reader to a supplemental material http://personal.ie.
cuhk.edu.hk/~hkm007/eccv10/eccv10supp.pdf for deri-
vation. eCross (or joint) bilateral filter [2,3] is defined in
a similar way. f N is different from the window size p (N
≥ p). g Note that k is used to clarify that the coefficients
are estimated for the window ωk.

h Shan et al. [8]
recently proposed a similar approach for high dynamic
range compression. i It is worthwhile to note that we
can benefit from more adaptive way of combining multi-
ple estimates of coefficients, but this subject is not trea-

ted in this article. k We use τn =
1
n2

throughout the all

experiments. l Recall W in Equation 6. The difference
between W and Wd lies in the parameter ε as follows (ε2
> ε1):

W (Z) =
1

|ω|2
∑

k:(i,j)∈ωk

(
1 +

(zi − E[z]k)
(
zj − E[Z]k

)
var(Z)k + ε1

)
,

Wd (Z) =
1

|ω|2
∑

k:(i,j)∈ωk

(
1 +

(zi − E[z]k)
(
zj − E[Z]k

)
var(Z)k + ε2

)
.

(28)

m This is generally defined as the difference between
the estimated signal Ẑ and the measured signal Z, but
in our context refers to the detail signal. n We refer the
reader to Appendix C for proof of convergence of the
proposed iterative estimator. o http://personal.ie.cuhk.
edu.hk/~hkm007/. p We refer the reader to the project
Website http://users.soe.ucsc.edu/~milanfar/research/
rokaf/.html/IGF/. q The window size p for Wd and W
was set to 21 and 5 respectively for all the denoising
examples. r The window size p for Wd and W was set
to 41 and 81, respectively, for the deblurring examples
to deal with displacement between the flash and no-
flash image. s Note that due to the use of residuals, this

is a different initialization than the one used in the dif-
fusion iterations.
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