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Abstract

The first goal of this article is to analyze the performance of dither modulation (DM) against the composite attacks
including valumetric scaling, additive noise and constant change. The analyzes are developed under the
assumptions that the host vector and noise vector are mutually independent and both of them have
independently and identically distributed components. We derive the general expressions of the probability density
functions of several concerned signals and the decoding error probability. The specific theoretical results are
provided for the case of generalized Gaussian host and noise. Based on the analyzes, the performance of DM is
predicted for different scenarios with a high degree of accuracy and evaluated for different distribution models of
host and noise signals. Numerical simulations confirm the validity of the given theoretical analyzes. Then, we
address to improve the robustness of DM against valumetric scaling plus constant change. The normalized dither
modulation (NDM) is presented, which works by constructing a gain-invariant vector with zero mean for
quantization. Performance analysis shows that NDM is theoretically invariant to valumetric scaling and constant
change and achieves similar performance to DM in other aspects. The performance of NDM is further improved by
weighting the quantization errors. Experiments on real images also show the advantage of NDM over DM subject
to amplitude scaling and constant change.

Keywords: digital watermarking, quantization index modulation, composite attacks, valumetric scaling, constant
change

1 Introduction
In the past decade, much attention has been paid to the
quantization-based watermarking for canceling the host
signal interference. One of the most important methods
proposed so far is quantization index modulation (QIM)
[1]. The basic QIM algorithm includes a number of var-
iants, i.e., dither modulation (DM), distortion compen-
sated dither modulation (DC-DM) (also known as scalar
Costa scheme (SCS) [2]) and spread transform dither
modulation (STDM) [1]. The theoretical performance of
QIM methods is a key issue and has received consider-
able attention.
Initially, the Gaussian channel is often used in the

analyzes and the performance of QIM methods has
been extensively investigated in this case. A relatively
crude approximation to the decoding error probability

of QIM was given in [1] for the additive white Gaussian
noise (AWGN) attacks. The performance of SCS was
completely analyzed by Eggers et al. [2] under the
AWGN attacks. In [3], the performance of scalar DC-
QIM against AWGN was theoretically evaluated from
the detection viewpoint. Recently, a new logarithmic
QIM (LQIM) was presented in [4] and its performance
was analyzed in the presence of AWGN. It has been
pointed out in [5] that the performance of QIM meth-
ods may be overstated under Gaussian channels. In the
second phase, a deeper analysis is done for QIM taking
into account a much wider variety of attacks. The care-
ful performance analyzes were presented by Pérez-Gon-
zàlez et al. [5] for a large class of QIM methods in the
cases of uniform and Gaussian noise. Bartolini et al. [6]
concentrated on analyzing the performance of STDM in
the presence of two important classes of non additive
attacks, the gain attack plus noise addition and the
quantization attack. In [7], the authors proposed an
improved DM scheme to resist linear-time-invariant
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filtering and provided a thorough analysis of it. We
notice that most of previous analyzes make use of the
Gaussian host assumption and even neglect the statisti-
cal properties of the host signal.
The conventional QIM has a serious drawback, i.e.,

the weakness against valumetric scaling. Spherical codes
were utilized to cope with this problem in [8]. However,
watermark embedding and recovery get very compli-
cated [9]. Oostveen et al. [10] proposed to choose the
adaptive quantization step size to be proportional to a
local average of the host signal samples. Despite its
robustness against valumetric scaling, the method pre-
sents a nonzero probability of error even for null distor-
tions and becomes more sensitive to constant change.
Rational dithered modulation (RDM) was developed in
[9] using a gain-invariant adaptive quantization step size
at both embedder and decoder. The RDM achieves
invariance to valumetric scaling, but is still sensitive to
constant change. Li and Cox [11] applied the modified
Watson’s perceptual model to provide resistance to
valumetric scaling for QIM watermarking. The modifi-
cation to Watson’s model results in the degradation in
quality and performance loss with respect to constant
change.
The first objective of this article is to analyze the per-

formance of DM against composite attacks, which is
lacking in the literature. Obviously, in watermarking
applications, it is more often that the watermark under-
goes multiple attacks. Specifically, the combination of
valumetric scaling, additive noise and constant change
will be considered. On the other hand, most of previous
analyzes are restricted to the Gaussian noise channel,
even sometime regardless of the distribution of the host
signal, which we will try to overcome. The generalized
Gaussian distribution (GGD) is adopted to model both
the host signal and the noise signal in our analysis.
Since the GGD is a parametric family of distributions,
we will observe how the choice of distribution model
affects the performance of DM. Next, the weakness of
DM is concerned. DM itself is largely vulnerable to
valumetric scaling as well as constant change. Several
existing improved DM schemes achieve the robustness
against valumetric scaling, but becomes more sensitive
to constant change. We will present the normalized DM
(NDM) considering both of them. Under the light of the
performance analyzes done for DM in this article, we
show that NDM approaches the performance of DM,
with the great advantage of insensitivity to valumetric
scaling and constant change.
The rest of this article is organized as follows. Section

2 reviews the original DM and describes the problems
to be solved. Next, Section 3 accurately derives the gen-
eral PDF models for several relevant signals. In Section

4, the performance of DM under the composite attacks
is mathematically analyzed by the derived PDFs. The
decoding error probability is given in closed form and
the theoretical results are confirmed by numerical simu-
lations. Then, in Section 5, the NDM method is pre-
sented and its performance is theoretically evaluated.
Section 6 provides a useful strategy to improve the per-
formance of NDM. In Section 7, a series of tests on real
data are done to verify the validity of analytical deriva-
tions and evaluate the presented approaches. Finally,
Section 8 concludes.
Notation: In the remainder of this article, we use bold-

face lower-case letters to denote column vectors, e.g., x,
and scalar variables are denoted by italicized lower-case
letters, e.g., x. The probability distribution function
(PDF) of a random variable (r.v.) x is denoted by pX(x),
whereas if x is discrete its probability mass function
(PMF) is designated by PX(x). We write x ~ pX(x) to
indicate that a r.v. x is distributed as pX(x). pX|Y(x|y)
means the conditional probability of x given y. And the
subscripts of the distribution functions will be dropped
wherever it is clear the random variables they refer to.
Finally, the mathematical expectation and standard
deviation are respectively represented by μx and sx for a
r.v. x.

2 Review of DM and problem
We will concentrate our attention on DM in this study.
The uncoded binary DM can be summarized as follows.
Let x Î ℝ N be a host signal vector in which we wish

to embed the watermark message m. First, the message
m is represented by a vector b with NRm binary antipo-
dal components, i.e., bj = ± 1, j = 1, ..., NRm, where Rm

denotes the bit rate. The host signal x is then decom-
posed into NRm subvectors (blocks) of length L = ⌊1/
Rm⌋, denoted by x1, . . . , xNRm. In the binary DM, two L-
dimensional uniform quantizers Q-1(·) and Q+1(·) are
constructed, whose centroids are given by the lattices
and Λ-1 = 2ΔℤL + d and Λ+1 = 2ΔℤL + d + Δa with d
Î ℝL a key-dependent dithering vector and a = (1, ..., 1)
T. Each message bit bj is hidden by using Qbj(·) on xj,
resulting in the watermarked signal y Î ℝN as

yj = Qbj(xj), j = 1, . . . ,NRm. (1)

The watermark detector receives a distorted, water-
marked signal, z, and decodes a message m̂ using the
minimal distance decoder

b̂j = argmin
−1,1

∥∥Qbj(zj) − zj
∥∥ , j = 1, . . . ,NRm, (2)

where ||·|| stands for Euclidean (i.e., ℓ2) norm.
In practical watermarking applications, the water-

marked signal might undergo composite attacks. It is
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well known that quantization-based watermarking is
vulnerable to valumetric scaling attack. While the vector
at the input of the decoder is scaled by rj, i.e., zj =rjyj,
the quantization bins at the decoder are not scaled
accordingly, thus producing a mismatch between
embedder and decoder that dramatically affects perfor-
mance. Also, the original DM is not robust to constant
change distortion, i.e., zj = yj + cja with cj a constant
value. No decoding error is made for |cj| <Δ/2, however,
the bit error rate (BER) is equal to 1 for Δ/2 <|cj| <3Δ/
2. In this study, the two attacks are considered together
with additive noise vj, yielding the attacked signal as

zj = ρjyj + ν j + cja. (3)

We will analyze the performance of DM in the case of
(3), and present an improved DM resisting both valu-
metric scaling and constant change. In the subsequent
analysis, x, y, z and ν are all regarded as random vectors.
And we assume that both x and v have independently
and identically distributed (i.i.d.) components and v is
independent from y. Since the mean value of additive
noise νj can be counted by the third term in the right-
hand side of (3), it is reasonable to assume that μv = 0.

3 PDF models
Define the extracted vector r, r � Qb(z) − z. Obviously,
a crucial aspect when performing a rigorous analysis lies
in computing the PDF of r. Let us begin with the issue.

3.1 PDF model of the watermarked signal
We use a lower-case letter to indicate any element of
the vector denoted by the boldface one. The previously
used index j is dropped for no specific values (or sub-
vectors) are concerned. Given x ~ pX(x), from the rela-
tion (1), the PDF of the watermarked signal y
conditioned on a transmitted symbol b is written as

pY(y|b) =
∞∑

k=−∞
δ(y − yk)

yk+�∫
yk−�

pX(x)dx, (4)

where the variable yk is defined as yk = 2kΔ + (b + 1)
Δ/2 + d and δ(·) denotes the delta function.
A few observations are in order about the PDF of y.

First, for different dither value d, the PDF pY(y|b) is dif-
ferent. That means each element of y obeys different
distributions by randomly selecting d during embedding.
However, due to the fact PY(yk+2Δ|b) = PY(yk+1|b) exists,
it is sufficient for us to consider the case d Î [-Δ,Δ).
Further, if the PDF pX (x) is symmetric, i.e., pX(x) = pX
(-x), from (4), the PDF pY(y) satisfies pY(y|b = -1) = pY
(-y|b = 1) for the case of d = -Δ/2 and pY(y|b) = pY(-y|b)
for the case of d = 0. The former indicates that the
PDFs pY(y|b = -1) and pY(y|b = 1) are mirrors of each
other and the latter indicates that the PDF pY(y) is even.
These two properties of pY(y) are exhibited in Figure 1.

3.2 PDF model of the attacked signal
Taking the Equation (3) into account and using the fact

that for any ρ > 0pρY(y) =
1
ρ
pY

(
y
ρ

)
holds, the condi-

tional PDF of z given the transmitted symbol b can be
obtained by convolution [12]

pZ(z|b) =
∞∑

k=−∞
PY(yk|b)pv(z − ρyk − c), (5)

where the convolution follows from the independence
between y and ν. Observing (5), if the effect of different
d on PY(y) is ignored (this generally holds when the
embedding distortion is acceptable), the PDF pZ(z|b)
with d ≠ 0 can be approximately viewed as the translate
of pZ(z|b) with d = 0, that is, pZ(z + rd|b, d ≠ 0) ≈ pZ
(z|b, d = 0).
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Figure 1 The PDF curves of y for zero-mean Gaussian host data with variance 2552: (a) d = −�
2 , (b) d = 0.
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Moreover, when both x and ν are distributed symme-
trically around the origin, we have the mirror property
pZ(z + 2c|b = -1) = pZ(-z|b = 1) for the case d = -Δ/2,
and the symmetric property pZ(z + 2c|b) = pZ(-z|b) for
the case d = 0.
Figure 2a depicts qualitatively the PDFs of z for zero-

mean Gaussian host data with variance 2552 and zero-
mean Gaussian noise. It can be seen that there is a bell
curve present around each discrete value of y due to the
existence of Gaussian noise, and the two adjacent ones
even overlap for a large noise strength. Meanwhile, the
distance between two discrete points of y is scaled by
the scaling factor r and pZ(z) is translated by constant
value c. The corresponding empirical density curves of z
are plotted in Figure 2b. We see that the analytical PDF
of z fits well with empirical observations.

3.3 PDF model of the extracted signal
Recalling the definition of r given previously, it is
immediate to write

pR(r|b) =
⎧⎨⎩

∞∑
j=−∞

pZ(zj − r|b, d), r ∈ [−�,�)

0, else,

where pR(r|b) is the PDF of r conditioned on the
transmitted symbol b, and zj has the similar definition
with yk. Due to (5), the above equation becomes

pR(r|b) =
{∑

j

∑
k
P(yk|b)pv(μjk − r), r ∈ [−�,�)

0, else
(6)

with μjk = zj - ryk - c.
Now, let us analyze the properties of pR(r). If ignoring

the effect of d on PY(y), in view of (6), we derive pR(r -

�d|b, d ≠ 0) ≈ pR(r|b, d = 0) with � = r - 1. This shows
that for the case d ≠ 0 the PDF pR(r|b) can be approxi-
mately obtained by translating pR(r|b, d = 0). Further,
while |�| is small enough for neglecting the term �d, we
have the property pR(r|b, d ≠ 0) ≈ pR(r|b, d = 0). That
is, despite the choice of d, pR(r) approximately remains
unchanged for small |�|. Similarly to pZ(z), by assuming
the PDFs pX(x) and pν(ν) are even, we obtain the mirror
property pR(r - 2c|b = 0) = pR(-r|b = 1) for d = −�

2 and
the symmetric property pR(r -2c|b) = pR(-r|b) for d = 0.
At the same time, for any �, we derive pR(r|b, r = 1 +
�) = pR(r|b, r = 1-ε) for d = 0 and pR(r|b = 0, r = 1 +
ε) = pR(r|b = 1, r = 1-ε) for d = −�

2 , where pR(r|b, r)
denotes the conditional PDF of r given the transmitted
symbol b and the scaling factor r. These properties of
pR(r) are helpful for us to analyze the performance of
DM.
Figure 3 plots the probability density curves of r and

the corresponding empirical ones for zero-mean Gaus-
sian host data with variance 2552 and zero-mean Gaus-
sian noise. As can be seen, the distribution curve of r is
either dilated or compressed by the scale factor r, and
the PDF pR(r) with c ≠ 0 corresponds to pR(r) with c =
0 translated by the constant value c. The probability
that the values of r are distributed around zero
decreases as attacks become strong, which results in the
increase of BER. Comparison of Figure 3a, b reveals the
analytical PDF of r fits perfectly with its empirical
distribution.

4 Performance analysis of DM against the
composite attacks
As the previous literatures, the decoding bit error prob-
ability Pe is used as the final performance measurement.
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Figure 2 The distribution curves of z in presence of the composite attacks for different values of the noise variance sν when given r
= 0.95 and c = 13: (a) the theoretical results, (b) the empirical results.
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Assuming that the symbol b is sent, the bit error prob-
ability will be

Pe = P(||�r|| > ||��a − |�r||||b) (7)

where |r| denotes the vector of absolute values of
components of r. Defining s � |r|Ta, the above expres-
sion is equivalent to

Pe =

L�∫
L�/2

pS(s|b)ds. (8)

To compute Pe, we need know the PDF pS(s) of s. The
exact solution for pS(s) may be achieved by several
means. One of the standard procedures is by performing
multifold integral operation as

pS(s|b) =
(L−1)�∫
0

. . .

2�∫
0

�∫
0

p|R1|(u1|b)p|R2|(u2 − u1|b)

...p|RL|

(
s −

L−1∑
i=1

ui|b
)
du1du2 · · · duL−1,

(9)

where p|Rj|(rj|b) = pRj(rj|b)+pRj(-rj|b) and pRj(rj) is the
PDF of the jth element of r. The computation of pS(s) is
feasible for a small L by (9). However, it becomes
impractical as L increases. To solve the problem, it is
nature to use mathematically tractable approximations.
Let us assume that all components of d are equal, so
that the vector r has i.i.d components. At this point, by
the well known central limit theorem (CLT), s thus can
be approximated by a Gaussian random variable, whose
mean and variance are Lμ|r| and Lσ 2

|r|. Using the derived

PDF in (6), μ|r| and σ 2
|r| are represented as

μ|r| =
∑
j

∑
k

P(yk|b)
�∫

−�

|u|pν(μjk − u)du (10)

σ 2
|r| =

∑
j

∑
k

P(yk|b)
�∫

−�

u2pν(μjk − u)du − μ2
|r|. (11)

Then, the probability Pe is computed as

Pe ≈ �

(√
L(� − μ|r|)

σ|r|

)
− �

(√
L(�/2 − μ|r|)

σ|r|

)
,(12)

where F(·) stands for the cumulative distribution func-
tion (CDF) of the standard Gaussian distribution. It
should be pointed out the CLT approximation to Pe is
only valid for very large L. In reality, the condition is
generally met in order to improve the watermarking
robustness.
Now, we can observe several useful properties of Pe

from the previous analysis. When |�| is small enough, by
the property pR(r|b, d ≠ 0) ≈ pR(r|b, d = 0), it is easily
understood that Pe approximately remains unchanged
for different dither value. Therefore, without loss of gen-
erality, d is set to 0. Furthermore, for d = 0, if both pX
(x) and pν (ν) are even, using the property pR(r|b, r = 1
+ �) = pR(r|b, r = 1 - �), the same value of Pe is obtained
for the cases of r = 1- � and r = 1 + �. As a result, the
property of Pe also holds for d ≠ 0 approximately.

4.1 Generalized Gaussian host and noise
Theoretically, Pe can be estimated only if the PDFs pX(x)
and pν(ν) are given. For the following analysis we con-
sider a specific case where the host signal and attacking
noise are statistically modeled by the GGD. The GGD
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Figure 3 The distribution curves of r in presence of the composite attacks for different values of the noise variance sν and the scaling
factor r when given c = 13: (a) the theoretical results, (b) the empirical results.
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model is used because it includes a family of distribu-
tions and suitable for many practical applications. The
PDF of the GGD is defined as

p(t) =
κβ

2
(β−1)
e−|κ(t−μ)|β , (13)

where κ = 1
σ

√

(3β−1)/
(β−1), and


(u) =
∫ ∞
0 tu−1e−tdt is the Gamma function. Thus, the

distribution is completely specified by the mean μ, the
standard deviation s and the shape parameter b, and is
denoted as GGD(b; μ, s). The CDF of the GGD has the
form [13]

�(t) =
1
2
+ sgn(t − μ)

γ (β−1, |κ(t − μ)|β)
2
(β−1)

where γ (u1, u2) =
∫ u2

0
tu1−1e−tdt is the lower incom-

plete gamma function, and sgn(·) denotes the sign func-
tion, i.e.,

sgn(t) =
{

1, t ≥ 0
−1, else.

Note that Gaussian and Laplacian distributions are
just two special cases of the GGD with b = 2 and b = 1,
respectively.
First, the PMF PY(y) is calculated according to the dis-

tribution model of x. Given pX(x) ~ GGD(bx; μx, sx) and
the corresponding CDF Ψx(x), in view of (4), we imme-
diately write

PY(yk|b) = �x(yk + �) − �x(yk − �). (14)

Then, the integration terms in (10) and (11) are
derived for the case pν (ν) ~ GGD(bν; 0, sν). In appen-
dix, we obtain

�∫
−�

|u|pν(t − u)du =
γ (2β−1

ν , |κ(t − �)|βν ) − γ (2β−1
ν , |κt|βν )

2σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+
γ (2β−1

ν , |κ(t + �)|βν ) − γ (2β−1
ν , |κt|βν )

2σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+ (2�ν(t) − �v(t − �) − �ν(t + �))t

(15)

and

�∫
−�

u2pν(t − u)du =
γ (3β−1

ν , 0) − γ (3β−1
ν , |κν(t − �)|βν )

2sgn(t − �)σ−2
ν 
(3β−1

ν )

+
γ (3β−1

ν , |κv(t + �)|βν ) − γ (3β−1
ν , 0)

2sgn(t + �)σ−2
ν 
(3β−1

ν )

− (γ (2β−1
ν , |κ(t + �)|βν ) − γ (2β−1

ν , |κ(t − �)|βν ))t

σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+ (�ν(t + �) − �ν(t − �))t2

(16)

Now, the decoding bit-error probability can be esti-
mated by computing (10), (11), and (12) with the use of

(14), (15), and (16). Since the calculation of pY(y) is rela-
tively simple in (4), the above analysis can be easily
extended for other host distributions. However, the deri-
vation of the integration terms in (10) and (11) might
become very complex for the noise ν with other PDFs.
Thus, they are computed numerically when needed.

4.2 Simulations on artificial signals
In order to verify the obtained theoretical results, we
conduct a set of experiments on artificial signals. A set
of 64000 random data, independently drawn from the
GGD with zero mean and variance 2552, are used as the
host signal. A random message with equiprobable infor-
mation bit is embedded using DM with L = 64, Δ =
7.79, and d = 0. The noise signal is also generated
according to the zero-mean GGD. We calculated the
empirical BER under the composite attacks, and com-
pared them to the theoretical values. The obtained
results are summarized in Figure 4 for the case of Gaus-
sian host and noise.
Figure 4a shows the BER of DM as a function of the

scaling factor r while fixing the constant value c and the
noise standard deviation sν. As can be seen, DM is defi-
nitely very sensitive to the scaling attack. The probability
of error is unacceptably high when r movies beyond the
range [0.98, 1.02]. The existence of noise and constant
change causes the increase of BER further. And the
effect of constant change becomes relatively distinct for
strong noise. The theoretical approximation of BER
agrees almost perfectly with the empirical results, parti-
cularly in the case of weak attacks. Figure 4a also
demonstrates that the BER versus r curve is symmetric
with respect to the point r = 1. Figure 4b depicts the
plots of BER versus the constant value c while fixing the
scaling factor r and the noise standard deviation sν. For
small r and sν, the BER of DM starts to grow rapidly as
long as the absolute value of c approaches to Δ/2. The
effect of c on performance decreases as r and sν

increase. The estimated BERs are approximately equal
to the empirical ones, but the estimation accuracy gets
worse for a large c. At the same time, Figure 4b shows
that the BER versus c curve is symmetrical around c =
0. Figure 4c plots the BER of DM as a function of the
noise standard deviation sν while fixing the scaling fac-
tor r and the constant value c. Obviously, the BER
increases as sν becomes large. The curve of BER versus
sν seems to be translated due to the effect of valumetric
scaling and constant change distortions. Similar to the
previous tests, the theoretical BERs fit the empirical
ones very well and the maximal difference between
them is lower than 0.02.
In the sequel, the sensitivity of DM to statistical prop-

erties of the host and noise is investigated. We tested
the performance of DM against valumetric scaling
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attacks for different host PDF shapes controlled by bx.
The results are displayed in Figure 5a. It is remarkable
that the performance of DM increases significantly as bx
goes down. For a small bx, the BER plot becomes rela-
tively flat and the BER grows slowly. This behavior can
be explained as follows. For the GGD, the smaller bx is,
the more impulsive the shape, and the heavier the tails.
As a result, the probability that a big value of x presents
over the range of interests decreases. Thus, the intro-
duced distortion (r - 1)y by the scaling attack degrades
for the same value of r, resulting in the decrease of
BER. We also observe that the theoretical approximation
agrees almost perfectly with the empirical results for the
cases bx = 2, 8, but does worse for bx = 1. This is
because the CLT approximation to BER may

underestimate the importance of the tails of pX (x) with
bx = 1 and gives the smaller results than the true BERs
[5]. However, in terms of constant change and additive
noise, the performance of DM is insensitive to the shape
parameter bx, due to the fact that the two operations
are independent from the watermarked signal. Hence,
we just provide the results for the scaling attack herein.
Then, we tested the performance of DM against additive
noise with different PDF shapes controlled by bν. The
results are exihibited in Figure 5b. We observe that the
BER of DM goes down as bν increases for the same
noise variance. Applying the same reasoning above here,
we may understand that relatively serious distortions are
introduced by the noise attack with a large bν, and thus,
the performance of DM worsens.
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Δ

ρ σν ρ σν

ρ σν

ρ σν

(b)

σν

Δ

ρ

ρ

ρ

ρ

(c)
Figure 4 The performance of DM in the presence of the composite attacks, z = ry + ν + ca: (a) BER versus r, while fixing c and sν, (b)
BER versus c, while fixing r and sν, (c) BER versus sν, while fixing r and c. Lines and symbols stand for theoretical values and empirical data,
respectively.
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5 Normalized DM and its performance
The robustness improvement for DM is taken into
account in this section. A novel normalized DM
(NDM), is presented, which is theoretically invariant to
valumetric scaling and constant change. On the other
hand, the performance of NDM is theoretically evalu-
ated in terms of null distortions and noise addition.

5.1 Normalized DM
The main idea of NDM is to construct a gain-invariant
vector with zero mean for quantization. There are many
strategies for the construction of such a vector. In the
study, the vector is achieved in the way that the host
vector subtracts its nonzero sample mean and then is
divided by its sample standard deviation. The method is
described in details as follows.
Let ū � uTa/L and S2u � ||u − ū||2/L denote the sample

mean and variance of a L-dimensional vector u, respec-
tively. Watermark embedding is performed by

yj = λjSxjQbj

(
xj − x̄ja

Sxj

)
+ ηja (17)

for j = 1, ..., NRm, where the factors lj and hj are
determined by two specific distortion situations. For
convenience, we define the normalized host vector as
x′
j = (xj − x̄ja)/Sxj and the error vector as
qej = Qbj(x

′
j) − x′

j. By (17), the sample variance of y j

satisfies S2yj = λ2
j S

2
xj(1 + S2qej + 2qTejx

′
j/L). An appropriate

strategy to choose lj is to let S2yj = S2xj . Therefore, we
have

λj = (1 + S2qej + 2qTejx
′
j/L)

−
1
2 . (18)

Then, hj is obtained through minimizing the distance
||yj - xj||. This leads to

ηj = x̄j − λjSxj q̄ej . (19)

At detection time, the received signal z is first normal-
ized as done at the embedder’s side and then the mini-
mal distance decoder is applied. The modified detector
is represented as

b̂j = argmin
−1,1

∥∥∥∥∥zj − z̄ja
Szj

− Qbj

(
zj − z̄ja

Szj

)∥∥∥∥∥ . (20)

Now, it is possible to simultaneously see why NDM is
insensitive to valumetric scaling and constant change
attacks: Substituting zj = pjyj +cja into (20), it can be
readily verified that rj and cj cancel out in the expres-

sion, and consequently, the decision b̂j does not depend
on rj and cj.

5.2 Performance analysis
Having known that NDM overcomes the main weakness
of the conventional DM, we will evaluate the perfor-
mance of NDM in terms of null distortions and noise
addition. Performing the normalization operation on
both sides of (17) and applying (18) and (19), we get

yj − ȳja

Syj
= λj

(
Qbj

(
xj − x̄ja

Sxj

)
− q̄eja

)
. (21)

The above equation indicates that NDM introduces
two extra operations in the absence of channel noise:
valumetric scaling with lj and constant change with q̄ej.
In other words, NDM can be regarded as DM under-
going valumetric scaling and constant change distor-
tions. Thus, the theoretical performance of NDM for
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Figure 5 The sensitivity of DM to the shapes of the host and noise distributions: the performance of DM (a) against valumetric scaling for
the GGD host signals and (b) against additive GGD noise. Lines and symbols stand for theoretical values and empirical data, respectively.
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null distortions is approximately determined by (10),
(11), and (12) as the noise standard deviation sν

approaches zeros.
To evaluate the effect of lj and q̄ej in (21) on the per-

formance of NDM, we introduce the document-to-

watermark ratio (DWR), defined as ζj � LS2xj/||yj − xj||2
for the jth subvector. Combining (17), (18) and (19), lj
can be rewritten as

λj = (1 − 1
2ζj

)/(1 +
qT
ejx

′
j

L
). (22)

For small Δ, it has been shown [14] that each element
of the error vector qe obeys independently a uniform
distribution over the interval [-Δ, Δ) and qe is statisti-
cally independent from x′

j. Applying the properties, it is

easy to derive that qTejx
′
j/L in (22) has zero mean and var-

iance Δ2/(3L). Thus, lj tends to 1 - 0.5/ζj as L ® ∞ or Δ
® 0 (i.e., ζj ® ∞). Figure 6 plots the curves of the true
average error |lj - 1| versus ζj for different L, as well as
the limit 0.5/ζj. Notably, the gap between the factor lj
and its limit becomes smaller and smaller as L and
DWR increase. Over the most interesting range of ζj
from 25 dB to 50 dB, the value of |lj - 1| is less than

0.01 for all the values of L tested. From Figure 4a, it is
observed that the valumetric scaling with |lj - 1| <0.01
affects the performance of NDM so less that no decod-
ing error is made.
As to the constant change with E{ qej}, we have a suffi-

cient condition that
∣∣∣E{qej}

∣∣∣ < �/2 for making no error.

Considering the statistical properties of qej, it is possible
to resort to the CLT to show that for large L, the sam-
ple mean q̄ej can be accurately modeled by a Gaussian
PDF with zero mean and variance Δ2/(3L). Thus, the
probability that |q̄ej | < �

/
2 holds can be computed as

P(|q̄ej | < �/2) ≈ 1 − 2�(−
√
3L/4). (23)

Since the probability in (23) approaches the value of 1
as L increases, NDM can present a zero probability of
error as the original DM for large L in the absence of
channel noise. Figure 7 shows the plots of the BER as a
function of L. As shown in Figure 7, the probability of
error sharply decreases to 0 as L increases. And the
agreement of theoretical results with simulations is
excellent.
Next, we will analyze the performance of NDM in

noise channel. The received signal zj has the form zj =
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Figure 6 The average empirical values of |lj - 1| and the corresponding limit as a function of DWR.
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yj + νj, where νj is an unknown noise source with zero
sample mean and νj and yj are orthonormal. Since NDM
is invariant to valumetric scaling and constant change
attacks, it’s sufficient to consider the case. To measure
the impact of the noise, we will follow the popular
watermark-to-noise ratio (WNR), defined as
ξj � ||yj − xj||2/||νj||2 for the jth subvector. Applying the
normalization operation to zj yields

zj − z̄ja
Szj

= λ′
jQbj

(
xj − x̄ja

Sxj

)
+ ν ′

j + q̄′
eja (24)

with λ′
j = λj

√
ζjξj

ζjξj + 1
, ν ′

j =

√
ζjξj

ζjξj + 1

ν j

sxj
, and

q̄′
ej = −λjq̄ej. Expression (24) illustrates that NDM under-
goes the composite attacks as considered in (3). There-
fore, the previously obtained theoretical results can be
used to predict the performance of NDM.
Generally speaking, the factor λ′

j in (24) is approxi-
mately equal to the value of 1 by the fact that ζjξj ≫ 1
holds in practical applications. Figure 8 shows that the
value of |λ′

j − 1| is rather less even for serious distortions

(e.g., WNR = -10 dB). On the other hand, for large L,
the effect of q̄′

ej in (24) can be neglected. Based on these
two considerations, the increase of BER is mainly
derived from the term ν ′

j in (24). As a result, we can
draw the conclusion that NDM almost resists the same
amount of noise as the original DM. Figure 9 illustrates
the performance difference between NDM and DM
under the additive noise attacks. As can be seen, NDM
performs slightly worst than DM when the WNR is
within the range [-1 dB, 3 dB], but outperforms it once
WNR is lower than -1 dB. In principal, their perfor-
mance is very close in this regard. Under the light of
the above analysis we conclude that NDM achieves the
performance approximately equal to DM, still keeping
invariance against valumetric scaling and constant
change attacks.

6 The improvement of NDM
The previous analysis shows that when lj ≠ 1 and
q̄ej 	= 0 the two factors have the negative impact on the
performance of NDM. Thus, the influence of them
should be decreased or eliminated so as to obtain the
improved performance. Based on this idea, we present
the improved NDM (IM-NDM) in the sequel.
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Zhu and Ding EURASIP Journal on Advances in Signal Processing 2012, 2012:53
http://asp.eurasipjournals.com/content/2012/1/53

Page 10 of 19



In IM-NDM, the watermarked vector is generated by
weighting the quantization error signal and adding it
back to the host signal. The modified embedder is
expressed as

yj = λjSxj(x
′
j + αj · qej) + ηja, (25)

where aj denotes the weight vector whose element is
between 0 and 1, and αj · qej indicates that each dimen-
sion of aj is multiplied by the corresponding dimension
of qej· Similarly to (18) and (19), it is derived that

λj = (1 + S2qej + 2qTejx
′
j/L)

− 1
2 (26)

and

ηj = x̄j − λjSxj q̄ej . (27)

Note that NDM is a special case of IM-NDM with aj

= a. The weight vector aj plays an important role in the
performance of IM-NDM. Through a careful choice of
aj, the influence of both lj and q̄ej in (25) can be
decreased (or even eliminated), and at the same time
the distortion-compensation (DC) mechanism is intro-
duced. The latter is proved to be an effective way to

improve the performance of quantization-based water-
marking [1].
By letting lj = 1 and ηj = x̄j, we have

(αj · qej)T(αj · qej + 2x′
j) = 0

(αj · qej)Ta = 0.
(28)

Taking use of one solution of (28) in (25) allows us to
eliminate the negative impact of lj and hj. Obviously, it is
easy to obtain one solution of (28) for one of the two
equations in (28) is linear. If (28) has multiple solutions,
an appreciate one should be chosen by the performance
of IM-NDM. Obtaining the appropriate solution for aj

and investigation of its effect on watermarking perfor-
mance is beyond the scope of this article and is a good
direction for future research. If (28) has none solution, aj

should be chosen to minimize |lj - 1| under the situation
ηj = x̄j. This is a constraint optimization problem and can
be solved using the Lagrangian multiplier method.
Figure 9 illustrates the performance of IM-NDM

described above under the additive noise attack,
together with DC-DM, and the distortion compensated
NDM (DC-NDM), namely IM-NDM taking the same
weight for each element of qej, where the DC value is set
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to 0.66 for the latter two schemes. Obviously, DC-NDM
almost presents the same robustness as DC-DM against
weak attacks, and performs a little better facing very ser-
ious distortions (WNR <-4 dB). And they are noticeably
outperformed by IM-NDM.

7 Experimental results
In this section, a series of experiments are conducted on
real images to evaluate the validity of analytical deriva-
tions and performance of the proposed method.

7.1 Theoretical verification
In the experiments, we use three standard images, shown
in Figure 10. The DM method is implemented in the

spatial domain so as to observe its performance without
the impact of transform operations. Specifically, all pixels
of one image are rearranged in a vector as the host signal.
A random binary message is embedded into the host vec-
tor by DM when given the quantization step Δ, the dither
value d and the number of dimensions L. The watermark-
ing algorithm is tested under the composite attacks of
valumetric scaling with the factor r, constant change with
the value c and additive noise ν following the distribution
GGD(bν; 0, sν). The distribution parameters of image pix-
els used for the computation of theoretical BERs are dis-
played in Table 1, which are obtained by the maximum
likelihood estimator [15]. The experimental results are
summarized in Figure 11 for L = 32, Δ = 8, and d = 0.
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Figure 9 BER as a function of AWGN for Gaussian host.

Figure 10 Three standard test images: Crowd (right), Mandrill (middle), and Lena (left).
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Figure 11a depicts the plots of BER as a function of
the scaling factor r for each image. On the Crowd
image, which has the smallest shape parameter among
the tested images, DM achieves the best performance.
This behavior is consistent with the results in Figure 5a.
The shape parameter of the Lena image is larger than
one of Mandrill, but better performance is achieved on
the Lena image. This can be explained as follows. The
valumetric scaling operation introduces the serious dis-
tortions on the Mandrill image with a distinctively large
mean luminance. As a result, not only the performance
gain caused by the host PDF shape cancels out but also

the BER grows up. The analytical curves closely fit the
empirical data for the Lena and Mandrill images. By
contrast, the prediction accuracy becomes slightly worse
for the Crowd image. That is mainly due to the fact that
the GGD is a poor model for this image. Figure 11b
illustrates the sensitivity of DM to the addition/subtrac-
tion of a constant luminance value while fixing r and
sν. In the test, DM performs closely for all the test
images. That is, the performance of DM with respect to
constant change attack is insensitive to the statistical
properties of host signal. It is remarkable that the
empirical performance of DM is predicted by the theo-
retical results with a high degree of accuracy. The plots
of BER versus the standard deviation sν are shown in
Figure 11c for bν = 1 and Figure 11d for bν = 8 while
fixing r and c. As to the attack, the obvious perfor-
mance difference is observed between different images.
The effect is actually caused by the valumetric scaling
operation, and thus can be removed by setting r = 1.
Comparing Figure 11c with Figure 11d, it becomes clear

Table 1 Mean, variance, and shape parameter of image
pixels

Image μx sx bx
Crowd 85.2 50.9 1.5

Mandrill 129.1 42.4 3.3

Lena 99.1 47.9 10.6
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Figure 11 The performance of DM in the presence of the composite attack z = ry + ν + ca: (a) BER versus r, while c = �
8 , σν = �

4 , and
bν = 2, (b) BER versus c, while r = 1.01, σν = �

4 , and bν = 2, (c) BER versus sν , while r = 1.01, c = �
8 , and bν = 1, (d) BER versus sν , while

r = 1.01, c = �
8 and bν = 8.
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that the additive noise with a flat PDF is a worst-case
attack for DM. This agrees with the observation in Fig-
ure 5b. In the two cases, the predictions are desirable,
but there are small discrepancies at some points.

7.2 Performance evaluation
We tested the performance of the proposed NDM in
terms of imperceptibility and robustness and compared
it with DM, DC-DM, Oostveen ’s method [10] and
RDM [9]. Experiments were carried out on a database
of 4000 images from the Corel database, each of
dimension 256 × 384. The watermark embedding was
performed in the spatial domain in order to see the
sensitivity of the tested schemes to constant intensity
change. Specifically, we divided the target image into
nonoverlapping blocks of size 8×8 and extracted a
total of 225 blocks with the highest local variance.
Each of the extracted blocks was modulated with two
random message bits, so a total of 450 bits can be
embedded into one image. The DC value was set to
0.66 for DC-DM. The L2 vector norm of 50th-order
was used as the division function in RDM.
In the experiment on watermarking imperceptibility,

the watermark energy induced by all the tested schemes
is kept the same and in this case the watermarked
images’ quality is assessed with several objective image
quality metrics. The weighted peak signal-to-noise ratio
(wPSNR) and the total perceptual error (TPE) are used
to measure the global image quality, as well as the num-
ber of blocks greater than the first local perceptual error
threshold (NLPE1) and the second local perceptual
error threshold (NLPE2) to measure the local image
quality. The parameters for them take the default values
as suggested in Checkmark [16]. Table 2 reports the
experimental results averaged over all the test images
when the DWR is fixed at 21 dB.
As shown in Table 2, among all the tested watermark-

ing schemes, NDM and its improved version offer the
highest wPSNR values (in dB), the smallest TPE,
NLPE1, and NLPE2 values for the same watermark
energy. They all indicate that the performance of NDM,
in terms of imperceptibility, is better than that of other
ones. This is because the adaptive quantization step size
is chosen to be proportional to the local variance of the
host image in NDM (see (17)). The image quality

produced by IM-NDM degrades when compared with
NDM. The situation also presents between DM and
DC-DM. This is attributed to the fact that a large quan-
tization step is used for watermark embedding with dis-
tortion compensation. Surprisingly, RDM manifests the
worst performance in this regard.
In what follows, the watermark robustness will be

evaluated with respect to some typical image processing
operations. The watermarked images were produced by
the tested schemes when fixing DWR at 21 dB. All the
given BERs are averaged over the test set of images,
except otherwise indicated.
Figure 12 shows the robustness to amplitude scaling for

all schemes. Clearly, except the conventional DM and
DC-DM, the others manifest strong robustness against
this attack. Particularly, the lowest values of BER are
achieved by IM-NDM over the whole range of scaling
factor r tested. However, when r exceeds 1.2, the robust-
ness of IM-NDM goes down slightly. That can be attribu-
ted to the increasing rounding and clipping distortions.
Figure 13 illustrates the sensitivity of all schemes to

the addition/subtraction of a constant luminance value
c. It can be seen that both DM and DC-DM are very
fragile to constant change attack. The BER of them
sharply increases to 1 when c gets close to 10 or -10.
Although Oostveen’s method and RDM perform better
than the original QIM schemes, they are still sensitive
to this kind of attack. Our methods are evidently more
robust in this regard than other ones. They are almost
invariant to constant change and approximately keep
the BER of 0 over the range of c tested.
The robustness to AWGN is shown in Figure 14 for

each watermarking scheme. In this regard, NDM clearly
outperforms Oosteen’ method and RDM. Comparing
with DM, NDM achieves higher BER for weak noise.
This can be explained by the fact that the introduced
noise causes the errors in the estimation of the quanti-
zation step size for NDM. However, as the noise
becomes strong, the BER of DM grows rapidly and is
finally lower than one of NDM. The situation is in
accordance with the analytical results in Section 5.2.
Note that IM-NDM behaves like NDM but presents the
improved performance.
The robustness of NDM against AWGN was also

tested on the Lena image to verify the analytical deriva-
tions for NDM. Since the performance of NDM depends
on the local variance of the host image, the empirical
BER can not be accurately predicted by exploiting the
information from a certain image block. Thus, for the
computation of the theoretical BER, we chose three
image blocks with different variance: the middle one is
around the average variance over those image blocks for
watermark embedding and other two ones are respec-
tively a little larger and smaller than it. The theoretical

Table 2 Watermark imperceptibility assessment in use of
several image quality metrics

Metrics DM DC-DM Oostveen’s RDM NDM IM-NDM

wPSNR (dB) 42.63 42.62 42.91 42.58 42.98 42.97

TPE 0.035 0.035 0.032 0.041 0.032 0.032

NLPE1 8.50 8.65 7.50 9.87 6.70 6.83

NLPE2 4.63 4.55 4.30 6.53 3.58 3.60
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Figure 12 BER as a function of amplitude scaling.
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Figure 13 BER as a function of constant luminance change.
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and empirical results are depicted in Figure 15. As can
be seen, the upper analytical curve relatively fits well to
empirical observations in the weak noise case, and other
two curves respectively do well for the moderate noise
and strong noise cases respectively. In principle, the the-
oretical results are effective for real image.
The sensitivity to JPEG compression is investigated in

Figure 16. In this test, NDM performs a little worse than
DM. IM-NDM improves the robustness of NDM, but still
falls behind DC-DM. It is worth seeing that RDM has
superior performance with respect to JPEG compression.
That can be explained by the nature of JPEG compression.
Unlike the AWGN, JPEG compression is an image-depen-
dent processing operation. The goal of it is to reduce an
image file size without noticeable image quality degrada-
tion. Thus, the perceptually unrelevant data are removed
from an image after compression. The test results of
image quality reveals that RDM modifies the image data
to be easily noticed more largely than other ones, so that it
is impaired less by compression. The situation is opposite
for NDM. If the perceptual quality is set to be same for all
the tested schemes, it is reasonable to believe that NDM
will manifest better performance.
NDM is just a basic watermarking algorithm like DM.

The above tests allow us to evaluate its performance base-
line and the implementation is coarse. If one wants to
design a NDM based watermarking scheme for practical

applications, some effective technologies on performance
improvement should be carried out, such as the choice of
transform domain, the use of error-correction coding, etc.
Several image-adaptive DM algorithms are presented by
exploiting the characteristics of the human visual system
in [11]. The same ideas can be straightforwardly applied to
improve the performance of NDM. Recently, a new Loga-
rithmic QIM is developed by introducing the μ-Law con-
cept in [4]. NDM can also attempt to use the concept for
the improvement of performance.

8 Conclusion
The contribution of this article is twofold. First, we have
been theoretically evaluated the performance of DM
facing the combination of valumetric scaling, additive
noise and constant change. The analyzes were developed
under the assumptions that both the host vector and the
noise vector have i.i.d components and the two vectors
are independent. We accurately derived the general
expressions of the PDFs of the watermarked signal, the
attacked signal and the extracted signal. By these
derived PDFs, the decoding error probability was gener-
ally expressed in closed form. The specific analytical
results were presented for the case of generalized Gaus-
sian host and noise. Moreover, the theoretical results
can be easily extended by modeling the host and noise
signals with other distributions.
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According to our analyzes, DM is largely vulnerable to
valumetric scaling. And constant change and additive
noise give rise to the relatively large performance loss of
DM by combining them with valumetric scaling. Parti-
cularly, we have seen the effect of statistical properties
of the host and noise signals on the performance of
DM. The more impulsive the PDF shape of the host sig-
nal, the more robust DM is to valumetric scaling. The
more flat the PDF shape of the noise source, the more
sensitive DM is to additive noise. Simulations on artifi-
cial signals and real images show us that the bit-error
probability is accurately predicted by the given theories
for a wide range of host and noise PDF shapes. These
can ultimately guide the design of efficient watermark-
ing algorithms based on DM.
Second, a novel watermarking method, called NDM,

has been developed. In the method, the normalized host
signal vector is constructed for quantization. The NDM
achieves its theoretical invariance to both valumetric
scaling and constant change, but leads to small perfor-
mance loss in the absence of channel noise. The BER of
NDM against additive noise can be predicted by apply-
ing the presented theoretical results of DM. Further, the

NDM is improved by weighting the quantization errors.
Experiments on images demonstrate that the proposed
method achieves better watermark imperceptibility and
extremely strong robustness against valumetric scaling
and constant change attacks comparing with the original
QIM schemes and other improved versions.

Appendix
Here, we will derive the integration terms in (10) and
(11) when the attacking noise obeys the distribution
GGD(bν; 0, sν). For this purpose, using a variable t
instead of μjk, they are, respectively, rewritten as

�∫
−�

|u|pν(t − u)du =

�∫
0

u(pν(t + u) + pν(u − t))du

=

�−t∫
−t

upν(u)du +

t+�∫
t

upν(u)du

+ t

⎛⎝ �−t∫
−t

pν(u)du −
t+�∫
t

pν(u)du)

⎞⎠
(29)
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Figure 15 The theoretical and empirical BER of NDM in the presence of AWGN attack. The theoretical BER is obtained on three image
blocks with different variances: the middle variance (M-T), the smaller variance (S-T) and the larger variance (L-T).
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and

�∫
−�

u2pν(t − u)du =

t+�∫
t−�

(u2 − 2tu + t2)pν(u)du

=

t+�∫
t−�

u2pν(u)du − 2t

t+�∫
t−�

upν(u)du + t2
t+�∫

t−�

pν(u)du

(30)

Thus, achieving the two integrations can be attributed
to the computation of I(t1, t2), defined as

I(t1, t2) �
∫ t2
t1
ulpν(u)du with l being an integer.

Considering the case of t1 ≥ 0 and t2 ≥ 0, we have

I(t1, t2) =
κνβν

2
(β−1
ν )

t2∫
t1

ule−|κνu|βν

du

=
1

2
(β−1
ν )κ l

ν

(κν t2)
βν∫

(κν t1)
βν

u l+1
βν

− 1e−udu

=
γ ((l + 1)β−1

ν , (κν t2)
βν ) − γ ((l + 1)β−1

ν , (κν t1)
βν )

2σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

(31)

where the first equality follows from (13) and the final
equality follows from the definition of the lower incom-
plete gamma function.
In the case of t1 ≤ 0 and t2 ≤ 0, I(t1, t2) has the form

I(t1, t2) =
κνβν

2
(β−1
ν )

t2∫
t1

ule−(−κνu)
βν

du

=
(−1)l+1κνβν

2
(β−1
ν )

−t2∫
−t1

ule−(−κνu)
βν

du

=
γ ((l + 1)β−1

ν , (−κν t2)
βν ) − γ ((l + 1)β−1

ν , (−κν t1)
βν )

2(−1)l+1σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

(32)

where the final equality follows from (31).
Last, while t1 ≤ 0 and t2 ≥ 0, it follows that

I(t1, t2) =
κνβν

2
(β−1
ν )

⎛⎝ 0∫
t1

ule−(−κνu)
βν

du +

t2∫
0

ule−(−κνu)
βν

du

⎞⎠
=

γ ((l + 1)β−1
ν , 0) − γ ((l + 1)β−1

ν , (−κν t1)
βν )

2(−1)l+1σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

+
γ ((l + 1)β−1

ν , (κν t2)
βU) − γ ((l + 1)β−1

ν , 0)

2σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

(33)
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Figure 16 BER as a function of JPEG quality.
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where the final equality is due to (31) and (32). Com-
bining the three cases, a unified form of I(t1, t2) is

I(t1, t2) =
γ ((l + 1)β−1

ν , 0) − γ ((l + 1)β−1
ν , |κν t1|βν )

2(sgn(t1))
l+1

σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

+
γ ((l + 1)β−1

ν , |κν t2|βν ) − γ ((l + 1)β−1
ν , 0)

2(sgn(t2))
l+1

σ−l
ν

√
(
(β−1

ν ))
2−l

(
(3β−1
ν ))

l

(34)

By the formula (34) and the CDF of the GGD, (29)
becomes

�∫
−�

|u|pν(t − u)du =
γ (2β−1

ν , |κ(t − �)|βν ) − γ (2β−1
ν , |κt|βν )

2σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+
γ (2β−1

ν , |κ(t+ �)|βν ) − γ (2β−1
ν , |κt|βν )

2σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+ (2�ν (t) − �ν (t − �) − �ν (t + �))t

and (30) becomes

�∫
−�

u2pν(t − u)du =
γ (3β−1

ν , 0) − γ (3β−1
ν , |κν(t− �)|βν )

2sgn(t − �)σ−2
ν 
(3β−1

ν )

+
γ (3β−1

ν , |κν(t+ �)|βν ) − γ (3β−1
ν , 0)

2sgn(t + �)σ−2
ν 
(3β−1

ν )

− (γ (2β−1
ν , |κ(t + �)|βν ) − γ (2β−1

ν , |κ(t − �)|βν ))t

σ−1
ν

√

(β−1

ν )
(3β−1
ν )

+ (�ν(t + �) − �ν(t − �))t2
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