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enforce sparsity in signal and image processing
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Abstract

In this review article, we propose to use the Bayesian inference approach for inverse problems in signal and image
processing, where we want to infer on sparse signals or images. The sparsity may be directly on the original space
or in a transformed space. Here, we consider it directly on the original space (impulsive signals). To enforce the
sparsity, we consider the probabilistic models and try to give an exhaustive list of such prior models and try to
classify them. These models are either heavy tailed (generalized Gaussian, symmetric Weibull, Student-t or Cauchy,
elastic net, generalized hyperbolic and Dirichlet) or mixture models (mixture of Gaussians, Bernoulli-Gaussian,
Bernoulli-Gamma, mixture of translated Gaussians, mixture of multinomial, etc.). Depending on the prior model
selected, the Bayesian computations (optimization for the joint maximum a posteriori (MAP) estimate or MCMC or
variational Bayes approximations (VBA) for posterior means (PM) or complete density estimation) may become
more complex. We propose these models, discuss on different possible Bayesian estimators, drive the
corresponding appropriate algorithms, and discuss on their corresponding relative complexities and performances.
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1 Introduction
In many generic inverse problems in signal and image
processing we want to infer on an unknown signal f(t)
or an unknown image f(r) with r = (x, y) through an
observed signal g(s) or an observed image g(s) related
between them through an operator H such as convolu-
tion g = h * f or any other linear or non linear transfor-
mation g = Hf . When this relation is linear and we have
discretized the problem, we arrive to the relation:

g = Hf + ε, (1)

where f = [f1, ..., fn]’ represents the unknowns, g = [g1,
..., gm]’ the observed data, � = [�1, ..., �m]’ the errors of
modeling and measurement and H the matrix of the
system response. We may note that, even if the noise
could be neglected (� = 0) and the matrix H invertible
(m = n), in general, the solution f̂ = H−1g is not forcibly
the good solution, because this solution may be too sen-
sitive to small changes in the data due to the ill-condi-
tioning of this matrix. for the general case of m ≠ n, one
tries to obtain a regularized solution, for example by

defining it as the optimizer of a two parts criterion

f̂ = argmin
f

{J(f ) = ∥∥g − Hf
∥∥2 + λ

∥∥f∥∥2} (2)

which is given by f̂ = [HH′ + λI]−1H′g. When the reg-
ularization parameter l = 0, one gets a generalized
inverse f̂ = [HH′]−1H′g and when H invertible, one gets

the normal inverse solution f̂ = H−1g. The regulariza-
tion theory has been developed since the pioneer work
of Tikhonov [1] and Tikhonov and Arsénine [2] who
had introduced a quadratic regularization terms to
account for some prior properties of the solution
(smoothness). Since that, many different regularization
terms have been proposed. In particular, in place of L2

norm: L2(f ) =
∥∥f∥∥22 =

∑
j

∣∣fj∣∣2, it has been proposed to

use the L0 norm L0(f ) =
∥∥f∥∥0 =

∑
j δ(fj) or the L1 norm

L1(f) = ||f||1 = Σj |fj| to enforce the sparsity of the solu-
tion [3-11]. Then, due to the fact that L0(f) is not con-
vex and L1(f) is convex, but not continuous, the
optimization of a criterion with these expressions
becomes more difficult than the L2 norm case. For this
reason, there was a great number of works whoCorrespondence: djafari@lss.supelec.fr
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specialized in proposing algorithms for the optimization
of such criteria.
Interestingly, defining the solution of the problem (1)

as the optimization of a criterion with two parts can be
assimilated to a maximum a posteriori (MAP) solution
in a Bayesian approach where the first term of the cri-
terion (2) can be related to the likelihood and the sec-
ond term to a prior model as we will see in the
following where the main objective is to show how the
Bayesian approach can go farther than the regularization
in at least the following aspects:

• A better account for the noise term characteristics;
• A better and easier way for translating the prior
knowledge and in particular the sparsity;
• New tools for assessing the regularization para-
meter, a great subject of discussion for all those
work with regularization theory;
• New solutions and new tools for doing computa-
tions (optimizations and integrations).

1.1 The Bayesian approach
The Bayesian inference approach is based on the poster-
ior law:

p(f
∣∣g, θ1, θ2 ) =

p(g
∣∣f , θ1) p(f |θ2 )

p(g |θ1, θ2 )
∝ p(g

∣∣f , θ1 )p(f |θ2 )(3)

where the sign ∝ stands for “proportional to”, p(g|f,
θ1) is the likelihood, p(f|θ2) the prior model, θ = (θ1, θ2)
are their corresponding parameters (often called the
hyper parameters of the problem) and p(g|θ1, θ2) is
called the evidence of the model.
This general Bayesian approach is illustrated as fol-

lows:

In this approach, the likelihood p(g|f, θ1) summarizes
our knowledge about the noise and the model linking
the observed data g to the unknowns f and the prior
term p(f|θ2) summarizes our incomplete prior knowl-
edge about the unknowns and the posterior law p(f|g, θ)
combines these two terms and contains all our state of
knowledge about the unknowns f after accounting for
the prior and the observed data.
As a very simple example, when the noise is assumed

to be Gaussian, then the MAP solution

f̂ = argmaxf {p(f
∣∣g, θ )} is obtained as the optimizer of

the criterion J(f) = ||g - Hf||2 + lΩ(f) where the expres-
sion of Ω(f) depends on the prior law. When the prior

knowledge is translated as a Gaussian probability law,

then �(f ) =
∥∥f∥∥22 and when it is translated as a Laplace

probability law, then Ω(f) = ||f||1 [12-14].
The first interest of using the Bayesian approach to

the regularization approach is to have new tools for
handling the hyper parameters [15].

1.2 Full Bayesian approach
When the parameters θ have to be estimated too, we
can assign them a prior p(θ|θ0) with fixed values for θ0
(often called hyper-hyper-parameters) and express the
joint posterior

p(f , θ
∣∣g, θ0 ) =

p(g
∣∣f , θ1 )p(f |θ2 )p(θ |θ0 )

p(g |θ0 )
(4)

and then try to estimate them jointly, for example
joint MAP [16]:

(̂f , θ̂) = argmax
(f ,θ)

{p(f , θ ∣∣g, θ0 )} (5)

This Full Bayesian approach is illustrated as follows:

One may also first integrate out one of them, for
example f to obtain

p(θ
∣∣g, θ0 ) =

∫
p(f , θ

∣∣g, θ0 ) df , (6)

estimate θ, for example by

θ̂ = argmax
θ

{p(θ ∣∣g, θ0 )} (7)

and then use it for the estimation of the other one

using p(f
∣∣g, θ̂ ).

This approach (called sometimes type II maximum
likelihood) is illustrated as follows:

However, very often this marginalization cannot be
done analytically and so the optimization for the estima-
tion of θ cannot be achieved. In such cases, the expecta-
tion-maximization (EM) algorithms can be helpful [17].
Considering g as incomplete data, f as hidden variable,
(g, f) as complete data and noting ln p(g|θ) as
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incomplete data log-likelihood and ln p(g, f|θ) complete
data log-likelihood, the classical EM algorithm writes:⎧⎨⎩E - step : q(θ , θ̂

(k)
) = E

p(f |g, θ̂ (k)
)
{ln p(g, f |θ )}

M - step:̂θ
(k)

= argmaxθ

{
q(θ , θ̂

(k−1)
)
} (8)

The Bayesian version (Bayesian EM) is not very far
and differs only by the introduction of p(θ):⎧⎨⎩E - step : q(θ , θ̂

(k)
) = E

p(f
∣∣∣g,̂θ (k)

)
{ln p(g, f |θ ) + ln p(θ)}

M - step : θ̂
(k)

= argmaxθ

{
q(θ , θ̂

(k−1)
)
} (9)

This is illustrated as follows:

As we mentioned before, one of the main steps in the
Bayesian approach is the prior modeling which has the
role of translating our prior knowledge on the unknown
signal or image in a probability law. Sparsity is one of
the prior knowledge we may translate. The main objec-
tive of this article is to see what are the different
possibilities.

1.3 Prior modeling
In this article, we propose different prior modeling for
signals and images which can be used in a Bayesian
inference approach in many inverse problems in signal
and image processing where we want to infer on sparse
signals or images. The sparsity may be directly on the
original space or in a transformed space (see Figures 1,
2, 3, and 4). In this article, we consider the sparsity
directly in the original domain.
The prior models discussed are the following:
- generalized Gaussian (GG) with Gaussian (G) and

Laplace or double exponential (DE) as particular cases;
- symmetric Weibull (W) with symmetric Rayleigh (R)

and again the DE as particular cases;
- Student-t (St) with Cauchy (C) as particular case;

- Elastic net prior model;
- generalized hyperbolic model;
- Dirichlet and symmetric Dirichlet;
- Mixture of two centered Gaussians (MoG2), one

with very small and one with a large variances;
- Bernoulli-Gaussian (BG), also called Spike and slab;
- Mixture of two Gammas (MoGamm);
- Bernoulli-Gamma (BGamma);
- Mixture of three Gaussians (MoG3), one centered

with very small variance and two symmetrically centered
on positive and negative axes and large variances;
- Mixture of one Gaussian and two Gammas (MoG-

Gammas), and in a more summary the case of
- Bernoulli-Multinomial (BMult) or mixture of Dirich-

let (MoD).
Some of these models are well-known [12-14,18-26],

some others less. In general, we can classify them into
two categories: (i) simple non Gaussian models with
heavy tails and (ii) mixture models with hidden variables
which result to hierarchical models.
In the Section 2, we give more details about the spar-

sity and all these prior models which enforce the
sparsity.

1.4 Bayesian computation
The second main step in the Bayesian approach is to do
the computations. Depending on the prior model
selected, the Bayesian computations needed are:

• For simple prior models:
- Simple optimization of p(f|θ, g) for the MAP:

- Joint optimization p(f, θ|g) for joint MAP:
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Figure 1 Sparsity: explicite sparse signals. The signal at the right is sparse, but its derivative (signal at the left) is still more sparse.
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- Generation of samples from the conditionals p
(f|θ, g) and p(θ|f, g) for the MCMC Gibbs sam-
pling methods,

- Variational approximation (VA) of the joint p(f,
θ|g) by a separable

q(f , θ
∣∣g ) = q1(f

∣∣̃θ , g) q2(θ
∣∣∣̃f , g )

and then using them for estimation

• For hierarchical prior models with hidden variables
z:

- Joint optimization p(f, z, θ|g) for joint MAP,

- Generation of samples from the conditionals p
(f|z, θ, g), p(θ|z, f, g) and p(z|f, θ, g) for the
MCMC Gibbs sampling methods:
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Figure 2 Sparsity: sparse signals in a transformed domaine (Fourier or wavelet). First row: signals, second row: Fourier or wavelet
transforms.
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Figure 3 Sparsity: explicite sparse images. The images at the top
are sparse. The images at the bottom are not sparse, but their
Laplaciens are (images at top).
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- Variational approximation (VA) of the joint p(f,
z, θ|g) by a separable

q(f , z, θ
∣∣g ) = q1(f

∣∣̃z, θ̃ , g ) q2(z ∣∣∣̃f , θ̃ , g )q3(θ ∣∣∣̃z, f̃ , g )
and then using them for estimation

The second main objective of this article is to discuss
on the relative complexities and performances of the
algorithms obtained with the proposed prior law.
The rest of the article is organized as follows:
In Section 2, we present in details the proposed prior

models and discuss their properties. For example, we
will see that the Student-t model can be interpreted as
an infinite mixture with a variance hidden variable or
that the BG model can be considered as the degenerate
case of a MoG2 where one of the variances go to zero.
Also, we will examine the less known models of MoG3
and MoGGammas where the heavy tails are obtained by
combining a centered Gaussian and two large variance
non-centered Gaussians or Gammas.
In Section 3, we examine the expression of the poster-

ior laws that we obtain using these priors and discuss
then on complexity of the Bayesian computation of the
algorithms. In particular for the mixture models, we
give details of the joint estimation of the signal and the

hidden variable as well as the hyper parameters (para-
meters of the mixtures and the noise) for unsupervised
cases.
In Section 4, we give more details on the variational

Bayesian approximation method, first for the general
case and then for the case of mixture laws and more
specifically the case of the Student-t considered as a
continuous mixture.
Finally, we present the main conclusions of this article

in Section 5.

2 Prior models enforcing sparsity
First, as we mentioned, the sparsity is a property which
can be described either directly for the signal itself or
after some transformation, for example on the derivative
of the signal, or in more general on the coefficients of
the projection of the signal on any basis or any set of
functions.
Different prior models have been used to enforce

sparsity.

2.1 Generalized Gaussian (GG), Gaussian (G) and double
exponentials (DE) models
This is the simplest and the most used model (see for
example, [27]). Its expression is:

p(f |γ ,β ) =
∏
j

GG(fj |γ ,β ) ∝ exp

⎧⎨⎩−γ
∑
j

∣∣fj∣∣β
⎫⎬⎭(10)
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Figure 4 Sparsity: sparse images in a transformed domain (Fourier or wavelet). First row: images, second row: Fourier or wavelet
transforms.
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where

GG(fj |γ ,β ) =
βγ

2�(1/β)
exp{−γ

∣∣fj∣∣β}. (11)

Two particular cases are of importance:

• b = 2 (Gaussian):

p(f |γ ) =
∏
j

N (fj
∣∣0, 1/(2γ ) ) ∝ exp

⎧⎨⎩−γ
∑
j

∣∣fj∣∣2
⎫⎬⎭

∝ exp{−γ
∥∥f∥∥22}

(12)

• b = 1 (double exponential or Laplace):

p(f |γ ) =
∏
j

DE(fj |γ ) ∝ exp

⎧⎨⎩−γ
∑
j

∣∣fj∣∣
⎫⎬⎭

∝ exp{−γ
∥∥f∥∥1}

(13)

The general shape of these priors are shown in Figure
5, where the cases b = 1 and 0 <b < 1, which are of
great interest for sparsity enforcing are compared to the
Gaussian case b = 2.

2.2 Symmetric Weibull (W) and symmetric Rayleigh (R)
models
The second model we consider is the symmetric Wei-
bull probability density function (pdf):

p(f |γ ,β ) =
∏
j

W(fj |γ ,β )

∝ exp

⎧⎨⎩−γ
∑
j

∣∣fj∣∣β + (β − 1) log
∣∣fj∣∣

⎫⎬⎭
(14)

where

W(fj |γ ,β ) = c
∣∣fj∣∣(β−1) exp{−γ

∣∣fj∣∣β} (15)

and where g > 0 and b > 0, and the particular cases of
b = 1 is the double exponential and b = 2 is the sym-
metric Rayleigh distribution:

p(f |γ ,β ) =
∏
j

R(fj |γ ) ∝ exp

⎧⎨⎩−γ
∑
j

∣∣fj∣∣2 + log
∣∣fj∣∣

⎫⎬⎭ (16)

the cases where 0 <b < 1 are of great interest for sparsity
enforcing. This family of models are illustrated on Figure 6.
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Figure 5 Generalized Gaussian family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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Figure 6 Symmetric Weibull family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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2.3 Student-t (St) and Cauchy (C) models
The second simplest model is the Student-t model:

p(f |ν ) =
∏
j

St(fj |ν ) ∝ exp

⎧⎨⎩−ν + 1
2

∑
j

log(1 + f 2j /ν)

⎫⎬⎭ (17)

where

St(fj |ν ) = 1√
πν

�((ν + 1)/2)
�(ν/2)

(1 + f 2j /ν)
−(ν+1)/2 (18)

Knowing that

St(fj |ν ) =
∫ ∞

0
N (fj

∣∣0, 1/τj )G(τj |ν /2, ν/2) dτj (19)

we can write this model via the positive hidden vari-
ables τj :

p(f , τ ) =
∏

jp(fj
∣∣τj ) = ∏

j
N (fj

∣∣0, 1/τj )
∝ exp

{
−1
2

∑
j
τjf

2
j

}
p(τj |a, b ) = G(τj |a, b ) ∝ τj

(a−1) exp{−bτj}
with a = b = ν/2

(20)

Cauchy model is obtained when ν = 1:

p(f ) =
∏
j

C(fj) ∝ exp

⎧⎨⎩−
∑
j

log(1 + f 2j )

⎫⎬⎭ (21)

This family of models are illustrated on Figure 7.

2.4 Elastic Net (EN) prior model
A prior model inspired from elastic net regression litera-
ture [28] is:

p(f |ν ) =
∏
j

EN (fj |ν ) ∝ exp

⎧⎨⎩−
∑
j

(γ1
∣∣∣fj ∣∣∣+γ2f

2
j )

⎫⎬⎭ (22)

where

EN (fj |ν ) = N (0, 1/γ1)DE(γ1) ∝ exp
{
−γ1

∣∣fj∣∣− γ2f
2
j )
}

(23)

which is a product of a Gaussian and a double expo-
nential pdfs. This family of models are illustrated on
Figure 8.

2.5 Generalized hyperbolic (GH) prior model
Another general prior model which can be used is:

p(f |δ, ν,β ) =
∏

j
(δ2 + f 2j )

(ν−1/2)/2
exp{βx}

Kν−1/2(α
√

δ2 + f 2j )
(24)

where Kν-1/2 is the second kind Bessel function of
order (ν - 1/2). This family of models are illustrated on
Figure 9.

2.6 Dirichlet (D) and symmetric Dirichlet (SD) models
When fj are positive and sums to one, we can use the
Dirichlet model

D(f |α ) ∝
∏
j

f
αj−1
j with fj > 0,

∑
j

fj = 1 (25)

where a = {a1, ..., aN} with aj > 0. The proportionality
constant is

B(α) =

∏
j �(αj)

�
(∑

j �(αj)
) (26)

It is noted that the support of this distribution is [0,1]
N and ||f||1 = Σj fj = 1.
It is also interesting to note that the domain of the

Dirichlet distribution is itself a probability distribution,
specifically a N-dimensional discrete distribution and
the set of points in the support of a N-dimensional
Dirichlet distribution is the open standard N - 1-sim-
plex, which is a generalization of a triangle, embedded
in the next-higher dimension.
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Figure 7 Student-t and Cauchy family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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A very common special case is the symmetric Dirichlet
(SD) distribution, where all of the elements making up
the parameter vector a have the same value a called the
concentration parameter:

D(f |α ) ∝
∏
j

f α−1
j with fj> 0,

∑
j

fj = 1 (27)

When a > 1, the symmetric Dirichlet distribution is
equivalent to a uniform distribution over the open stan-
dard standard N - 1-simplex, i.e., it is uniform over all
points in its support. a > 1 prefer variants that are
dense, evenly-distributed distributions, i.e., all probabil-
ities fj returned are similar to each other. a < 1 prefer

sparse distributions, i.e., most of the probabilities fj
returned will be close to 0, and the vast majority of the
mass will be concentrated in a few of them. This is the
case on which we are interested. An illustration of this
family of models are illustrated on Figure 10.

2.7 Mixture of two Gaussians (MoG2) model
The mixture models are also very commonly used as
prior models. In particular the mixture of two Gaussians
(MoG2) model:

p(f |λ, v1, v0 ) =
∏
j

(λN (fj |0, v1 ) + (1 − λ)N (fj |0, v0 )) (28)
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Figure 8 Elastic net family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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which can also be expressed through the binary valued
hidden variables zj Î {0,1}⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(f |z) =
∏

j
p(fj

∣∣zj ) = ∏
j
N (fj

∣∣0, vzj )
∝ exp

{
−1
2

∑
j

f 2j
vzj

}
P(zj = 1) = λ, P(zj = 0) = 1 − λ

(29)

In general v1 >>v0 and l measures the sparsity (0 <l
<< 1). This family of models are illustrated on Figure 11.

2.8 Bernoulli-Gaussian (BG) model
The Bernoulli-Gaussian model can be considered as the
particular case of the MoG2 with the particular degener-
ate case of v0 = 0:

p(f |λ, v ) =
∏
j

p(fj) =
∏
j

(λN (fj |0, v ) + (1 − λ)δ(fj)) (30)

which can also be written as⎧⎪⎨⎪⎩
p(f |z) = ∏

j p(fj
∣∣zj ) = ∏

j [N (fj |0, v )]δ(zj)∏
j [δ(fj)]

δ(1−zj)

P(zj = 1) = λ, P(zj = 0) = 1 − λ

(31)

This model has also been called spike and slab. This
family of models are illustrated on Figure 12.

2.9 Mixture of three Gaussians (MoG3) model
Another mixture model proposed is using a Mixture of
three Gaussians, one centered at zero and two symme-
trically placed:

p(f |λ, v0, v+1, v−1,β ) =
∏

j

[
(1 − λ)N (fj |0, v0 )

+ (λ/2)N (fj |+β , v+1 )

+(λ/2)N (fj |−β , v−1 )
] (32)

which can also be expressed through the ternary
valued hidden variables zj Î {-1, 0, +1}⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(f |z ) = ∏
j p(fj

∣∣zj ) = ∏
j N (fj

∣∣zjβ , vzj )
P(zj = 1) = λ/2,
P(zj = −1) = λ/2,

P(zj = 0) = 1 − λ.

(33)

In general v+1 = v-1 = v >>v0 and l measures the spar-
sity (0 <l << 1). This family of models are illustrated on
Figure 13.
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Figure 11 Mixture of two Gaussians family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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Figure 12 Bernouilli-Gaussian family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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2.10 Mixture of one Gaussian and two Gammas
(MoGGammas) model
Another mixture model proposed is using a mixture of
one central Gaussian and two symmetric Gammas:

p(f |λ, v0,α,β ) =
∏

j

[
(1 − λ)N (fj |0, v0 )
+ (λ/2)G(fj |α,β )

+(λ/2)G(−fj |α,β )
] (34)

which can also be expressed through the ternary
valued hidden variables zj Î {-1, 0, +1}⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p(f |z ) = ∏
j (fj

∣∣zj ) = [N (fj |0, v0 )]
∑

j δ(zj)×
[G(fj |α,β )]

∑
j δ(zj−1)×

[G(−fj |α,β )]
∑

j δ(zj+1)

P(zj = 1) = λ/2,
P(zj = −1) = λ/2,
P(zj = 0) = 1 − λ.

(35)

This family of models are illustrated on Figure 14.

2.11 Bernoulli-Gamma (BGamma) model
As in the BG model, when we want to enforce both
sparsity and positivity, we can use the BGamma model:

p(f |λ,α ,β) =
∏
j

[λδ(fj) + (1 − λ)G(fj |α,β )] (36)

or⎧⎪⎪⎨⎪⎪⎩
p(f |z ) =

∏
j
p(fj

∣∣zj ) = ∏
j
[zjG(fj |α,β )]∏
j

[
(1 − zj)δ(fj)

]
P(zj = 1) = λ, P(zj = 0) = 1 − λ

(37)

A particular case of this model is Bernoulli-exponen-
tial (BExponential) which obtained when a = 1. These
families of models are illustrated on Figure 15 and Fig-
ure 16.

2.12 Mixture of Dirichlet (MoD) model
• Mixture of Dirichlet model

p(f |λ,α1,α2 ) = λD(f |α1 ) + (1 − λ)D(f |α2 ) (38)

where

D(f |α ) ∝
∏
j

f α−1
j with fj > 0,

∑
j

fj = 1 (39)

is the symmetric Dirichlet distribution. We need to
choose a1 > 1 for dense part and 0 <a2 < 1 for the
sparse part.

2.13 Bernoulli-multinomial (BMultinomial) model
As in the BG or BGamma model, when we know that
the signal is sparse and can only take one of the K
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Figure 13 Mixture of three Gaussians family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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Figure 14 Mixture of one Gaussian and two Gammas family. The probability density function p(x) is shown in the left and - lnp(x) is shown
in the right.
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discrete values {a1, ..., aK}, we can use the BMultinomial
model:

p(f |λ, a,α ) =
∏
j

λMult(fj |a,α ) + (1 − λ)δ(fj) (40)

where a = {a1, ..., aK} and a = {a1, ..., aK} with ∑k ak =
1 and

Mult(fj |a,α ) =
n!

a1! . . . aK!

∏
k

α
aj
k

or⎧⎪⎨⎪⎩
p(f |z ) = ∏

j p(fj
∣∣zj ) = ∏

j

[
zjMult(fj |α )

]∏
j

[
(1 − zj)δ(fj)

]
P(zj = 1) = λ, P(zj = 0) = 1 − λ

(41)

3 Bayesian inference with sparsity enforcing
priors
The priors proposed can be used in a Bayesian approach
to infer on f given the observed data g through the poster-
ior law given in Equation (3). First let assume the error �
to be centered, Gaussian and white: ε ∼ N (ε |0, vεI ).
Then, using the forward model (1) we have

p(g
∣∣f ) = N (Hf , vεI) ∝ exp

{
1
2vε

∥∥g − Hf
∥∥2} (42)

Now, we consider different priors.

3.1 Simple prior models
Given p(g|f) and any simple prior law p(f), the posterior
law is written:

p(f
∣∣g ) ∝ p(g

∣∣f )p(f ) ∝ exp{J(f )} (43)

with

J(f ) =
1
2vε

∥∥g − Hf
∥∥2 + �(f ) (44)

where Ω(f) = -ln p(f) and so the Maximum A Poster-
iori (MAP) solution is expressed as the minimizer of
this criterion which has two parts: the first part is due
to the likelihood and the second part is due to the prior:

Thus, depending on the choice of the prior we obtain
different expressions for Ω(f). For example for the GG
model of (10) we get

�(f ) = γ
∑
j

∣∣fj∣∣β). (45)

For the symmetric Weibull model (14) we get

�(f ) = −γ
∑
j

∣∣fj∣∣β + (β − 1) log
∣∣fj∣∣ . (46)
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Figure 15 Bernouilli-Gamma family. The probability density function p(x) is shown in the left and - ln p(x) is shown in the right.
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For the Student-t model (17) we get

�(f ) =
ν + 1
2

∑
j

log(1 + f 2j /v). (47)

For the elastic net model we get

�(f ) =
∑
j

[
γ1

∣∣fj∣∣ + γ2f
2
j

]
(48)

and for the Dirichlet model we get

�(f ) =
∑
j

f α−1
j , fj > 0,

∑
j

fj = 1. (49)

For each of these cases, we may discuss on the unim-
odality and convexity of the criterion J(f) which depends
mainly on its Hessian

�J(f ) =
[

∂2J(f )
∂fj∂fi

]
= H′H +

[
∂2�(f )
∂fi∂fj

]
= H′H +

[
∂2�(f )

∂f 2j

] (50)

We may look at each case to examine the range of the
parameters for which this Hessian matrix is positive
definite.
The optimization is done iteratively:

Update operation can be additive, multiplicative or
more complex. Updating steps a(k) can be fixed or com-
puted adaptively at each step (steepest descent for
example). δf(k) can be, for example proportional to the
gradient, in which case, we have

We may also consider to estimate some of these para-
meters by assigning them appropriate priors and then
express the joint p(f, θ|g, θ0) as given in Equation (4) and
then try to estimate them jointly, for example joint MAP:

or alternate optimization:

We may also want to explore this joint posterior by
generating samples from it. This can be done, for exam-
ple, through the following Gibbs sampling scheme:

When a great number of samples are thus generated,
we may compute their means, variances or any other
statistics about them.
Finally, we may try to approximate this joint posterior

by a simpler one, for example by a separable q(f, θ) = q1
(f) q2(θ) using the variational approximation (VA). The
main idea and the main basic steps to achieve this is
more detailed in the following section. Here, however,
we present the result on the following scheme:

To illustrate the differences, we may consider the sim-
ple case of a linear forward model and Gaussian priors:{

p(g
∣∣f , vε ) = N (Hf , vεI)

p(f
∣∣vf ) = N (0, vf I)

(51)

In this case, if we know θ = (v�, vf), then

p(f
∣∣g, vε , vf ) = N (μ̂, �̂)

with:

μ̂ = [H′H + λI]−1H′g

�̂ = [H′H + λI]−1

(52)

with λ =
vε
vf
. So, we have f̂ = μ̂ which can be com-

puted by optimizing J(f) = ||g - H f||2 + l||f||2. A gradi-
ent based algorithm is shown below:
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Now putting inverse Gamma priors on v� and vf, or
equivalently Gamma priors on τ� = 1/v� and τf = 1/vf:{

p(τε |ατ0,βτ0 ) = G(αε0,βε0)
p(τf

∣∣αf0,βf0 ) = G(αf0,βf0)
(53)

we have{
p(τε

∣∣f , g,ατ0,βτ0 ) = G(α̂ε, β̂ε)
p(τf

∣∣f ,αf0,βf0 ) = G(α̂f , β̂f )
(54)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̂ε = αε0 + 1/2
β̂ε = βε0 +

∥∥g − Hf
∥∥2/2

τ̂ε = α̂τ /β̂τ =
2αε0 + 1

2βε0 +
∥∥g − Hf

∥∥2
α̂f = αf0 + 1/2
β̂f = βf0 +

∥∥f∥∥2/2
τ̂f = β̂f /̂αf =

2αf0 + 1

2βf0 +
∥∥f∥∥2

(55)

and λ̂ =
τ̂f

τ̂ε

. Then, the alternate optimization of the

JMAP estimate algorithm becomes

The Gibbs sampling algorithm becomes

The VBA algorithm becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(f ) = N (μ̂, �̂)
�̃ = [H′H + λI]−1

μ̃ = �̃H′g

q(τε) = G(α̃ε , β̃ε)
α̃ε = αε0 + 1/2
β̃ε = βε0 +

∥∥g − H < f >
∥∥2/2

q(τf ) = G(α̃f , β̃f )
α̃f = αf0 + 1/2

β̃f = βf0 +
1
2

∥∥∥〈f 2〉∥∥∥ = βf0 +
1
2

∑
j
〈f 2j 〉

< f >= μ̃

〈f 2〉 = μ̃2 + diag
[
�̃
]

(56)

and λ̂ =
τ̂f

τ̂ε

:

We recently implemented these algorithms for differ-
ent applications such as: synthetic aperture radar (SAR)
Imaging [29], ...

3.2 Mixture models
For the mixture models, and in general for the models
which can be expressed via the hidden variables, we
want to estimate jointly the original unknowns f and the
hidden variables: τ in Cauchy model, z in MoG2, BG or
BGam models and z in MoG3 or MoGGammas. Let
examine these a little in details.

3.3 Student-t and Cauchy models
In this case the joint prior law can be written as:

p(f , τ ) =
∏

j
p(fj

∣∣τj )p(τj) = ∏
j
N (fj

∣∣0, 1/τj )p(τj)
∝ exp

{
−1
2

∑
j
τjf

2
j + a ln τj − bτj

}
with a = b = ν/2

(57)

such that

p(f , τ
∣∣g ) ∝ p(g

∣∣f )p(f , τ ) ∝ exp{−J(f , τ )} (58)

where

j(f , τ) =
1
2vε

∥∥g − Hf
∥∥2 +∑

j

1
2

τjf 2j − a ln τj + bτj (59)

Joint optimization of this criterion, alternatively with
respect to f (with fixed τ)

f̂ = argminf {J(f , τ )}

= argminf

{
1
2vε

∥∥g − Hf
∥∥2 +∑

j

1
2

τjf 2j

} (60)

and with respect to τ (with fixed f)

τ̂ = argminτ {J(f , τ )}

= argminτ

{∑
j

1
2

τjf 2j − a ln τj + bτj

}
(61)
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results in the following iterative algorithm:⎧⎪⎪⎨⎪⎪⎩
f̂ = [H′H + vεD(τ̂)]−1H′g
τ̂j = φ(̂f j) =

a

f̂ 2j + b
D(̂τ ) = diag[1/τ̂j, j = 1, ...,n]

(62)

Note that, τj is the inverse of a variance and we have

1/τj =
f 2j + b

a
. We can interpret this as an iterative quad-

ratic regularization inversion followed by the estimation
of variances τj which are used in the next iteration to
define the variance matrix D(τ).
Here too, we may study the conditions on which the

joint criterion is uni-modal and its alternate optimiza-
tion converges to its unique solution.
We may also consider a Gibbs sampling scheme{

f∼p(f
∣∣τ , g ) ∝ p(g

∣∣f )p(f |u ) = N (f
∣∣∣̂f , �̂ )

τ∼p(τ
∣∣f , g ) ∝ p(f |τ )p(τ) =

∏
j G(τj

∣∣̂α, β̂ )
(63)

where{
�̂ = [H′H + vεD(τ)]−1

f̂ = �̂H′g
(64)

and{
α̂ =

1
2
f̂j + a =

1
2
f̂j + ν/2

β̂ = b = ν/2
(65)

For the VBA, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(g

∣∣f , vε ) = N (g
∣∣Hf , vεI ), τε = 1/vε

p(τε) = G(τε |αε0 ,βε0)
p(f |v ) = ∏

j p(fj
∣∣vj ) = ∏

j N (fj
∣∣0, vj ) = N (f |0,V )

V = diag[v], τj = 1/vj, τ = diag[τ ] = V−1

p(τ ) =
∏

j G(τj |α0,β0 )

(66)

⎧⎨⎩
q̃(f ) = N (f

∣∣μ̃, �̃ )
μ̃ = �̃H′g
�̃ = (̃τεH′H + Ṽ)

−1
, with Ṽ = diag[̃v]

(67)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃(τε) = G(τε |̃αε , β̃ε),
α̃ε = αε0 + (n + 1)/2
β̃ε = βε0 + 1/2
τ̃ = α̃τ /β̃τ

q̃(τj) = G(τj
∣∣̃αj, β̃j )

α̃j = α00 + 1/2
β̃j = β00+ < f 2j > /2
z̃j = β̃j/̃αj

(68)

3.4 Mixture of two Gaussians (MoG2) model
In this case, following the same arguments, we obtain:

p(f , z
∣∣g ) ∝ p(g

∣∣f )p(f , z) ∝ exp{−J(f , z)} (69)

where

J(f , z) =
1
2vε

∥∥g − Hf
∥∥2

+
∑

j

f 2j
2vzj

+ zj ln λ + (1 − zj) ln(1 − λ)
(70)

Again, in this case also, the optimization of this criter-
ion, alternatively with respect to f and z results in the
following iterative algorithm:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f̂ = [H′H + vεD(z)]−1H′g

ẑj = φ(fj) =

⎧⎪⎨⎪⎩
1, if f̂ 2j ≥ (v1 − v0) ln

1 − λ

λ

0, if f̂ 2j < (v1 − v0) ln
1 − λ

λ
D(̂z) = diag

[
vẑj , j = 1, ..,n

]
(71)

Here too, we may also consider a Gibbs sampling
scheme{

f∼p(f
∣∣z, g ) ∝ p(g

∣∣f )p(f |u ) = N (f
∣∣∣̂f , �̂ )

z∼p(z
∣∣f , g ) ∝ p(f |z ) p(z) =

∏
j P(zj = k

∣∣fj ) (72)

where{
�̂ = [H′H + vεD(z)]−1

f̂ = �̂H′g
(73)
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and⎧⎪⎨⎪⎩
P(zj = 1

∣∣fj ) = 1, if f 2j ≥ (v1 − v0) ln
1 − λ

λ

P(zj = 0
∣∣fj ) = 1, if f 2j < (v1 − v0) ln

1 − λ

λ

(74)

3.5 BG model
For the case of BG we have to be more careful, because
the joint probability laws are degenerated. Two
approaches are then possible:
i) Considering them as the particular case of the MoG

models where the variance v0 is fixed to a small value or
reduced gradually during the iterations.
ii) Trying first to integrate out f from the expression

of p(f, z|g) to obtain p(z|g) and optimize it with respect
to z (detection step) and then use it for the estimation
step.
To go further in detail of the second approach, we

may remark that for the given z, the expression of p(f,
z|g) as a function of f is Gaussian and so it can be easily
integrated out and we obtain:

p(z
∣∣g ) ∝ p(g |z )p(z)

∝ N (g |0 ,H(vdiag[zj, j = 1,...,n])H′ + vεI)×
λ
∑

j zj(1 − λ)
∑

j (1−zj)

(75)

Now writing the expression of L(z) = − ln p(z
∣∣g ) and

keeping only all terms depending on z we obtain:

L(z) = −g′B−1(z)g − ln
∣∣B(z)∣∣− 2n ln

1 − λ

λ
(76)

where B(z) = H(vdiag [zj, j = 1, ..., n])H’ + v�I. We see
the complexity of this expression which needs the inver-
sion of the matrix B and its optimization which is a
combinatorial optimization needing to evaluate this
expression 2n times.
However, we may also remark that when z obtained,

the estimation of f is easy. We have:

f̂ = H′B−1g. (77)

which needs again the inversion of the matrix B.
The exact computations of ẑ and f̂ are often too

costly, one may try to obtain approximate solutions.
Many approximations have been proposed. A good
overview of these methods can be found in [30, Chap.
5] and also in [31,32].

3.6 BGamma and MoGGammas model
In these cases, it is no more possible to integrate out f
analytically as it was the case with Gaussians. One strat-
egy here is to use the MCMC methods to generate sam-
ples from the joint posterior. The second approach is to
approximate the joint posterior by a simpler one, for
example by a separable one on f and the hidden vari-
ables z in the BGamma or the MoGGammas cases. Very
often then we can do the computations analytically.
However, it may happens that, even after these separable
approximations, still we need to use the MCMC meth-
ods on some of variables. Detailed explanation of these
general methods is out of focus of this article. See
[30,33,34]. Here, we just give the details for the case of
the Gaussian mixtures (MoG2 or MoG3).

4 Variational Bayesian approximation for the case
of mixture laws
To start and to be complete as to propose an unsupervised
method, we include also the estimation of the parameters
θ and write the joint posterior law of all the unknowns:

p(f , z, θ
∣∣g ) ∝ p(g

∣∣f , θ )p(f |z , θ)p(z |θ )p(θ) (78)

which can also be written as

q(f , z, θ
∣∣g ) = p(f

∣∣z, θ ; g )p(z ∣∣θ ; g )p(θ ∣∣g ) (79)

where

p(f |z , θ ; g) = p(g
∣∣f , θ )p(f |z , θ)/p(g |z , θ) (80)

with

p(g |z, θ ) =
∫

p(g
∣∣f , θ )p(f |z, θ ) d f

and

p(z
∣∣θ ; g ) = p(g |z, θ )p(z |θ )/p(g |θ ) (81)

with

p(g |θ ) =
∫

p(g |z, θ)p(z |θ ) d z

or

p(g |θ ) =
∑
z

p(g |z, θ )p(z |θ )

when z are discrete valued, and finally

p(θ
∣∣g ) = p(g |θ )p(θ)/p(g) (82)

with

p(g) =
∫

p(g |θ )p(θ) dθ

Mohammad-Djafari EURASIP Journal on Advances in Signal Processing 2012, 2012:52
http://asp.eurasipjournals.com/content/2012/1/52

Page 15 of 19



One can also write:

p(z
∣∣θ , g ) = ∫

p(f , z
∣∣θ , g ) df (83)

and

p(θ
∣∣g ) = ∫ ∫

p(f , z, θ
∣∣g ) df dz = ∫ p(z

∣∣θ ; g ) dz (84)

or

p(θ
∣∣g ) = ∑

z

∫
p(f , z, θ

∣∣g ) df = ∑
z

p(z
∣∣θ ; g ) (85)

when z are discrete valued.
We see that the first term

p(f
∣∣z, θ , g ) ∝ p(g

∣∣f , θ )p(f |z, θ ) (86)

will be easy to handle because it is the product of two
Gaussians and so it is a multivariate Gaussian. But the
two others are not.
The main idea behind the VBA is to approximate the

joint posterior p(f, z, θ|g) by a separable one, for exam-
ple

q(f , z, θ
∣∣g ) = q1(f

∣∣g ) q2(z ∣∣g )q3(θ ∣∣g ) (87)

illustrated here:

and where the expressions of q(f, z, θ|g) is obtained by
minimizing the Kullback-Leibler divergence

KL(q : p) =
∫

q ln
q
p
=
〈
ln

q
p

〉
q

(88)

It is then easy to show that

KL(q : p) = ln p(g |M) − F(q) (89)

where p(g |M ) is the likelihood of the model

p(g |M ) =
∫ ∫ ∫

p(f , z, θ , g |M) df dz dθ (90)

with

p(f , z, θ , g |M ) = p(g
∣∣f , θ )p(f |z, θ )p(z |θ )p(θ) (91)

and F(q) is the free energy associated to q defined as

F(q) =
〈
ln

p(f , z, θ , g |M )
q(f , z, θ)

〉
q

(92)

So, for a given model M, minimizing KL(q : p) is
equivalent to maximizing F(q) and when optimized,
F(q∗) gives a lower bound for ln p(g |M ).
Without any other constraint than the normalization

of q, an alternate optimization of F(q) with respect to
q1, q2, and q3 results in

q1(f ) ∝ exp
{
−〈

ln p(f , z, θ , g)
〉
q(z)q(θ)

}
q2(z) ∝ exp

{
−〈

ln p(f , z, θ , g)
〉
q(f )q(θ)

}
q3(θ) ∝ exp

{
−〈

ln p(f , z, θ , g)
〉
q(f )q(z)

}
Note that these relations represent an implicit solution

for q1(f), q2(z), and q3(θ) which need, at each iteration,
the expression of the expectations in the right hand of
exponentials. If p(g|f, z, θ1) is a member of an exponen-
tial family and if all the priors p(f|z, θ2), p(z|θ3), p(θ1), p
(θ2), and p(θ3) are conjugate priors, then it is to see that
these expressions leads to standard distributions for
which the required expectations are easily evaluated. In
that case, we may note

q(f , z, θ
∣∣g ) = q1(f

∣∣̃z, θ̃ ; g )q2(z ∣∣∣̃f , θ̃ ; g )q3(θ ∣∣∣̃f , z̃; g )(93)
where the tilded quantities z̃, f̃ and θ̃ are, respectively

functions of (̃f , θ̃), (̃z, θ̃) and (̃f , z̃):

and where the alternate optimization results to alter-
nate updating of the parameters (̃z, θ̃) for q1, the para-

meters (̃f , θ̃) of q2 and the parameters (̃f , z̃) of q3.

Finally, we may note that, to monitor the convergence
of the algorithm, we may evaluate the free energy

F(q) =
〈
ln

p(f , z, θ , g |M)
q(f , z, θ)

〉
q

=
〈
ln p(f , z, θ , g) |M 〉

q +
〈− ln q(f , z, θ)

〉
q

=
〈
ln p(g

∣∣f , z, θ )〉q + 〈ln p(f |z, θ )〉q + 〈ln p(z |θ )〉q
+
〈− ln q(f )

〉
q +

〈− ln q(z)
〉
q +

〈− ln q(θ)
〉
q

(94)

where all the expectations are with respect to q.
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Other decompositions are also possible:

q(f , z, θ
∣∣g ) = q1(f

∣∣̃z, θ̃ ; g )∏
j
q2j(zj

∣∣∣̃f , z̃(−j), θ̃ ; g )∏
j
q3l(θ l

∣∣∣̃f , z̃, θ̃ (−l); g )

(95)

illustrated here:

or even by:

q(f , z, θ
∣∣g ) = ∏

j
q1j(fj

∣∣∣̃f (−j), z̃, θ̃ ; g )∏
j
q2j(zj

∣∣∣̃f , z̃(−j), θ ; g )∏
l
q3l(θ l

∣∣∣̃f , z̃, θ̃ (−l); g )

(96)

illustrated here:

Here, we consider the second case (Equation (95)) and
give some more details on it. First to simplify the nota-
tions, we write it as:

q(f , z, θ) = q1(f )
∏
j

q2j(zj)
∏
l

q3l(θ l) (97)

where it can be shown that:

q1(f ) ∝ exp
{
−〈

ln p(f , z, θ , g)
〉
q2(z)q3(θ)

}
q2j(zj) ∝ exp

{
−〈

ln p(f , z, θ , g)
〉
q1(f )q3(θ)q2(z(−j))

}
q3l(θl) ∝ exp

{
−〈

ln p(f , z, θ , g)
〉
q1
(f )q2(z)q3(θ (−l))

}
where p(f, z, θ, g) = p(g|f, θ)p(f|z, θ)p(z|θ)p(θ) and

where q2(z) = Πj q2j(zj), q3(θ) = Πl q3l(θl), q2(z(-j)) = Πi≠j

q2j(zj), 〈.〉q means expected value with respect to q.
In that case, with appropriate models for the priors

(exponential families) and hyper parameters (conjugate
priors), we see that q(f) is a multivariate Gaussian

g(f ) = N (f
∣∣μ̃, �̃ ), q(θl) are either Gaussians (for the

means) or Inverse Gammas (for the variances) and q(zj)
are discrete distributions whose expressions can be writ-
ten easily.
To illustrate this in more detail, we consider the case

of the Student-t model.

4.1 Student-t model
In this case, we have the following relations for the for-
ward model and the prior laws:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(g
∣∣f , vε ) = N (g

∣∣Hf , vεI ), τ = 1/vε
p(f |z ) = ∏

j p(fj
∣∣zj ) = ∏

j N (zj
∣∣0, zj ) =N (f |0,Z )

Z = diag[z], aj = 1/zj, A = diag[a] = Z−1

p(a) =
∏

j G(aj |α0,β0 )
p(τ ) = G(τ |ατ0,βτ0 )

(98)

Then, we obtain the following expressions for the
VBA:⎧⎨⎩

q̃(f ) = N (f
∣∣μ̃, �̃ )

μ̃ =< τ > �̃H′g
�̃ = (< τ > H′H + Z̃)

−1
, with Z̃ = Ã

−1
= diag[̃a]

(99)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̃(τ ) = G(τ ∣∣̃ατ , β̃τ ),
α̃τ = ατ0 + (n + 1)/2

β̃τ = βτ0 + 1/2
[∥∥g∥∥2 − 2 < f >′ H′g +H′ < f f ′

> H
]

q̃(aj) = G(aj
∣∣̃αj, β̃j )

α̃j = α00 + 1/2
β̃j = β00+ < f 2j > /2

(100)

where the expressions of the expectations needed are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
< f >= μ̃

< ff ′
>= � + μμ′

< f 2j >= [�]jj + μ2
j

< τ >= τ̃ = α̃τ /β̃τ

< aj >= ãj = α̃j/β̃j

(101)

We can also express the free energy expression:

F(q) =
〈
ln

p(f , a, τ , g |M )
q(f , a, τ )

〉
=
〈
ln p(g

∣∣f , a , τ )
〉
+
〈
ln p(f |a, τ )〉 + 〈ln p(a |τ )〉

+
〈− ln q(f )

〉
+
〈− ln q(a)

〉
+
〈− ln q(τ )

〉 (102)

where〈
ln p(g

∣∣f , τ )〉 = n
2

(
< ln τ > − ln(2π)

)
− 1

2

{
< τ > g′g − 2 < f >′ H′g +H′ < ff ′

> H
}

〈− ln p(f |a )〉 = −n + 1
2

ln(2π)

− 1
2

{∑
j
< ln αj >< αj >< f 2j >

}
〈− ln p(a)

〉
= −(n + 1)αε0 ln(βε0)

+ (αε0 − 1)
∑

j
[< ln αj > −β < αj)] − (n + 1) ln�(α)〈

p(τ ))
〉
= c ln d + (c − 1) < ln τ ) > −d < τ > − ln�(c)
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and〈− ln q(f )
〉
= −n + 1

2
(1 + ln(2π)) − 1

2
ln
∣∣�j

∣∣〈− ln q(a)
〉
= −

∑
j

[̃
αj ln(β̃j) + (̃αj − 1) < ln α̃j >

−β̃j < αj > − ln�(α̃j)
]〈

q(τ ))
〉
= c̃ ln d̃ + (c̃ − 1) < ln τ ) > −d̃ < τ > − ln�(c̃)

In these equations,⎧⎪⎪⎨⎪⎪⎩
< ln aj >= ψ(ãj) − ln b̃j
< ln τ >= ψ(c̃) − ln d̃

ψ(a) =
∂ ln�(a)

∂a

(103)

The resulting algorithm can be summarized as follows

5 Conclusion
The sparsity is a required property in many signal and
image processing applications. In this article, first we
reviewed the main steps of the Bayesian approach for
inverse problems in signal and image processing. Then
we presented in a synthetic way the different prior mod-
els which can be used to enforce the sparsity. These
models have been presented in two categories: simple
and hierarchical with hidden variables. For each of these
prior models, we discuss their properties and the way to
use them in a Bayesian approach resulting to many dif-
ferent inversion algorithms.
We have applied these Bayesian algorithms in many

different applications such as X-ray computed tomogra-
phy [35,36], optical diffraction tomography [37-39], posi-
tron emission tomography [40], Microwave imaging
[41,42], Sources separation [43-46], spectrometry
[47,48], Hyper spectral imaging [49], super resolution
[50-52], image fusion [53], image segmentation [54],
synthetic aperture radar (SAR) imaging [29]. To save
the place and be very synthetic, we did not give here
any simulation results or any results on different appli-
cations of these methods. These can be found in differ-
ent articles just referenced.
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