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Abstract

In this article, we propose a new feature which could be used for the framework of SVM-based language
recognition, by introducing the idea of total variability used in speaker recognition to language recognition. We
consider the new feature as low-dimensional representation of Gaussian mixture model supervector. Thus we
propose multiple total variability (MTV) language recognition system based on total variability (TV) language
recognition system. Our experiments show that the total factor vector includes the language dependent
information; what’s more, multiple total factor vector contains more language dependent information.
Experimental results on 2007 National Institute of Standards and Technology (NIST) Language Recognition
Evaluation (LRE) databases show that MTV outperforms TV in 30 s tasks, and both TV and MTV systems can achieve
performance similar to that obtained by state-of-the-art approaches. Best performance of our acoustic language
recognition systems can be further improved by combining these two new systems.

Keywords: language recognition, total variability (TV), multiple total variability (MTV), support vector machine, linear
discriminant analysis, locality preserving projection

1 Introduction
The aim of language recognition is to determine the lan-
guage spoken in a given segment of speech. It is generally
believed that phonotactic feature and spectral feature pro-
vide complementary cues to each other [1,2]. Phone recog-
nizer followed by language models (PRLM) and parallel
PRLM (PPRLM) approaches that use phonotactic informa-
tion have shown very successful performance [2,3]. The
acoustic method which uses spectral feature has the advan-
tage that it does not require specialized language knowl-
edge and is computationally simple. This article focuses on
the acoustic component of the language recognition sys-
tems. The spectral features of speech are collected as inde-
pendent vectors. The collection of vectors can be extracted
as shifted-delta-cepstral acoustic features, and then mod-
eled by Gaussian mixture model (GMM). The result was
reported in [4]. The approach was further improved by
using discriminative training that is named maxi-mum
mutual information (MMI). Several studies use support

vector machine (SVM) in language recognition to form
GMM-SVM system [5,6]. In language recognition evalua-
tion, MMI and GMM-SVM are primary acoustic systems.
Recently, total variability approach has been proposed

in speaker recognition [7,8], which uses the factor analy-
sis to define a new low-dimensional space that is named
total variability space. In contrast to classical joint factor
analysis (JFA), the speaker and the channel variability
are contained simultaneously in this new space. The
intersession compensation can be carried out in low-
dimensional space.
Actually, we can consider total variability approach as

a classical application of the probabilistic principal com-
ponent analysis (PPCA) [9]. The factor analysis of the
total variability approach can obtain useful information
by reducing the dimension of the space of GMM super-
vectors. That is all utterances could in fact be well
represented in a low-dimensional space. We believe use-
ful language information can be obtained by similar
front-end processes. Therefore we try to introduce the
idea of total variability to language recognition. We esti-
mate the language total variability space by using the
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dataset shown in Section 5, and we suppose that a given
target language’s entire set of utterances is regarded as
having been belonging to different language. Then, the
total factor vector is extracted by projecting an utter-
ance to the language total variability space. As in
speaker recognition, intersession compensation can also
be performed well on low-dimension total factor vector.
In our experiments, two intersession compensation
techniques–linear discriminant analysis (LDA) [6] and
locality preserving projection (LPP) [10-12]–are used to
improve the performance of language recognition.
In some previous studies [13,14], rich information is

obtained by using multiple reference models, such as
male and female gender-dependent models in speaker
recognition. Generally, there are abundant language data
for each target language in language recognition, and
the number of target languages is limited. Based on TV
language recognition system [12,15], we propose MTV
language recognition system where we use language-
dependent GMMs instead of universal background
model (UBM) in the process of language total variability
space estimation and total factor vector extraction. Our
experiments show that total factor vector (TV system)
includes the language dependent information; what’s
more, multiple total factor vector (MTV system) con-
tains more language dependent information.
This article is organized as follows: In Section 2, we

give a simple review of total variability, support vector
machines, and compensation of channel factors. In Sec-
tion 3, we apply total variability in language recognition.
In Section 4, the proposed language recognition system
is presented in detail. Corpora and evaluation are given
in Section 5. Section 6 gives the experimental results.
Finally, we conclude in Section 7.

2 Background
2.1 Total variability in speaker recognition
In speaker recognition, unlike in classical joint factor
analysis (JFA), the total variability approach defines a
new low-dimensional space that is named total variabil-
ity space, which contains the speaker and the channel
variability simultaneously. The total variability approach
in speaker recognition relaxes the independent assump-
tion between speaker and channel variability spaces in
JFA speaker recognition [16].
For a given utterance, the speaker and channel varia-

bility dependent GMM supervector is denoted in Equa-
tion (1).

M = mubm + Tw (1)

where mubm is the UBM supervector, T is total varia-
bility space, and the member of the vector w is total
factor.

We believe useful language information can be
obtained by similar front-end process. Thus we try to
apply total variability in language recognition.

2.2 Support vector machines
SVM [17] is used as a classifier after our proposed
front-end process in language recognition system. An
SVM is a two-class classifier constructed from sums of a
kernel function K(,):

f (x) =
N∑
i=1

αitiK(x, xi) + d (2)

where N is the number of support vectors, ti is the
ideal output, ai is the weight for the support vector xi,

ai >0 and
∑N

i=1 αiti = 0 . The ideal outputs are either 1

or -1, depending upon whether the corresponding sup-
port vector belongs to class 0 or class 1. For classifica-
tion, a class decision is based upon whether the value, f
(x), is above or below a threshold.

2.3 Compensation of channel factors
Compensating the variability from changes in speaker,
channel, gender, and environment are the key for the
performance of automatic language recognition systems.
In our proposed front-end process, the process of an
intersession compensation technique in spectral feature
domain is still adopted, which has been proposed for
speaker and language recognition in [18,19]. The adap-
tation of the feature vector ô(i)(t) is obtained by sub-
tracting from the original observation feature a value
that is a weighted sum of the intersession compensation
offset values.

ô(i)(t) = o(i)(t) −
∑
m

γm(t) ∗ Um ∗ y(i) (3)

where gm(t) is the Gaussian posterior probability of
each Gaussian mixture m of the universal background
model (UBM) for a given frame of an utterance. Um and
y(i) are about the intersession compensation related to
the mth Gaussian of UBM. Um is intersession subspace
and y(i) is channel factor vector. In our proposed lan-
guage recognition system, we use spectral feature after
compensation of channel factors.

3 Applying total variability in language
recognition
There is only one difference between total variability
space T estimation and eigenvoice space estimation in
speaker recognition [8,20]. All the recordings of a
speaker are considered as to belong to the same person
in the eigenvoice estimation. However, in the total
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variability space estimation, a given speaker’s entire set
of utterances is regarded as having been produced by
different speakers. If we suppose that a given target lan-
guage’s entire set of utterances is regarded as having
been produced by different languages, a common pool
of hidden variables acts as basis factors and represents
the utterances from different languages. Then, the pro-
cess of language total variability space estimation is
exactly the same as the process of total variability space
estimation and eigenvoice space estimation in speaker
recognition. The process is an iterative algorithm [21].
The use of the data which is the only difference is criti-
cal. Therefore, we suggest that all utterances of each tar-
get language had better be used to estimate language
total variability space.

3.1 Language total variability space estimation
For a given utterance, the language and channel variabil-
ity dependent GMM supervector can also be denoted as
Equation (1), because the process of language total
variability space estimation is exactly the same as the
process of total variability space estimation and eigen-
voice space estimation in speaker recognition. We can
consider the total factor vector model as a new feature
extractor that projects an utterance to a low rank space
T to get a language and channel variability dependent
total factor vector w. Space estimation can be imple-
mented by an iterative algorithm [21].

3.2 Language-dependent total variability space
estimation
In language total variability space estimation, total varia-
bility space is estimated relative to UBM, which is lan-
guage, speaker, channel, gender, and environment
independent. Some previous studies [13,14] show that
rich information can be obtained by using multiple
reference models. These studies suggest the possibility
of using language-dependent GMM instead of language-
independent UBM in language total variability space
estimation. We call language total variability space lan-
guage-dependent total variability space when the total
variability space is related to language-dependent GMM.
First, we train GMM model for each target language.

For L target languages, we train a GMM language model
for each target language using maximum likelihood (ML)
[22]. Then L language-dependent total variability spaces
are estimated by using those language dependent GMMs
instead of language-independent UBM. An utterance is
projected to L different T to get L total factor vectors; as
an example, the total factor vector according to Man-
darin GMM is illustrated by Equation (4). We combine L
total factor vectors to obtain one big multiple total factor
vector as Equation (5).

Mmandarin = mmandarin + Tmandarinwmandarin (4)

wMTV = [w1, w2, . . . , wmandarin, . . . ,wL] (5)

3.3 Intersession compensation
After the new feature extractor, the intersession com-
pensation can be carried out in low-dimensional space.
In our experiment, we use the linear discriminant analy-
sis (LDA) approach and locality preserving projection
(LPP) approach for intersession compensation.
3.3.1 Linear discriminant analysis
All of the total factor vectors of the same language are
recorded as the same class in linear discriminant ana-
lysis.

w∗ = Aw (6)

By LDA transformation in Equation (6), the total fac-
tor vector w is projected to new axes that maximize the
variance between languages and minimize the intra-class
variance. The matrix A is trained by using the dataset
shown in Section 5, and the matrix A is contained of
the eigenvectors of Equation (7).

Sbν = λSwν (7)

where l is the diagonal matrix of eigenvalues. ν is the
eigenvector corresponding to the non-zero eigenvalue.
The matrix Sb is the between class covariance matrix
and Sw is the within class covariance matrix.
3.3.2 Locality preserving projection
Locality preserving projection (LPP) [10,11] is different
from LDA which effectively preserves global structure
and linear manifold. LPP considers the manifold struc-
ture which is modeled by a nearest-neighbor graph. LPP
can gain an embedding that preserves local information.
In this way, the variability resulting from changes in
speaker, channel, gender, and environment may be
eliminated or reduced. Thus LPP can be used for inter-
session compensation.

w′ = ALPPw (8)

By LPP transformation matrix ALPP in Equation (8),
the total factor vector w is projected to w’ to preserve
local structure of the total factor vector.
First, for training LPP transformation matrix, we con-

struct the nearest-neighbor graph. Let G denotes a
graph with m nodes. The ith node corresponds to the
total factor vector wi. We put an edge between nodes i
and j, while i is among k nearest neighbors of j, or j is
among k nearest neighbors of i. In this article, k is set to
be 5. If nodes i and j are connected, let
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Eij = e−
(wi−wj)

2

t (9)

The justification for this choice of weights can be
traced back to [23].
Then, we compute the eigenvectors and eigenvalues

for generalized eigenvector problem:

WLWTa = θWDWTa (10)

where D is a diagonal matrix whose entries are col-
umn sums of E, Dij = ∑j Eji. L = D - E is the Laplacian
matrix. The ith row of matrix W is wi. Let a0, a1,..., aτ-1
be the solution to (10), ordered according to their eigen-
values, 0 ≤ θ0 ≤ θ1 ≤ ... ≤ θτ-1. Thus, the LPP transforma-
tion matrix is as follows:

ALPP = (a0, a1, . . . , aτ−1) (11)

4 The proposed language recognition system
The proposed TV and MTV language recognition sys-
tems contain three main processes, spectral feature
extraction, total factor vector extraction, SVM model
and language score calibration.
Figure 1 shows the proposed TV and MTV language

recognition systems, which contain the three main pro-
cesses. In Figure 1, the alphabet W is the member of the
total factor vector w. N is the dimension of each total
factor vector w. GMM1, GMM2, ... , GMML are Gaus-
sian mixture models for each target language.

4.1 Spectral feature extraction
The spectral feature in the system is 7 Mel-frequency
cepstral coefficients (MFCC) concatenated with shifted-
delta-cpectral (SDC) N-d-p-k feature, where N = 7, d =
1, p = 3, and k = 7, which is in total 56-dimension coef-
ficients each frame. This representation is selected based
upon prior excellent results with this choice, and the
improvement of adding direct coefficients with the C0
coefficient in this feature vector was studied in [24]. In
this article, spectral feature refers to this 56-dimension
feature. Nonspeech frames are eliminated after speech
activity detection and 56-dimension spectral feature is
extracted. Then feature warping [25] and cepstral var-
iance normalization are applied to the previously
extracted spectral feature such that each feature is nor-
malized to mean 0 and variance 1.

4.2 Total factor vector extraction
In our system, spectral feature after compensation of
channel factors is used. First, language total variability
space and language-dependent total variability spaces
are estimated. Then, we extract total factor vector as
shown in Figure 1. In our experiments, the number of
mixtures of UBM (or GMM) is 1024, and total variabil-
ity space T is a rectangular matrix of low rank with
dimension 1024*56 by 400. The dimension of w is 400.
The total factor vector w is a hidden variable, and can

be obtained as follows [8]:

w = (I + Tt�−1N(u)T)−1Tt�−1F(̂u) (12)

Figure 1 The proposed TV and MTV language recognition systems.
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We define N(u) as a diagonal matrix whose diagonal

blocks are NcI. F(̂u) is a supervector obtained by conca-

tenating all first-order Baum-welch statistics F̂c for an
utterance u. Σ is a diagonal covariance matrix estimated
during factor analysis training [20] and T is language
total variability space. Nc and F̂c are defined as follows:

Nc =
L∑
t=1

P(c|yt, Ω) (13)

F̂c =
L∑
t=1

P(c|yt, Ω)(y − mc) (14)

where L is the frames, c is the Gaussian index of C
mixture Gaussian components, P (c/yt, Ω) corresponds
to posterior probability of mixture component c gener-
ating the vector yt, and, mc is the mean of UBM mixture
component c.
Multiple total factor vector is extracted with similar

method by using language-dependent GMM instead of
language-independent UBM and using language-depen-
dent total variability space instead of language total
variability space as in Equation (4). Then, the multiple
total factor vector wMTV is a combination of w1, w2, . . .
, wmandarin, . . . , wL as shown in Figure 1 and Equation
(5). Actually, in multiple total variability language recog-
nition system, the combination of total factor vectors is
implemented after intersession compensation which is
shown in Section 3.3.

4.3 SVM model and language score calibration
Total factor vectors and multiple total factor vectors are
used as SVM features in our proposed TV and MTV
systems. Our experiments are implemented by using the
SVMTorch [26] with a linear inner-product kernel
function.
Calibrating confidence scores in multiple-hypothesis

language recognition has been studied in [27]. We
should estimate the posterior probability of each
hypotheses and make a maximum a posterior decision.
In standard SVM-SDC system [6], log-likelihood ratios
(LLR) normalization is applied as a simple backend
process and is useful. Suppose S = [S1 . . . SL]

t is the
vector of L relative log-likelihoods from the L target
languages for a particular utterance. Considering a flat
prior, a new log-likelihood normalized score S′

i is
denoted as:

S′
i = Si − log

⎛
⎝ 1
L − 1

∑
j�=i

eSj

⎞
⎠ (15)

A more complex full backend process is given [6,28],
LDA and diagonal covariance Gaussians are used to cal-
culate the log-likelihoods for each target language and
achieve improvement in detection performance. This
process transforms language scores with LDA, models
the transformed scores with diagonal covariance Gaus-
sians (one for each language), and then applies the
transform in Equation (15).
In this article, the backend process of the LDA and

diagonal covariance Gaussians is used in language
recognition system, because the backend process of the
LDA and diagonal covariance Gaussians is superior to
log-likelihood ratios normalization in our experiments.

5 Corpora and evaluation
The experiments are performed using the NIST LRE
2007 evaluation database. There are 14 target languages
in the corpora used in this article: Arabic, Bengali, Chi-
nese, English, Farsi, German, Hindustani, Japanese, Kor-
ean, Russian, Spanish, Tamil, Thai, and Vietnamese. The
task of this evaluation was to detect the presence of a
hypothesized target language for each test utterance.
The training data were primarily from Callfriend cor-
pora, Callhome corpora, Mixer corpora, OHSU corpora,
OGI corpora, and LRE07Train. The development data
consists of LRE03, LRE05, and LRE07Train. We use
equal error rate (EER) and the minimum decision cost
value (minDCF) as metrics for evaluation.

6 Experiments
First, total variability language recognition system (TV)
is experimented, then exports to multiple total variabil-
ity language recognition system (MTV).
Table 1 shows the results of the MMI system, the

GMM-SVM system and the TV and MTV systems with
the intersession compensation techniques of LDA and
LPP. EER and minDCF are observed. With the perfor-
mance comparison, it is observed that the two

Table 1 Results of the MMI system, GMM-SVM system
and the TV and MTV systems with the intersession
compensation techniques of LDA and LPP on the NIST
LRE07 30 s corpus

System EER (%) MinDCF

MMI (a) 3.62 3.78

GMM-SVM (b) 2.65 2.61

TV(LDA) (c) 3.15 2.61

TV(LPP) (d) 3.29 2.83

TV(LDA+LPP) (e) 2.78 2.36

MTV(LDA) (f) 2.42 2.24

MTV(LPP) (g) 2.83 2.53

MTV(LDA+LPP) (h) 2.32 2.11
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intersession compensation techniques of LDA and LPP
is effective for TV and MTV systems. The performance
is improved obviously when we use LDA and LPP
simultaneously. That is models with LDA and models
LPP are simultaneously used to score all test utterance.
Therefore we regard TV and MTV systems with LDA
and LPP simultaneously as our lastly proposed TV and
MTV systems. It is observed that the proposed TV and
MTV systems achieve performance similar to that
obtained by state-of-the-art approaches, which demon-
strates that our proposed systems are feasible. Then, we
compare the results of TV system to MTV system with
the same intersession compensation technique. We can
see that the system based on MTV produces better per-
formance than TV. It says multiple total factor vector
contain more language-dependent information. In our
language recognition systems for NIST 2007 LRE in 30s
tasks, the MTV system performs best.
Table 2 shows the results of the combination of the

MMI system, the GMM-SVM system, the TV system,
and the MTV system, in terms of EER and minDCF. As
we know, system fusion can exploit partial error decorr-
elations among the individual systems allowing for per-
formance gains over the separate systems. In language
recognition evaluation, MMI and GMM-SVM are pri-
mary acoustic systems. Generally, the combination of
the MMI system and the GMM-SVM system is the
given performance of acoustic system. Table 1 shows
that our proposed TV and MTV systems have been
effective. We believe that the TV and MTV systems
contain different language information comparing to
state-of-the-art systems, because total factor vector and
multiple total factor vector are new features for lan-
guage recognition. Thus we expect the TV and MTV
system can benefit the performance of combined system.
It leads to a relative improvement of 8.1% in EER and
16.5% in minDCF combining TV system with the MMI
and GMM-SVM systems. Further more, we obtain rela-
tive improvement of 12.3% in EER and 11.4% in
minDCF by adding MTV system to the combined sys-
tem of the MMI, GMM-SVM, and TV systems. In all,
the two systems lead to relative improvement of 19.4%
in EER and 26.0% in minDCF comparing to the

performance of the combination of the MMI and
GMM-SVM systems.
Figure 2 shows DET curves of the MMI system,

GMM-SVM system, the TV system and the MTV sys-
tem. DET curves of the combination of each system are
also shown in Figure 2. It is observed that the relative
improvement of language recognition performance is
observable with our proposed approaches.

7 Conclusions
In this article, multiple total factor vector are proposed
for language recognition based on using total factor vec-
tor in language recognition. Our experiments show that
total factor vector includes the language dependent
information. Further more, multiple total factor vector
contains more language dependent information. Com-
paring to popular acoustic system (MMI and GMM-
SVM system) in language recognition, those two new
language features contain different language dependent
information. We believe it is attractive that our pro-
posed features can improve our best acoustic perfor-
mance of the combination of the MMI and GMM-SVM
systems. In our future study, different approaches of
intersession compensation will be carried on the new
features.

Acknowledgements
This study was partially supported by the National Natural Science
Foundation of China (Nos. 10925419, 90920302, 10874203, 60875014,
61072124, 11074275).
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