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For fusion of multifocus images, a novel image fusion method based on multiscale products in lifting stationary
wavelet (LSWT) domain is proposed in this article. In order to avoid the influence of noise and select the
coefficients of the fused image properly, different subband coefficients employ different selection principles. For
choosing the low frequency subband coefficients, a new modified energy of Laplacian (EOL) is proposed and used
as the focus measure to select the coefficients from the clear parts of the low frequency subband images; when
choosing the high frequency subband coefficients, a novel feature contrast measurement of the multiscale
products is proposed, which is proved to be more suitable for fusion of multifocus images than the traditional
contrast measurement, and used to select coefficients from the sharpness parts of the high frequency subbands.
Experimental results demonstrate that the proposed fusion approach outperforms the traditional discrete wavelet
transform (DWT)-based, LSWT-based and LSWT-traditional-contrast-(LSWT-Tra-Con)-based image fusion methods,
even though the source images are corrupted by a Gaussian noise, in terms of both visual quality and objective
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1. Introduction
In applications of digital cameras, when a lens focuses on
a subject at a certain distance, all subjects at that distance
are sharply focused. Subjects not at the same distance are
out of focus and theoretically are not sharp. It is often
not possible to get an image that contains all relevant
objects in focus. One way to overcome this problem is
image fusion, in which one can acquire a series of pic-
tures with different focus settings and fuse them to pro-
duce an image with extended depth of field [1-3]. During
the fusion process, all the important visual information
found in the input images must be transferred into the
fused image without introduction of artifacts. In addition,
the fusion algorithm should be reliable and robust to
imperfections such as noise or mis-registration [4-6].
During the last decade, a number of techniques for
image fusion have been proposed. A simple image
fusion method consists in taking the average of the
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source images pixel by pixel. However, along with sim-
plicity comes several undesired side effects including
reduced contrast. In recent years, many researchers have
recognized the multiscale transforms (MST) are very
useful for image fusion, and various MST-based fusion
methods have been proposed [7-11]. In MST domain,
the discrete wavelet transform (DWT) becomes the
most popular and important multiscale decompositions
method in image fusion. Compared with the Laplacian
pyramid transform, the DWT has been found to have
some advantages such as: (1) The DWT cannot only
possess localization but also provide directional informa-
tion, while the pyramid representation fails to introduce
any spatial orientation selectivity into the decomposition
process [9]. So DWT can represent the underlying infor-
mation of the source images more efficiently. This
advantage would make the fused image more accurate.
(2) No blocking artifacts, which often occur in Laplacian
pyramid-fused images, can be observed in the DWT-
based fused images. (3) DWT-based fusion has better
signal-to-noise ratios than Laplacian-based fusion [12].
(4) DWT-based fusion images can improve the
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perception over pyramid-based fusion images. More
advantages of the DWT over Laplacian pyramid scheme
can be seen in [9,12].

However, the DWT has its own disadvantages. It
needs a great deal of convolution calculations, and it
either consumes much time or occupies memory
resources, which impedes its real-time application. Rela-
tive to the DWT, the lifting wavelet transform (LWT)
[13] can overcome its shortcomings. Unfortunately, the
original LWT and DWT lack shift-invariance and cause
pseudo-Gibbs phenomena around singularities [14],
which will reduce the resultant image quality. Thus, new
lifting stationary wavelet transform (LSWT) [15], as a
fully shift-invariant form of LWT, can be introduced
and used as the MST method in this article.

Except for the LSWT discussed in the above para-
graph, the nonsubsampled contourlet transform (NSCT)
[16], which also possesses the shift-invariant, is another
important MST method in image fusion field. Compared
with the LSWT, the NSCT is built upon non-sub-
sampled pyramids and nonsubsampled directional filter
banks [16]. In NSCT, the non-subsampled pyramids are
first used to achieve the multi-scale decomposition, and
then the nonsubsampled directional filter banks are
employed to achieve the direction decomposition. The
number of direction decomposition at each level can be
different, which is much more flexible than the three
directions in wavelet. So it can get better fusion results
than the LSWT. However, the NSCT is more time con-
suming than the LSWT because of its multi-direction
and complexity, which impede its real-time application
greatly. By considering both the fusion results and com-
puting complexity, in our proposed method, the LSWT
is used as the MST method.

In image fusion algorithm in MST domain, one of the
most important things for improving fusion quality is
the selection of fusion rules, which influences the per-
formance of fusion algorithm remarkably. According to
physiological and psychological research, the human
vision system (HVS) is highly sensitive to the local
image contrast level. To meet this requirement, Toet
and Ruyven [17] developed the local luminance contrast
in their research in contrast pyramid (CP). In the local
luminance contrast, the contrast level is measured by
measuring the ratio of the high frequency component of
image to the local luminance of the background.

Based on the idea of [17], many different forms of
contrast measurement have been proposed and success-
fully used in image fusion [18,19]. However, in these
contrast measurements, the value (or absolute value) of
a single pixel of the high frequency subband in MST
domain is directly used as the strength value of the high
frequency component. In fact, the value (or absolute
value) of a single pixel of the high frequency subband is
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very limited in determining which pixel is from the
clear part of the sub-images. So, a pure use of a single
pixel as the high frequency component in the local con-
trast measurements is not ideal. In addition, almost all
the MST-based image fusion algorithms do not consider
the noise influence. In many practical applications, addi-
tive Gaussian noise, which is characterized by adding to
each image pixel a value from a zero-mean Gaussian
distribution, can be systematically introduced into image
during acquisition. This noise may cause miscalculation
of sharpness values, which in turn, degrade the perfor-
mance of image fusion. To be useful in real process
operation, the fusion algorithm should provide pleasing
fusion performance for the clean image fusion; mean-
while it should be reliable and robust to imperfections
such as noise.

It is well known that there exist dependencies between
wavelet coefficients. If a wavelet coefficient produced by
a true signal is of large magnitude at a finer scale, its
parents at coarser scales are likely to be large as well.
However, for those coefficients caused by noise, the
magnitudes will decay rapidly along the scales. So, mul-
tiplying the adjacent wavelet scales, namely multiscale
products (MSP), can sharpen the important structures
while weakening noise [20,21]. Therefore, multiscale
products can distinguish edge structures from noise
more effectively.

To make up for the aforementioned deficiencies of the
traditional MST-based image fusion methods, we pre-
sent a new multifocus image fusion scheme which
incorporates the merits of interscale dependencies into
the image fusion field. In this method, after decompos-
ing the original images using the LSWT, we use a new
modified energy of Laplacian, which can reflect features
of the edges of the low frequency subimage in LSWT
domain, as the focus measure to select the coefficients
of the fused image; when choosing the high frequency
subband coefficients, a novel local neighborhood feature
contrast of the multiscale products, which can effectively
represent the salient features and sharp boundaries of
image, is developed and used as the measurement to
select coefficients from the clear parts of source images.
The experimental results show that the proposed
method does well in fusion of multifocus images no
matter they are clean or not, and outperforms typical
wavelet-based, LSWT-based, NSCT-based and LSWT
typical contrast-based fusion algorithms in terms of
objective criteria and visual appearance.

The article is organized as follows. In Sections 2 and
3, the theory of LSWT and multiscale products are
introduced respectively in detail; Section 4 describes the
image fusion algorithm using LSWT and multiscale pro-
ducts. Section 5 compares the performance of the new
algorithm with the performance of other conventional
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fusion techniques applied to sequences of multifocus
test images. Finally, in Section 6 we conclude the article
with a short summary.

2, Lifting stationary wavelet transform
2.1. Lifting wavelet transform
Lifting wavelet transform (LWT), proposed by Sweldens
[22], is a new wavelet construction method using the lift-
ing scheme in time domain. The main feature of the LWT
is that it provides an entirely spatial domain interpretation
of the transform, as opposed to the traditional frequency
domain based constructions. It abandons the Fourier
transform as design tool for wavelets, and wavelets are no
longer defined as translates and dilates of one fixed func-
tion. Compared with the classical wavelet transform, the
LWT requires less computation and memory, and can
produce integer-to-integer wavelet transform. It is always
perfectly reconstructed no matter how the prediction
operator and update operator are designed. Moreover, it
possesses several advantages, including possibility of adap-
tive and nonlinear design, in place calculations, and so on
[13,22,23]. The decomposition stage of LWT consists of
three steps: split, prediction and update.

In the split step, the original signal (or approximate
signal) a; at level [ is split into even samples and odd
samples

a1 = al(2i),  dia = a(2i+1) (1)

In the prediction step, we apply a prediction operator
P on ay,, to predict d;,;. The resultant prediction error
dj,1 is regarded as the detail signal of a;

M2

A (D) = dia () — Y prava(i+7) (2)

r=—M/2+1

where p, is one of the coefficient of P and M is the
length of prediction coefficients.

In the update step, an update of even samples a,,; is
accomplished by using an update operator U to detail
signal d;,; and adding the result to a;,;, the resultant g,
+1 can be regarded as the approximation signal of a;.
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N/2
apa (i) = awa (i) + Y wdia(i+j—1) 3)
j=—N/2+1

where u; is the coefficient of U/ and N is the length of
update coefficients.

Let a; be the input signal for lifting scheme, the detail
and approximation signals at the lower resolution level
can be obtained by iterating of the above three steps on
the output a.

The inverse LWT can be performed by reversing the
prediction and update operators and changing each ‘+’
into ‘- and vice versa. The complete expression of the
reconstruction of LWT is shown in Equations (4)-(6).
Figure 1 depicts the structure of LWT. The computa-
tional costs of the forward and inverse transform are
exactly the same. The prediction operator P and update
operator U can be designed by the interpolation subdivi-
sion method introduced in [23]. Choosing different P
and U is equivalent to choosing different biorthogonal
wavelet filters [24].

N2

apa (i) = ana (i) = Y wjda(i+j—1) (4)

j=—N/2+1

M/2

A1 (D) = dia (D) + Y praga(i+) (5)

r=—M/2+1

a1(2i) = ap, a1(2i + 1) = din (6)

2.2. Lifting stationary wavelet transform

In the LWT, the shift-invariance is not ensured because
there exists the split step and the length of approxima-
tion signal and detail signal decreases. However, the
shift-invariance is desirable in many image applications
such as image enhancement, image denoising and image
fusion. In order to obtain the LSWT which possesses
the shift-invariance, the method of literature [15] is
adopted in this article.

.

U P Merge —>

d

I+1
Figure 1 Structure of LWT, both analysis side (left part) and synthesis side (right part).
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In the LSWT, the split step is discarded. Assuming P
and U’ represent the prediction and update operator of
the lifting stationary wavelet at level /, respectively. The
initial prediction operator P° and initial update operator
U° can be obtained once M and N are determined,
where P° = {p,,}, m = 0,1,.., M - 1; U° = {u,}, n = 0,1,..,,
N - 1. The coefficients of P’ and U/’ are designed by pad-
ding P° and U° with zeros [15]. The prediction coeffi-
cients and update coefficients at level / in the LSWT are
expressed as follows:

P =p8,0...O,p(l’,o...O,pg,...,p&fz,o...o,pﬂfl/m
211 211 2!-1

1_,0 0 0
Ui =1y, 0...0,uy,0...0,u;,...

211

0 0
JUN_2,0...0, uNfl,(s)

211 211

The decomposition results of an approximation signal
a; at level [ via lifting stationary wavelet are expressed
by following equations.

disy = a— P*ay, ap = @+ UMdyy, )

where d;,; and a;,; are detail signal and approxima-
tion signal of a; at level [ + 1.

The reconstruction procedure of LSWT is directly
achieved from its forward transform, which is expressed
as below.

1
a; = 2(a1+1 — UM dyy +diy + P* (a0 — U™ dy,))L0)

The forward and inverse transform of LSWT is shown
in Figure 2.

Compared with the DWT, LSWT do not downsample
and upsample the highpass and the lowpass coefficients
during the decomposition and reconstruction of the
image. So, the LSWT not only retains the perfect prop-
erties of the LWT, but also possess the shift-invariance.
When LSWT is introduced into image fusion, more
information for fusion can be obtained. In addition, the
size of different sub-images is identical, so it is easy to
find the relationship among different subbands, which is
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beneficial for designing fusion rules [25]. Therefore, the
LSWT is more suitable for image fusion.

3. Multiscale products of LSWT
In MST-based image fusion algorithms, almost all the
schemes design the fusion rule, namely, selection princi-
ples for high frequency subband coefficients (simplified
into ‘fre-coefs’ in figures in this article) based on the
wavelet coefficients directly. It is worth noting that
much of the noise is also related to high frequencies. As
a result, the fused images obtained by these methods are
more noisy than the source images. It is well known
that there exist dependencies between wavelet coeffi-
cients: if a coefficient at a coarser scale has small magni-
tude, its descendant coefficients at finer scales are likely
to be small and vice versa. If two adjacent wavelet sub-
bands are multiplied it can amplify the significant fea-
tures and dilute noise [21,26].

Suppose f(x) is a one-dimensional (1-D) discrete sig-
nal, we define the multiscale products of Wf as

ka
Pf(x) = [ Werf(x)

ke=—I;

(11)

where k; </ and k, < L - [ are nonnegative integers if
we use L to denote the max level, Wif (x) denotes the
LSWT of signal f (x) at scales / and position x.

The support of an isolated edge will increase by a fac-
tor of two across scale and the neighboring edges will
interfere with each other at coarse scale. So in practice
it is sufficient to implement the multiplication at two
adjacent scales [20]. If we let k; = 0 and k, = 1, then we
calculate the LSWT scale products as

Pif(x) = Wif (x) - Wi f(x)

According to [7] and Equation (12), for 2D image f,
the multiscale products at the /th scale, dth direction
and location (x, y) can be defined as

Pl(x,y) = Wif(x,y) - Wi, f(x,7)

(12)

(13)

— dz+1 ‘K_D
a; ; Pl+1 l‘]HI [}:H P”] .%_ —>a1

1

a.

Figure 2 The forward and inverse transform of LSWT.
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where d = 1, 2, 3 denote the horizontal, vertical and
diagonal directions.

To demonstrate the merits of multiscale products of
LSWT, in Figure 3, the LSWT and multiscale products of
a noisy test image (f; = g + 0) are illustrated, respectively.
Though the LSWT coefficients of the original signal g;
are immersed into noise at fine scales, they are enhanced
in the scale products P, f. The significant features of g;
are more distinguishable in P, f than in W} f. So we can
conclude that the multiscale production of LSWT can
amplify the significant features and dilute noise.

4. The proposed fusion algorithm
A good image fusion algorithm should preserve all the
salient features of the source images and introduce as
less artifacts or inconsistency as possible. In addition,
the fusion algorithm should be reliable and robust to
imperfections such as noise. In this article, we develop a
novel multifocus image fusion scheme to incorporate
the merits of interscale dependencies of LSWT into the
image fusion technique. Two adjacent wavelet subbands
are multiplied to amplify the significant features and
dilute noise. In contrast to the conventional MST-based
image fusion schemes, we design the fusion rule of the
high frequency subbands based on the multiscale pro-
ducts instead of the wavelet coefficients. So our pro-
posed image fusion method can be fairly resistant to the
noise because the multiscale products can distinguish
edge structures from noise effectively.

Apart from the LSWT and multiscale products in the
above section, fusion rules, namely, selection principles
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for different subband coefficients are another important
component in our proposed fusion method. The follow-
ing study presented in this article is concerned with a
design of novel fusion rules for the low frequency sub-
band coefficients and the high frequency subband coeffi-
cients. Throughout this study, it has been assumed that
the images studied have been appropriately pre-regis-
tered, so that corresponding features can coincide pixel
to pixel [27]. To simplify the discussion, we assume the
fusion process is to generate a composite image F from
a pair of source images denoted by A and B. The gen-
eral procedure of the proposed LSWT-MSP-based
fusion algorithm is illustrated in Figure 4 and imple-
mented as

(1) Decompose the registered source images A and
B, respectively, into one low frequency subimage and
a series of high frequency subimages via LSWT.

(2) Select fusion coefficients for the low frequency
subimage and each high frequency subimage from A
and B according to fusion rules.

(3) Reconstruct the original image based on the new
fused coefficients of subimages by taking an inverse
LSWT transform, then the fused image F is
obtained.

4.1. Selection of lowpass subband coefficients

As the coefficients in the coarsest scale subband repre-
sent the approximation component of the source image,
the simplest way is to use the conventional averaging
method to produce the composite coefficients. However,

(b) HL1

(a) Peppers

(e) HL4 (f) Prf(z,y)

(g) Paf(x,y) (h) Psf(z,y)

Figure 3 The noisy test image ‘Pepper’ (variance é = 0.01), the HL subimages of LSWT and the multiscale products at the first three
scales: (a) noisy image 'Pepper’; (b)-(e) HL1, HL2, HL3, HL4 high frequency sub-images of ‘Pepper’; (f)-(h) multiscale products at the first three
scales.




Li et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:39

http://asp.eurasipjournals.com/content/2012/1/39

Page 6 of 16

N
Low-fre Fusion
coefs rule
Source |[LSWT
image -
H1gh-fre4 MSP | Fusion
coefs rule Recon-
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Figure 4 Schematic diagram of LSWT-MSP-based fusion algorithm.
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this will reduce the fused image contrast. To improve
the fused image quality, a clarity measure should be
defined to determine whether a coefficient of the low
frequency subband is in focus or out of focus.

For multifocus image fusion, many typical focus mea-
surements, e.g. variance, energy of image gradient
(EOQG), spatial frequency (SF), and energy of Laplacian
(EOL) of the image, are compared in literature [28].
They all measure the variation of pixels. Pixels with
greater values of these measurements, when source
images are compared with each other, are considered
from the focus parts. According to literatures [28,29] we
know that EOL can provide a better performance than
SF and EOG for fusion multifocus images. In this article,
we use a new improved energy of image Laplacian
(IEOL) as the focus measure to select coefficients from
the clear parts of the source images.

The complete original expression of the energy of
Laplacian (EOL) of the image f is shown in Equation
(14):

2
EOL=) > (fu+fy) (14)
x oy
where
oy = = Ly 1) =4 1) e Ly )8l = 18 200) (g 5y

—4f(x,y+ 1) —f(x+1,y—1)—4f(x+ Ly) = f(x+ 1,y +1)

In Equation (15), the f (x, y) is the gray value of pixel
at position (x, y) of image f - f.. + f,, represents image
gradient obtained by Laplacian operator [-1,-4,-1; -4, 20,
4; -1, -4, -1].

However, the second derivatives in different directions
may have different signs which cause one sign to cancel
the other. This phenomenon may occur frequently in
the textured images. In order to avoid the problem, and
maintain robustness of the algorithm in the face of
adverse effects that may occur in image fusion. We will
use an improved EOL (IEOL) as the clarity measure to
select coefficients from the clean parts of source images.

The improved sum of Laplacian (ISL) and the
improved energy of Laplacian (IEOL) of image f are
computed as:

ISL(x ) = [8F(x,7) — 4f(x — 1,7) — 4f(x + 1,)|
+[8f(xy) — 4f(x,y — 1) — 4f (x, y + 1)
+[2f(y) = flr—Ly+1) —f(x+ 1,y — 1)
+[2f(y) = flr—Ly—1) = fx+ 1,y +1)|

(16)

IEOL(x,y) = Y Y Wi(a, b)(ISL(x + a,y + b)) (17)
a b

where W, is a template which size is relatively small,
and must satisfy the normalization rule X,%,W; (a, b) =
1. For the low frequency subband, it contains low fre-
quency information. In order to match the information
of the LSWT neighborhood of low frequency subband,
the values of center and center neighborhood of the
template should have little change between each other
[30]. In this article, the template size is 3 x 3. In order
to highlight the center pixel of the window, a weighted
template is used, which is given as:

121
232
121

Wila,b) =

The IEOL can be used as clarity measure to determine
which coefficient is in focus. Suppose the source images
A and B are decomposed using LSWT, ff(x,y) and
fE(x,y) denote the low frequency coefficients of the
source image L (K = A, B) and the fused image F which
are located at (x, y) in the Lth decomposition level,
respectively. The IEOLL(x, y) denotes the IEOL mea-
surement of fL(x,y). The proposed IEOL-based fusion
rule can be described as follows:

fh(x,y)if : TEOL) (x,) > TEOL(x, y)

fi(ey) = {fg(x, y)if : IEOLL (x,y) < IEOLL(x,y) 19
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It means that coefficients with maximum IEOL mea-
surement are selected as the coefficient of the fused
image when subbands are compared in the LSWT
domain. For simplicity, we name this fusion rule as
‘IEOL-max’ rule in this article.

4.2, Selection of bandpass subband coefficients

The coefficients in the high frequency subbands repre-
sent the detailed component of the source image. In tra-
ditional multiresolution fusion algorithms, such as
[9,31,32], the multiresolution coefficients with larger
absolute value are considered as sharp brightness
changes or salient features in the corresponding source
image, such as the edges, contours, and region bound-
aries, and so on. Thus, for the high frequency subbands
coefficients, the most commonly used selection principle
is the ‘absolute-maximum-choosing’ scheme (simplified
and named ‘Coef-abs-max’) without taking any consid-
eration of lowpass subband coefficients, that is, all the
information in the lowpass subband is neglected.

Furthermore, in many practical applications, images
are distorted by noise during the acquisition or trans-
mission process. But almost all the traditional MST-
based image fusion algorithms are designed to transfer
the high frequency information from the input images
to the fused image. It is worth noting that much of the
image noise is also related to the high frequencies and
may cause miscalculation of sharpness value. As a result,
the fused images obtained by these methods are more
noisy than the source images, and the performances are
degraded. To make up for the deficiencies of traditional
MST-based image algorithms, in our proposed method,
after decomposing the original images using LSWT, we
design a new image fusion rule based on multiscale
products.

As we know, the HVS is highly sensitive to the local
image contrast level. To meet this requirement, Toet
and Ruyven developed the local luminance contrast in
their research in CP [17]. It is defined as

L'—Ly AL
Ly Ly

R = (19)

where L’ denotes the local gray level, Lp- is the local
brightness of the background and corresponds to the
low frequency component. Therefore, AL can be taken
as the high frequency component.

Based on the above idea, many different forms of con-
trast measurement have been proposed in MST domain
and provide better performance than the ‘Coef-abs-max’
scheme [18,19,25]. However, in those contrast measure-
ments, the value (or absolute value) of a single pixel of
the high frequency sub-image, namely the coefficient of
the high frequency subband when the source image is
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decomposed by the MST, is used as AL. In fact, the
value (or absolute value) of a signal pixel is very limited
in determining which pixel is from the clear part of the
sub-image. So, a pure use the value (or absolute value)
of a single pixel as the high frequency component is not
effective enough. We believe it will be more reasonable
to employ feature of the high frequency subband, rather
than the value (or absolute value) of pixel, as AL in the
contrast measurement in Equation (19).

Like the sharpness measure, the ISL, shown in Equa-
tion (16), can effectively represent the salient features
and sharp boundaries of an image. Pixels with larger
values of ISL, when the source images are compared
with each other, are more possible in focus. That means
the ISL can successfully determine which pixel is in the
focus. Therefore, it is reasonable to utilize ISL as one
type of feature of the high frequency subband to repre-
sent AL in contrast measurement.

If we use ISL%/(x, y) (I =1, 2,...,L) to denote the ISL
located at (x, y) in the dth direction (d = 1, 2, 3) and /th
scale. The feature contrast R*!(x, y) is defined as

, IS (x, y)
R = ity

where f' (x, ) denotes the low frequency coefficients
located at (x, y) in the /th scale. In order to improve the
robustness of the contrast to the noise of the low fre-
quency subband, the feature contrast can be modified as

(20)

d,l
sty =IS} (x,y) 21)
G = i)
where
- 1
flayy= 323 fx+my+n) (22)

In Equation (22) the local area size m x n may be 3 x
3 or 5 x 5. In practice, to reduce the computation com-
plexity and the influence of low frequency subband
noise, f/(x, y) can be substituted with the coarsest low-
pass subband image f“(x, ).

To further conform to the characteristics of HVS, the
feature contrast must be improved using the ‘local-based’
idea, thus a local neighborhood-based feature contrast is
proposed in this article. It can be represented as

SRM(x,y) =) Y Wala, b)S"(x +a,y +b) (23)
a b

where W), is a template of size 3 x 3. For the high fre-
quency subband, it contains high frequency information.
In order to match the information of the LSWT neigh-
borhood of high frequency subband, the values of center
and center neighborhood of the template should have
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relative large change between each other [30]. In this
article, a weighted template based on city-block distance
is used, which is

121
242
121

Wh(a, b) =

In order to make up for the deficiencies of the tradi-
tional MST-based image fusion algorithm, which cannot
restrain the noise influence, a new image fusion scheme
is proposed in this article. In this fusion method we
incorporate the merits of interscale dependencies, which
can amplify the significant features, dilute noise and dis-
tinguish edge structures from noise more effectively,
into the multifocus image fusion technique. In contrast
to the traditional MST-based fusion methods, we design
the fusion rule of the high frequency subbands based on
the multiscale products instead of the wavelet coeffi-
cients. According to the formulae (23), the local feature
contrast of multiscale products can be defined as

MSRY(x,y) = 3 ) Wi(a, b)MPSH (x +a,y +b) (o)

a b
where
PSL%(x,
MPS‘“(x, y) _ . (.X' )’) (25)
fHxy)
PSLH(x,y) = [8P4f(x,y) — 4PHf(x = 1,7) — 4Pf(x + 1,y)|
+ |8Pd”f(x, y)— 4Pd’1f(x/y -1)- 4Pd’lf(x/ Y+ 1)‘
(26)

+

2Pd'1f(x,y) — Pd'lf(xf Ly+1)—P¥f(x+1,y— l)‘
+ [2PHf () — PUF = 1y = 1) = PH G+ Ly + 1))

where PSL%!(x, y) denotes the ISL of multiscale pro-
ducts located at (x, y) in [th scale and dth direction; p
flx, y) and MPS®/(x, y) are the corresponding multiscale
products and the feature contrast.

Therefore, the proposed selection principle for the
high frequency subband coefficients can be described as
follows:

FHx, y) if - MSRY!(x,y) > MSRE! (%, 7)

; 27
e y) if  MSRY (5 9) < MSRE () 27

xy) =

The local feature contrast of multiscale products can-
not only effectively represent the salient features and
sharp boundaries of image, but also effectively avoid the
noise influence. A large value of the feature contrast
means more high frequency information. So the pro-
posed fusion scheme can extract more useful detail
information from source images and inject them into
the fused image. For simplicity, we name this fusion
rule as ‘MSP-con-max’ in this article.
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5. Experimental results and analysis

To evaluate the performance of the proposed fusion
method, several experimental results are presented in
this section. Experiments are performed on four sets of
256-level images: clean ‘pepsi’ (of size 512 x 512), clean
‘flower’ (of size 384 x 512), clean ‘barb’ (of size 512 x
512) and noisy ‘pepsi’ (of size 512 x 512). All of them
are registered perfectly and shown in Figure 5a-f,h-j,
respectively.

In order to show the advantages of the new image
fusion method, we establish three steps to demonstrate
that the proposed image fusion method outperforms
other methods. First, ‘MSP-con-max’ is compared with
‘Coef-abs-max’, the “Traditional-contrast-max’ ("Tra-con-
max’), and the proposed ‘Feature-contrast-max’ ('Fea-
con-max’), which is designed according to Equation
(23), to demonstrate the performance of the ‘MSP-con-
max’ rule. For the “Tra-con-max’, the absolute value of a
single pixel of the high frequency subband is used as AL
in the contrast measurement. Second, the proposed
image fusion algorithm is compared with DWT-simple-
based method (Method 1), LSWT-simple-based method
(Method 2), and NSCT-simple-based method (Method
3), in all of which the low frequency subband coeffi-
cients and the high frequency subband coefficients are
simply merged by the ‘averaging’ scheme and the ‘Coef-
abs-max’ scheme, respectively. For comparison purposes,
the proposed algorithm is also compared with other four
fusion algorithms (namely Methods 4-7). In Methods 4
and 5, LSWT is used as the MST method, and the
‘TEOL-max’ fusion rule is employed to merge the low
frequency subband coefficients. For fusion of the high
frequency subband coefficients, the ‘Coef-abs-max’ and
‘Tra-con-max’ fusion rules, are respectively used in
Methods 4 and 5. For Method 6, the fusion rules of [7],
which have been deigned based on the feature of the
multiscale products and pulse coupled neural network
(PCNN) [7], are respectively used to merge the low and
high frequency subband LSWT coefficients (We name
the method as ‘LSWT-PCNN’). In this method, the
PCNN is a model based on the cats primary visual cor-
tex. It is characterized by the global coupling and pulse
synchronization of neurons and has been proven suita-
ble for image processing [33]. In Method 7, the NSCT is
used as the MST method, and our proposed TEOL-max’
and ‘MSP-con-max’ are, respectively, employed to fuse
the low and high frequency subbands coefficients (We
name it as ‘NSCT-MSP-Con’). For multiscale scale pro-
ducts of NSCT, it can be defined just like Equation (13).

In all of these methods, the ‘db5” and ‘db53” wavelets,
together with a decomposition level of 3 are used in
DWT-based and LSWT-based methods (including
Methods 2, 4, 5, 6 and our proposed method), respec-
tively. Three decomposition levels are also used in the
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which are partly defocused and partly in good-focus.

(f) (8) (h)

Figure 5 Source images for multifocus image fusion. (a) and (b), (c) and (d), are the multifocus clean image pairs; (h)-(j) are the originals
with blur at the right, left and middle, respectively, and (g) is the reference image of (h)-(j); (e) and (f) are the multifocus noisy image pairs,

(i) )

NSCT-based method (including NSCT-simple and
NSCT-MSP-Con). All of these methods are used to fuse
the multifocus clean images. Third, multifocus noisy
images, as shown in Figure 5e,f, are fused by above dif-
ferent methods.

5.1. Contrast-based fusion rule in LSWT domain

In this section, we will show the performance of ‘Fea-
con-max’ and ‘MSP-con-max’ fusion rules. In order to
demonstrate the advantages of the new fusion rule,
‘MSP-con-max’ and ‘Fea-con-max’ are compared with’-
Tra-con-max’ and ‘Coef-abs-max’ on high frequency
subbands in LSWT domain.

Figure 6a-d shows the high frequency sub-images of the
labeled region of Figure 5a,b,e,f in LSWT domain. One
can see that the values of coefficients in clear part are
greater than those of blurry part, even though the source
image is in a noisy environment. That is why typical ‘Coef-
abs-max’ is used in MST-based fusion algorithms.

Figure 6e-h shows the multiscale products of Figure
6a-d, respectively. From Figure 6g,h, we can find that

the multiscale products of LSWT can distinguish edge
structures from noise effectively. Figure 6i-1 are the deci-
sion maps, in which the coefficients selected from the
image in Figure 6b are represented by white color,
whereas the coefficients from Figure 6a are represented
by black color. Since labeled part of Figure 6b is clearer
than that of Figure 6a, the optimal decision map should
be in white color in the whole decision map, which
means all coefficients should be selected from Figure 6b.
However, the decision maps of ‘Coef-abs-max’ rule and
‘Tra-con-max’ rule, shown in Figure 6i,j, indicate that
these rules do not select the coefficients from the clear
part completely even though ‘“Tra-con-max’ shows better
performance than ‘Coef-abs-max’. Figure 6k, indicates
that the proposed feature contrast is more reasonable
than the traditional contrast. It is also proven that
applying feature such as ISL to the contrast is more rea-
sonable than the absolute value of a single pixel.

Figure 6m-p shows the decision maps, in which the
white color indicates that coefficients are selected from
Figure 6d, otherwise selected from Figure 6¢. From

(i) 8) (k) M

Figure 6 Comparison of Coef-abs-max, Tra-con-max, Fea-con-max, and MSP-con-max rules. (a), (b) and (c), (d) are the high frequency
subbands of the labeled parts of Figure 5a,b and Figure 5ef; (e), (f) and (g), (h) are the multiscale products of the Figure 6a-d, respectively; (i)-
(I) are decision maps of Coef-abs-max, Tra-con-max, Fea-con-max, and MSP-con-max rules in fusion (a) and (b); (m)-(p) are decision maps of
Coef-abs-max, Tra-con-max, Fea-con-max, and MSP-con-max rules in fusion (c) and (d).

(m) (n) (0) (p)
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these figures we can see that the proposed ‘MSP-con-
max’ rule do well in fusion of the multifocus noisy
images. All of these demonstrate that the proposed
fusion rule cannot only select the coefficients of the
fused image properly but also restrain the influence of
noise effectively.

The results of objective assessment are shown in Fig-
ure 7a,b. Figure 7a denotes the performance of different
fusion rules in fusion of the multifocus clean image, and
Figure 7b presents the performance of the different
fusion rules in fusion of the multifocus noisy image. In
Figure 7a, ‘From a’ and ‘From b’ denote the number of
pixels that come from Figure 6a,b, respectively.
Obviously, the proposed method is superior to others
because the number of pixels that come from Figure 6b
is the largest. As a result, the fused image is closer to
the good-focus source image when using our proposed
fusion rule, compared to using ‘Coef-abs-max’ rule, and
‘Tra-con-max’ rule, when the source images are noise-
free. From Figure 7b, the same conclusion can be drawn
that the proposed ‘MSP-con-max’ fusion rule outper-
forms the traditional fusion rules, when the source
images are in a noisy environment.

5.2. Fusion of clean multifocus images

In this section, the experiments are performed on three
pairs of multifocus clean images, which are shown in
Figure 5a-d,h-j, respectively. All the experiments are
implemented in Matlab7.01 and on AMD Athlon(tm)
2.4 GHz with 2 G RAM. For further comparison,
besides visual observation, two objective criteria are
used to compare the fusion results. The first criterion is
the mutual information (MI) [34]. It is a metric defined
as the sum of mutual information between each input
image and the fused image. The second criterion is Q"
¥ [35] metric, proposed by Xydeas and Petovic, which
considers the amount of edge information transferred
from the input images to the fused image. This method
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uses a Sobel edge detector to calculate strength and
orientation information at each pixel in both source and
the fused images. For both criteria, the larger the value,
the better is the fusion result.

The first experiment is performed on the ‘pepsi’ multi-
focus clean images which have been registered perfectly.
Figure 8 illustrates the fusion results obtained by the
above mentioned eight different methods (including the
proposed method). For a clearer comparison, the differ-
ence images between the fused images, which are fused
results using Methods 1-7 and our proposed method,
and the source image in Figure 5b are given in Figure
8i-p. To make better comparisons, Figure 8q-x illus-
trates parts of the labeled regions of Figure 8i-p. For the
focused regions, the difference between the source
image and the fused image should be zero. So the lower
residue features in the difference image mean the better
the fusion method transfers information of the source
images to fused image. Focusing on the images which
are shown in Figure 8q-s, one can obviously find that
the fused images obtained by the LSWT method
(Method 2) and the NSCT method (Method 3) are
clearer than the DWT fused result. It is proven that
shift-invariant methods such as LSWT and NSCT can
overcome the pseudo-Gibbs phenomena successfully
and improve the quality of the fused image around
edges. Figure 8t indicates that the proposed fusion rule
of the low frequency subband is more reasonable and
useful in fusion multifocus clean images when compared
with the ‘averaging’ fusion scheme. From Figure 8u, we
can find that the “Tra-con-max’ fusion scheme does not
extract almost all the useful information of the source
images and nor transfer it to the fused image. However,
Figure 8v,x shows that fused images attained by our pro-
posed method and Methods 6 and 7 are with better
visual quality. Almost all of the useful information of
the source images has been transferred to the fused
images, and meantime, fewer artifacts are introduced

7000
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4000 B Fromb
3000 M Froma

Pixels number

2000
1000

Coef-abs— Tra-con- Fea-con- MSP-con-
max max max max

6000

5000

2000

H

£ 4000

2 W Fromd
~ 3000

— W Fromc
i)

2

Z

1000

Coef-abs— Tra-con- Fea-con- MSP-con-
max max max max

(a)

-

Figure 7 Performance of different fusion rules: (a) performance of different fusion rules when the source images are clean; (b) performance
of different fusion rules when the source images are in a noisy environment.

(b)
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Figure 8 The ‘Pepsi’ multifocus image fusion results: (a)-(h) fused images using Methods 1-7 and the proposed method, respectively; (i)-(p)
difference images between Figures 5b and 8a-h; (q)-(x) are the parts of the labeled regions of Figure 8i-p.

(v) (w) (x)

during the fusion process. All of these demonstrate the
proposed feature contrast is more reasonable and useful
than the traditional contrast.

In order to further evaluate the fusion performance,
the second experiment is performed on another set of
multifocus clean images, which are also registered per-
fectly and shown in Figure 5c,d. The resultant fused
images are shown in Figure 9a-h. Again, for clearer
comparison, the difference images between the fused
images, which are fused results using Methods 1-7 and
our proposed method, and the source images which are
shown in Figure 5d are given in Figure 9i-p. Parts of the
labeled regions of Figure 9i-p are extracted and put into
Figure 9q-x. Figure 9q-x indicates that the proposed
method and NSCT-MSP-Con-based method can extract
almost all the good-focalized parts of source images and
preserve the detailed information better than the other
methods. Moreover the proposed method provides simi-
lar performance compared with NSCT-MSP-Con-based
method, even though the NSCT is more suitable for
image fusion, i.e., because the fusion rules, which are
designed in this article, are every effective and can

extract almost all the useful information of the source
images and transfer it to the fused image, no matter the
image fusion method is in the LSWT domain or in
NSCT domain.

Three source images with different blur regions, as
shown in Figure 5h-j, are used to evaluate the fusion
performance in the third experiment. To make better
comparisons, the difference images between the fused
images and the reference image, which are shown in
Figure 5g, are given in Figure 10i-p. For clearer compar-
ison, the labeled parts of Figure 10i-p are extracted and
shown in Figure 10q-x. From Figure 10q-x, the same
conclusion can be drawn that the proposed method out-
performs others methods.

Furthermore, the values of objective criteria on mutual
information (MI), Q“# and the execution time of Fig-
ures 8a-h, 9a-h, and 10a-h are listed in Tables 1, 2, and
3, respectively. We observe that the fused images pro-
duced by NSCT-simple-based method are slightly better
than the LSWT-simple fusion results, and all of them
outperform the DWT approach in terms of MI and
Q*#*. However, the NSCT is time consuming, which
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Figure 9 The ‘Flower’ multifocus image fusion results: (a)-(h) fused images using Methods 1-7 and the proposed method, respectively; (i)-

(i)

() (h)

(p) difference images between Figures 5d and 9a-g; (q)-(x) are the parts of the labeled regions of Figure 9i-p.
.

impedes its realtime application. As the modified version
of LWT, LSWT consumes more time than DWT, that is
because LSWT possesses the shift-invariance, and needs
to process more dates of the image during the fusion
process.

Form Tables 1, 2, and 3, we find that the NSCT-MSP-
Con-based method provides similar performance com-
pared with our proposed method. However, the NSCT-
MSP-Con is more time consuming than our proposed
method, because of its multi-direction and complexity.
By considering both the fusing results and computing
complexity, we utilize LSWT as the MST method in our
proposed algorithm. For the LSWT-PCNN-based
method, it is also more time consuming than the pro-
posed method, because the PCNN neuron is very com-
plex and it needs iterative operation to obtain pleasing
fusion results. Moreover, the number of parameters of
each neuron which need to be adjusted is large and they
affect each other greatly. In image processing with
PCNN, people often assign the same values to the corre-
sponding parameters of each neuron. They are all cho-
sen with experiments or experiences. For the visual
system of eyes, it is impossible that all the parameters of
neurons have the same value. They should be related to
the situation of the neuron cell. All of these disadvan-
tages significantly compromise the performance of

LSWT-PCNN. Relative to LSWT-PCNN, our proposed
method not only considers the property of HVS, which
is highly sensitive to the local image contrast level, but
also possesses some advantages such as simple calcula-
tion, high efficiency, etc. So our proposed method can
provide better performance than LSWT-PCNN.

The values of Tables 1, 2, and 3 demonstrate that the
proposed image fusion algorithm significantly outper-
forms other approaches (except NSCT-MSP-Con-based
method) in terms of MI and Q*%f. Moreover, since
reference (everywhere in focus) image of Figure 5h-j, as
shown in Figure 5g, is available, performance compari-
son of different methods can be made using root mean
square error (RMSE). The values of RMSE between Fig-
ure 1la-h and Figure 5g are given in Table 3. From
Table 3, we can find that the objective evaluation results
of RMSE coincide with the MI and Q*#F evaluation
results very well.

5.3. Fusion of noisy multifocus images

In order to evaluate the performance of the proposed

method in a noisy environment, the input multifocus

images ‘pepsi’, as shown in Figure 5e,f, have been addition-

ally corrupted by Gaussian noise with deviation ¢ = 0.01.
In following experiment, since reference (everywhere-

in-focus) images of the scenes under analysis are not
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Figure 10 There ‘Barb’ images fusion results: (a)-(h) fused images using Methods 1-7 and the proposed method, respectively; (i)-(p)
difference images between Figures 5g and 10a-h; (q)-(x) are the parts of the labeled regions of Figure 10i-p.
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available, performance comparison of the proposed
method cannot be made using RMSE based metrics for
this kind of image. Therefore, image fusion performance
evaluation measures which do not require the availabil-
ity of an ideal image have to be employed. For compari-
son, besides visual observation, objective criteria on MI
and Q*%'F are used to evaluate how much information
of the multifocus clean images, which are shown in

Table 1 Performance of different fusion methods on
precessing Figure 5a,b

Figure 5a,b, is contained in the fused images. However,
the objective criteria on MI and Q**/* cannot evaluate
the performance of these fusion methods in terms of
the input/output noise transmission. For further com-
parison, the improvement in terms of peak signal to
noise ratio (PSNR), proposed by Loza et al. [6], is
adopted to measure the noise change between the fused

image and source noisy image. Let G,%f denotes the

Table 2 Performance of different fusion methods on
precessing Figure 5¢,d

Methods M ol Time (s) Methods Mi Q*** Time (s)
DWT-simple 64711 0.7282 2.0910 DWT-simple 5.0938 0.6643 1.9350
LSWT-simple 6.7608 0.7544 5.30230 LSWT-simple 54225 0.6919 4.3480
NSCT-simple 6.7356 0.7582 300.0400 NSCT-simple 55337 0.6953 210.1170
LSWT-IEOL 7.1506 0.7643 7.5430 LSWT-IEOL 54837 0.6902 6.0200
LSWT-Tra-Con 72098 0.7671 10.5260 LSWT-Tra-Con 5.9649 0.7008 84400
LSWT-PCNN 74010 0.7735 180.8200 LSWT-PCNN 6.1962 0.7049 1336140
NSCT-MSP-Con 7.4040 0.7753 363.0860 NSCT-MSP-Con 6.1101 07171 265.8900
Proposed method 74034 0.7746 284390 Proposed method 6.8804 0.7169 19.4900
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Table 3 Performance of different fusion methods on
precessing Figure 5h-j

Methods Mi sl RMSE Time (s)
DWT-simple 7.0350 0.8217 0.0075 5.0590
LSWT-simple 7.6896 0.8471 0.0062 9.0900
NSCT-simple 79574 0.8512 0.0058 452.2690
LSWT-IEOL 82163 0.8501 0.0053 11.4980
LSWT-Tra-Con 82687 0.8585 0.0050 144680
LSWT-PCNN 8.6596 0.8606 0.0046 2774470
NSCT-MSP-Con 9.1801 0.8673 0.0044 520.1610
Proposed method 9.1845 0.8681 0.0040 314180

noise variance in the fused output, the improvement in
terms of PSNR is formulated as:

255 255 2
APSNR = 10(log ~," —log ")) = 10log GZ (28)
Un'f Oy Un,f

For the criteria of APSNR, the larger the value, the
less noise of fused image is introduced from the original
noisy image, and the better is the fusion result.

Figure 11a-h illustrates the fusion results obtained by
the above different methods. For a clearer comparison,
Figure 11i-p illustrates the parts of the fusion results. By
looking at the image examples shown in Figure 11i-],
one can find that the edges information of the fused
images, which are fused results using Methods 1-4,
respectively, are immersed into noise. That is because
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all these fusion methods are designed to transfer the
high frequency information from the input images into
the fused image. It is worth noting that much of the
image noise is also related to high frequencies. As a
result, the fused images obtained by these methods are
more noisy than the source images. From Figure 11m,
we can see that the edges of Figure 11m are not clearer
than Figure 11n-p, because the noise of the source
images causes miscalculation of the contrast values.
Therefore, in the presence of noise, the performance of
Methods 1-5 may not be as good as those in the noise-
less environments. Figure 11n indicates that the Method
6 can reduce the noise level to some extent, but the
edges information of the fused image is not clearer com-
pared with Figure 110,p, which are fused by the Method
7 and our proposed algorithm.

Furthermore, Table 4 gives the quantitative results of
the Figure 11. From Table 4, we observe that different
fusion methods appear to provide different image fusion
performance and the proposed scheme outperforms the
other seven image fusion algorithms in terms of larger
MI, and Q*# quality. And the values of APSNR indi-
cate that the proposed fusion rule of the high frequency
subband is more reliable, robust and stable than other
fusion rules.

6. Conclusion
In this article, a new multifocus image fusion algorithm
based on feature contrast of multiscale products is

(m) (n)
Figure 11 The noisy ‘pepsi’ multifocus noisy image fusion results: (a)-(h) fused images using Methods 1-7 and our proposed method,
respectively. (i)-(p) are the parts of the corresponding regions of (a)-(h).

(0) (p)
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Table 4 Performance of different fusion methods on
precessing Figure 5e,f

Methods Mi Q*F* APSNR
DWT-simple 16133 0.1533 -4.2930
LSWT-simple 17213 0.1581 -2.3292
NSCT-simple 1.7450 0.1673 -1.5841
LSWT-IEOL 1.7107 0.1640 -2.2970
LSWT-Tra-Con 1.7984 0.1728 -1.8413
LSWT-PCNN 1.9254 0.1810 -0.6025
NSCT-SMP-Con 1.9041 0.1781 -0.2334
Proposed method 1.9298 0.1845 -04136

proposed in LSWT domain. In the proposed algorithm,
a novel feature contrast of multiscale products, which
stands for edge features in high frequency sub-images in
LSWT domain, is developed and used as the fusion
scheme of the high frequency subbands. Three pairs of
clean multifocus images and one pair of noisy multifo-
cus images are used to test the performance of the pro-
posed image fusion method, respectively. The
experimental results demonstrate that the proposed
method outperforms the DWT-simple-based method,
the LSWT-simple-based method, LSWT-Traditional-
Contrast-based method, the LSWT-PCNN-based
method and the NSCT-simple-based method in terms
of both visual quality and objective evaluation, even
though the source images are in a noisy environment.
In the future, we will do more research on the fusion of
the noisy images, in order to carry out denoising and
fusion of noisy source images simultaneously. And that
will become the new trends to develop in image fusion
field in the future.
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