
RESEARCH Open Access

Goertzel algorithm generalized to non-integer
multiples of fundamental frequency
Petr Sysel and Pavel Rajmic*

Abstract

The article deals with the Goertzel algorithm, used to establish the modulus and phase of harmonic components
of a signal. The advantages of the Goertzel approach over the DFT and the FFT in cases of a few harmonics of
interest are highlighted, with the article providing deeper and more accurate analysis than can be found in the
literature, including the memory complexity. But the main emphasis is placed on the generalization of the Goertzel
algorithm, which allows us to use it also for frequencies which are not integer multiples of the fundamental
frequency. Such an algorithm is derived at the cost of negligibly increasing the computational and memory
complexity.

Keywords: Goertzel algorithm, generalization, spectrum, DFT, DTFT, DTMF

1 Introduction
In the case of discrete-time signals, the discrete Fourier
transform (DFT) is widely used for spectral analysis.
The frequencies of the harmonics in the DFT always
depend on the length of the transform, N, and they are
integer multiples of the fundamental frequency

�f = fs
N ,where fs represents the sampling frequency.

Thus, Δf gives the frequency resolution of the DFT. In
the case, when the transform length N is not a multiple
of the signal period, the signal is a sum of harmonic
components whose frequencies are not integral multi-
ples of the fundamental frequency. Such components
are not expressible in the N-point DFT spectrum by a
single spectral line—this effect is called “leakage” into
the neighboring DFT spectral coefficients, placed at the
integer multiples of Δ f [1].
Therefore, the transform length N always needs to be

chosen with respect to the desired accuracy of the fre-
quency resolution. The computational complexity of the
DFT increases quadratically with the number of sam-
ples/frequencies, and thus in practice we use almost
exclusively the fast Fourier transform algorithm (FFT),
whose computational complexity is linearithmic (linear-
logarithmic). When the task is to identify the modulus

and/or phase of a single or of just a few of the fre-
quency components, even the FFT is of no advantage,
because it always computes all the frequency compo-
nents, most of which are discarded, as being of no inter-
est. In such situations, methods specialized in
computing a subset of output frequencies can be
exploited with great benefit. Besides the Goertzel algo-
rithm, which deals with single frequencies separately, it
is worth mentioning the so-called pruned-FFT [2,3],
which is also connected to the zoom-FFT algorithm [1],
and the transform decomposition of Sorensen and Bur-
rus [3], which efficiently combines the ideas of the split-
radix FFT and the Goertzel approach. However, the
essential disadvantage of rounding frequencies to the
nearest integer multiples (and the inaccuracy thus intro-
duced) remains if using any of these methods, including
the classical version of the Goertzel algorithm.
In Section 2, we first show the derivation of the com-

mon Goertzel algorithm in detail. While this may seem
superfluous, it will be necessary to refer back to a num-
ber of its particular steps in the later sections. Then the
computational and memory complexity of the Goertzel
algorithm and the FFT is compared. In Section 3, we
provide the announced generalization of the Goertzel
algorithm, so that it is possible to use it also for the
non-integral multiples of the fundamental frequency.
Such a generalization has been mentioned before, e.g.,* Correspondence: rajmic@feec.vutbr.cz

Department of Telecommunications, Faculty of Electrical Engineering and
Communication, Brno University of Technology, Purkyňova 118, 612 00 Brno,
Czech Republic

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

© 2012 Sysel and Rajmic; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:rajmic@feec.vutbr.cz
http://creativecommons.org/licenses/by/2.0

in [4,1], but just for the computation of the modulus,
not the phase of a harmonic component.

1.1 Example of utilization of Goertzel algorithm—DTMF
The Goertzel algorithm is typically used for frequency
detection in the telephone tone dialing (dual-tone multi-
frequency, DTMF), where the meaning of the signaling
is determined by two out of a total of eight frequencies
being simultaneously present [5]. The frequencies of
each of the two groups of four signaling tones were cho-
sen such that the frequencies of their higher harmonics
or intermodulation products were sufficiently distant.
The frequencies chosen for the DTFM have a big least
common multiple. Hence, using a digital receiver with a
sampling frequency of 8 kHz, the period of DTMF sig-
nal amounts to several tens of thousands of samples. In
practice, however, the transform length N must be
much smaller, so naturally the effect of spectrum leak-
age will appear. For example, with N = 205, instead of
the accurate frequency 770 Hz the modulus at approxi-
mately 780.5 Hz (= 20·8000/205) is computed. This
situation is illustrated in Figure 1, where it is evident
that the maximum occurs at the non-integer multiple of
the fundamental frequency.
The value N = 205 is often used in practice [6],

because one of the local minima of the sum of squared
relative deviations of the signaling frequencies is experi-
enced precisely for this length. In this situation, the
deviation is approximately equal to 1.4%, while the
transmitter frequency tolerance is 1.8%. Nevertheless, in
some applications of the Goertzel algorithm the devia-
tion from the exact frequency can exceed a prescribed
tolerance, and thus both the DFT and the Goertzel algo-
rithm would be of little use.
Using the approach presented in this article it is not

necessary to round the frequencies at which detection is
desired; it is possible to determine the modulus and

phase of a component at an arbitrary (even non-integer)
frequency. The number of operations and memory
requirements increases only negligibly with this
approach.

1.2 Notation
In the following text, we assume a discrete signal x of
length N, whose samples can be complex, {x[n]} = {x[0],
x[1],..., x[N - 1]}. Symbol k represents the number
(index) of the harmonic component in the DFT, thus k
Î N. However, in the later parts of the text, we will
work also with k Î ℝ. The unit step signal is denoted
by {u[n]}, whilst u[n] = 1 for n ≥ 0, u[n] = 0 for n < 0.

2 Standard Goertzel algorithm
2.1 Derivation of standard Goertzel algorithm
The algorithm invented by Goertzel [7] serves to com-
pute the kth DFT component of the signal {x[n]} of
length N, i.e.,

X[k] =
N−1∑
n=0

x[n]e−j2πk n
N , k = 0, . . . ,N − 1. (1)

Multiplying the right side of this equation by

1 = ej2πkNN leads to its equivalent

X[k] = ej2πkNN

N−1∑
n=0

x[n]e−j2πk n
N , (2)

which can be rearranged into

X[k] =
N−1∑
n=0

x[n]e
−j2πk

n − N
N . (3)

The right side of (3) can be understood as a discrete
linear convolution of signals {x[n]} and {hk[n]}, provided

0 20 40 60 80 100 120 140 160 180 200

−1.5

−1

−0.5

0

0.5

1

1.5

time [samples]

0 0.005 0.01 0.015 0.02 0.025
time [s]

17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23
0

20

40

60

80

100

harmonics

m
od

ul
e

17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23
−3

−2

−1

0

1

2

3

harmonics

ph
as

e

700 720 740 760 780 800 820 840 860 880
frequency [Hz]

700 720 740 760 780 800 820 840 860 880
frequency [Hz]

Figure 1 The picture at the top shows the sum of two harmonic signals with frequencies 770 and 1477 Hz. It is 205 samples obtained
with fs = 8000 Hz. The bottom picture shows the spectrum of the signal: the DFT coefficients (1) are depicted with black fill, the red ones are
the values of DTFT for a non-integer mesh of frequencies (22).

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 2 of 8

that the elements of the latter signal are defined by

hk[�] = ej2πk �
N u[�]. In fact, if {yk[n]} denotes the result of

such a convolution, then it holds for its entries:

yk[m] =
∞∑

n=−∞
x[n]hk[m − n], (4)

which can be rewritten as

yk[m] =
N−1∑
n=0

x[n]ej2πkm−n
N u[m − n] (5)

where the compact support of the signal {x[n]} is
taken into consideration.
Comparing (3) and (5), it is clear that the desired X[k]

is the Nth sample of the convolution, i.e.,

X[k] = yk[N] (6)

for an arbitrary but fixed k = 0,..., N - 1. This means
that the required value can be obtained as the output
sample in time N of an IIR linear system with the
impulse response {hk[n]}.
The transfer function Hk(z) of this system will now be

derived; it is the L -transform of its impulse response [8],
thus

Hk(z) =
∞∑

n=−∞
hk[n]z−n (7)

=
∞∑

n=−∞
ej2πk n

N u[n]z−n (8)

=
∞∑
n=0

ej2πk n
N z−n (9)

=
∞∑
n=0

(ej2π
k
N z−1)

n

, (10)

which can be viewed as a geometric series with the

first term being equal to ej2πk 0
N z−0 = 1and with the

quotient q = ej2π
k
N z−1. For |q| < 1, i.e., |z| > 1, the ser-

ies is convergent and its sum equals the desired transfer
function:

Hk(z) =
1

1 − ej
2πk
N z−1

. (11)

The corresponding difference equation is

yk[n] = x[n] + ej
2πk
N yk[n − 1], with yk[−1] = 0. (12)

This first order difference equation contains a com-
plex multiplication factor, which is computationally
demanding. To save the computational cost, the trans-
mission function can be extended in both the numerator
and the denominator by the conjugate of

(1 − ej
2πk
N z−1), which leads to

Hk(z) =
1 − e−j 2πk

N z−1(
1 − e−j 2πk

N z−1

)(
1 − ej

2πk
N z−1

) (13)

=
1 − e−j 2πk

N z−1

1 − 2 cos
(
2πk
N

)
z−1 + z−2

. (14)

The respective difference equation of this second
order IIR system is

yk[n] = x[n] − x[n − 1]e−j 2πk
N + 2 cos

(
2πk
N

)
yk[n − 1] − yk[n − 2] (15)

with x[-1] = y[-1] = y[-2] = 0. Such a structure can be
described using the state variables:

s[n] = x[n] + 2 cos
(
2πk
N

)
s[n − 1] − s[n − 2], (16)

while the output is given by

yk[n] = s[n] − e−j 2πk
N s[n − 1] (17)

and we set s[-1] = s[-2] = 0. The signal flow graph
representing the system is depicted in Figure 2.
The state-space description is advantageous because

only the output sample y[N] is of interest. The algorithm
iterates the real-number-only system (16) for (N + 1)
times (beginning with the sample with the time index 0;
in the last iteration the input sample x[N] is put equal to

x[n] yk[n]s[n]

z−1

−e−j 2πk
N

2cos
(2πk

N
) s[n−1]

z−1

−1 s[n−2]

Figure 2 Signal flow graph of second order Goertzel system
with indicated state variables.

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 3 of 8

zero). Only in the last step is the output yk[N] calculated
according to (17) using only a single complex multiplica-
tion. As mentioned earlier, the value in yk[N] is the
desired spectral coefficient X[k].
The Goertzel algorithm can hence be considered as an

IIR filtering process, while only a single output sample
is of interest. The algorithm is presented step by step in
Figure 3.

2.2 Comparison of Goertzel algorithm and FFT
2.2.1 Properties
The Goertzel algorithm in fact performs the computa-
tion of a single DFT coefficient. Compared to the DFT,
it has several advantages, because of which it is used.

- First of all, the Goertzel algorithm is advantageous
in situations when only values of a few spectral com-
ponents are required (as in the DTMF example in
Section 1.1), not the whole spectrum. In such a case
the algorithm can be significantly faster.
- The efficiency of using the FFT algorithm for the
computation of DFT components is strongly deter-
mined by the signal length N. The most effective
case is when N is a power of two. On the contrary,
N can be arbitrary in the case of the Goertzel algo-
rithm, and the computational complexity does not
vary.
- The computation can be initiated at an arbitrary
moment, even at the very time of the arrival of the
very first input sample; it is not necessary to wait for
the whole data block as in the case of the FFT. Thus,
the Goertzel algorithm can be less demanding from
the viewpoint of the memory capacity and it can per-
form at a very low latency. Also, the Goertzel

algorithm does not need any reordering of input or
output data in the bit-reverse order [1].
- Finally, as will be shown later in the article, the
modulus and phase can be established also for the
non-integral spectral indexes k, raising the computa-
tional effort only negligibly. Therefore the Goertzel
algorithm is convenient in cases when, for some rea-
son, it is required to detect harmonic signals of non-
integral frequencies, or, signals with a limited num-
ber of samples which causes a decrease of the DFT
frequency resolution.

2.2.2 Computational and memory complexities
In the following analysis, operations which can be per-
formed before the first data sample has been received are
not considered. Specifically, the constants A, B, C in Figure
3 can be precomputed. The memory performance is
handled in a minimalist scenario, i.e., such that it would
not be possible to implement the algorithm with fewer sto-
rage locations.
The FFT algorithm used with N being a power of two

has computational demands proportional to N log2 N, the
absolute number depends on the particular implementa-
tion. Usually the number of real-number operations found
in the literature is approximately 6N log2 N (taking one
complex multiplication as a combination of four multipli-
cations and two summations). When working with real
signals, a number of operations can be avoided; however,
it is at the cost of increased complexity of the algorithm,
and, it is not true that the demands can be reduced by
half, as can be read, for example in [9]. For this reason, we
consider the standard “complex” FFT even for real signals.
If we analyze the number of operations of the stan-

dard Goertzel algorithm, we realize that for a real input

Inputs: index k ∈ Z of the DFT spectral component; signal x of length N
Output: y, representing X [k] according to (6)

%Precalculation of constants
A= 2π k

N
B= 2cosA
C = e−jA

%State variables
s0 = 0
s1 = 0
s2 = 0
%Main loop
for i= 0 : N−1 %N multiplications, 2N additions

s0 = x[i]+B · s1− s2 %corresponds to (16)
s2 = s1
s1 = s0

end
%Finalizing calculations
s0 = B · s1− s2 %corresponds to (16) with zero input; 1 multiplication and 1 addition
y= s0− s1 ·C %corresponds to (17); 4 multiplications and 3 additions

Figure 3 Standard Goertzel algorithm.

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 4 of 8

signal, N real multiplications and 2N real additions are
performed in the main loop. So the total number of
operations is approximately 3N for a single frequency;
we omit the small number of operations needed for pre-

computing B = 2 cos
(
2πk
N

)
,C = e−j 2πk

N and the conclud-

ing complex multiplication (one for each frequency k).
Thus, if N frequencies were of interest, the Goertzel algo-
rithm would be of quadratic complexity as the DFT is.
To answer the question “for how many frequencies K

is it more advantageous to exploit the Goertzel algo-
rithm than the FFT” we compare

3NK < 6Nlog2N

K < 2log2N,
(18)

which represents a more accurate result than for
example [[8], p. 635], where the sharper inequality K <
log2 N, based solely on a comparison of the order of
magnitude, is presented. Such a result, however, holds
only for N being a power of two; otherwise the inequal-
ity (18) can even be more favorable for the Goertzel
algorithm.
The formula (18) says that the computation should be

faster than the FFT as long as the number of frequen-
cies does not exceed 2 log2 N. For example, with a sig-
nal of length N = 32 the Goertzel algorithm is
preferable if K ≤ 9. In the case of N = 128 Goertzel
dominates over the FFT if K ≤ 13.
In fact, the algorithm introduced in [3] can be even

more efficient than this. It combines the good properties
of both the FFT and the Goertzel algorithm, producing a
DFT decomposition similar to the one used in the split-
radix FFT. The dominance of the algorithm of Sorensen
and Burrus over the FFT is guaranteed even for K <N/2.
An experimental comparison of this approach with the
Goertzel algorithm showed that the Goertzel algorithm
performs actually better than their algorithm when K ≤ 4
or K ≤ 5 for a wide range of N. It should be noticed, how-
ever, that the algorithm from [3] has to work with a whole
data block, and also the complexity being compared does
not include rearrangement of the input data sequence.
Using the FFT algorithm requires a memory space of

at least 2N, which contains the real and imaginary parts
of signal samples. Also the N values of the transforma-
tion kernel, sin and cos (so-called twiddle factors), are
often precomputed and stored. The FFT calculation
itself can be performed with no values being moved in
memory (i.e., in-place), however, with regard to the
impossibility of starting the computation until the last
sample of a block of data is received, a buffer of at least
2N in size must be used. In the case of real signals, N
memory locations are enough. Thus, the overall FFT
memory demand is 4N for real signals.

For each considered frequency, the Goertzel algorithm
requires: locations for saving two state variables, the real
constant B, the real and imaginary parts of the precom-
puted C, and the real and imaginary parts of the final
result. There is no need to implement input buffering,
because the computation can be run as the new signal
samples arrive. Similarly, the output signal can be over-
written after the last sample has arrived. In many cases
it will therefore not be necessary to use buffering at the
output side either. The total memory complexity of the
Goertzel algorithm is thus 7K positions.
Combining all the above together, the Goertzel algo-

rithm will be less memory-demanding than the FFT if

7K < 4N

K <
4
7
N.

(19)

A comparison of (19) and (18) leads to the conclusion
that, if we look for a number K for which the Goertzel
algorithm dominates over the FFT from both the mem-
ory and the computational viewpoints, then: for N ≥ 13
formula (18) is decisive, because for these N it holds
4
7N > 2log2N; on the other hand, for N Î {2,..., 12}

(which is unusual in practice), the decisive formula is

(19), because for these N it holds 4
7N > 2log2N; never-

theless, as the difference of the right and the left sides
does not exceed 2 in this case, we can conclude, with a
small loss of generality, that the comparison of the
effectiveness of the two algorithms can be based just on
relation (18).

3 Generalized Goertzel algorithm
Formula (2) holds for integer-valued k only. In such a
case, the integer number of periods of the transforma-

tion kernel, e−j2πk
n
N , corresponds to the signal length

N. In the case of k Î ℝ, formulas (1) and (2) are gener-
ally no longer in agreement. (The period of the transfor-
mation kernel no longer corresponds to N, hence the
standard approach cannot be used.)
In Sections 3.1 and 3.2, we will generalize the algo-

rithm such that it includes also the non-integral-valued
multiples of the fundamental frequency. The complexity
of the novel approach is analyzed in Section 3.3. And, as
shown in Section 3.4, the non-integer case can be trea-
ted by the standard algorithm using a small trick; how-
ever, this is at the cost of increased computational
effort.

3.1 Generalizing to non-integer k
In fact, when k is not integer-valued, we can no longer
speak of the DFT (1), rather of the discrete-time Fourier
transform (DTFT), which is defined by

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 5 of 8

X(ω) =
∞∑

n=−∞
x[n]e−jωn,ω ∈ R. (20)

With the notation ωk = 2π k
Nwe can write that

X(ωk) =
∞∑

n=−∞
x[n]e−j2πk n

N (21)

=
N−1∑
n=0

x[n]e−j2πk n
N , k,ωk ∈ R, (22)

where we exploited the compactness of the support of
the signal {x[n]}.
The derivation of the generalized Goertzel algorithm

is analog to the technique presented in Section 2. Com-
pared to that, however, we extend formula (22) at the
very beginning by unity in the form of

ej2πkNN · e−j2πkNN = 1 for k ∈ R, (23)

leading to

X(ωk) = ej2πkNN · e−j2πkNN

N−1∑
n=0

x[n]e−j2πk n
N (24)

= e−j2πkNN

N−1∑
n=0

x[n]e
j2πk

N − n
N (25)

= e−j2πk
N−1∑
n=0

x[n]e
j2πk

N − n
N . (26)

Since the sum in (26) is identical to (3), the derivation
of the generalized algorithm can proceed using the same
steps as in Section 2.1, with one noteworthy change: the
equation that characterizes the output using state vari-
ables (17) will now be of the form

yk[n] =
(
s[n] − e−j 2πk

N s[n − 1]
)

· e−j2πk. (27)

Indeed this is so, since the “correction constant”, e-
j2πk, depends only on the index of the frequency compo-
nent, which remains constant throughout the computa-
tion. The complex constant is equal to one for k Î Z,
which shows that this is indeed a generalization. In fact,
the only variation compared to the standard Goertzel
algorithm is the multiplication by this constant at the
very end of the algorithm.
The constant e-j2πk affects only the phase of the result,

not the module. Among other things, this means that

the interest in the modules of the components with
non-integer k can be satisfied using the standard algo-
rithm. Indeed, for example [4] uses it in this way. In
cases when the phase plays a role (the delay of a signal
is detected, for example), however, the use of this “cor-
rection constant” is necessary. A short remark can be
found in [[1], p. 531], describing the possiblility of com-
puting the Goertzel results also for non-integer-valued
k; however, it misleads the reader in that the phase case
is not distinguished at all.

3.2 Reducing number of iterations
It will be shown in this section that the last iteration of
the Goertzel algorithm can be substituted by merely a
single complex multiplication, instead of performing it
in the usual manner.
From equation (5) we can express

yk[N] =
N−1∑
n=0

x[n]e
−j2πk

n − N
N u[N − n]

=
N−1∑
n=0

x[n]e
−j2πk

n − N
N

(28)

and also

yk[N − 1] =
N−1∑
n=0

x[n]e
−j2πk

n − (N − 1)
N u[(N − 1) − n]

=
N−1∑
n=0

x[n]e
−j2πk

n − N

N e−j2πk 1
N .

(29)

A comparison of (28) and (29) leads to the formula
which characterizes the relationship between the last
two samples of the convolution:

yk[N] = yk[N − 1] · e+j2π
k
N . (30)

This means that the very last iteration of the tradi-
tional Goertzel algorithm can be replaced by a simple

multiplication by ej2π
k
N . Relation (30) holds for yk[N]

and yk[N-1] due to the limited support of x[n]. Nothing
similar, however, holds for samples yk[N-1] and yk[N-2],
due to the term u[·].

Combining ej2π
k
Nand the phase correction constant

for non-integer k (see (27)) results in the overall con-
stant

D = e−j2πk · e+j
2πk
N = e−j 2πk

N (N−1). (31)

This way the shortened generalized algorithm is
obtained, as is summarized in Figure 4.

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 6 of 8

3.3 Computational and memory complexities
The computational complexity of the generalized Goert-
zel algorithm described in Section 3.1 (without the
shortening in Section 3.2) grows by one complex multi-
plication (i.e., four real multiplications and two real
additions) compared to the traditional approach. The
memory requirements increase by two positions, which
contain the real and imaginary parts of the correction
constant e-j2πk.
Although saving one iteration in the main loop accord-

ing to Section 3.2 results in lowering the computational
effort by two additions and one multiplication, the need
for the final complex multiplication cancels such a bene-
fit. This means: there is no advantage in shortening the
main loop in case of integer-valued k; in such a case the
traditional algorithm as defined in Section 2 is the most
efficient one.
However, in the case of non-integer-valued k the itera-

tion reduction does make sense, since joining the correc-
tion constants into a single one (31) leads to the overall
growth of computation complexity by three real multipli-
cations (it would be four real multiplications and two real
additions if the reduction was not exploited.) Considering
the memory, such a case requires two more positions for
the real and imaginary parts of (31), compared to the stan-
dard algorithm.
It is evident that the computational and memory com-

plexities of the generalized case are only negligibly
greater. The main advantage of shortening the loop
according to Section 3.2 can be seen in that, for example,
in continuous operation, it is not necessary to perform

the last iteration and it is possible to start processing the
input sample x[N] in the time spared.

3.4 Yet another approach utilizing standard Goertzel
algorithm
It will be shown that, by a trick, the computation
required for k Î ℝ can be transformed into integer-
valued problem, where the standard Goertzel algorithm
can be utilized—so no modifications are needed. How-
ever, it is at the cost of raising the computational com-
plexity, which is even greater than with the generalized
Goertzel algorithm (Figure 4).
Starting from (22) again, the k Î ℝ can be divided

into its integer part ⌊k⌋ Î Z and the remainder

k̂ ∈ [0, 1), i.e., k = �k� + k̂. This way, (22) can be rewrit-

ten as

X(ωk) =
N−1∑
n=0

x[n]e−j2π k̂ n
N e−j2π�k� n

N . (32)

If we denote the signal created by multiplying ele-

mentwise {x[n]} and {e−j2π k̂ n
N }by {x̂[n]}, the previous

relation can be written in the form of

X(ωk) =
N−1∑
n=0

x̂[n]e−j2π�k� n
N , (33)

whose right side is a usual DFT of signal x̂ (which is
complex!) and thus can be computed by the standard
Goertzel algorithm.

Inputs: frequency “index” k ∈ R; signal x of length N
Output: y, representing X(ωk) according to eq. (20)

%Precalculation of constants
A= 2π k

N
B= 2cosA
C = e−jA

D= e−j 2πk
N (N−1)

%State variables
s0 = 0
s1 = 0
s2 = 0
%Main loop
for i= 0 : N−2 %one iteration less than traditionally

s0 = x[i]+B · s1− s2 %(16)
s2 = s1
s1 = s0

end
%Finalizing calculations
s0 = x[N−1]+B · s1− s2 %corresponds to (16)
y= s0− s1 ·C
y= y ·D %constant substituting the iteration N−1, and correcting the phase at the same
time

Figure 4 Generalized Goertzel algorithm with shortened iteration loop. The changes, compared to the standard Goertzel algorithm from
Figure 3, are marked in color.

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 7 of 8

Regarding the memory complexity, in case of real-time
processing it is of advantage to precompute and store

the signal {e−j2π k̂ n
N }. It is complex and therefore

requires 2N memory locations. Furthermore, in contrast
to the traditional algorithm, we also need 2N positions
to store x̂ , which is complex (instead of N in the tradi-
tional, real case).
To compute x̂ we need 2N real multiplications. In the

standard Goertzel algorithm (Figure 3) the N iterations
of the main loop work with real numbers only (suppos-
ing the input signal to be real). In the approach pre-
sented above, the number of real operations is doubled.
It is therefore clear that the generalized algorithm

according to Figure 4 beats the above alternative
approach from both the computational and the memory
viewpoints.

4 Software
Two Matlab functions are available for download at
URL [10].
The function named goertzel_classic.m realizes the

standard Goertzel algorithm for k Î Z; the generalized
(and shortened) algorithm for k Î ℝ is implemented in
the function goertzel_general_shortened.m. The struc-
ture of the functions corresponds to the pseudocodes in
Figures 3 and 4. Indexing the vector elements, however,
starts with “1” in Matlab, which differs from our theore-
tical description, where it starts with “0”.

5 Conclusion
The article presented the generalization of the Goertzel
algorithm. The novel approach allows us to employ also
the non-integer-valued multiples of the fundamental fre-
quency, making it possible to compute the Fourier
transform in discrete-time (DTFT) this way. The main
advantage consists in that in various applications where
the Goertzel algorithm is utilized, it is no longer neces-
sary to round the frequencies of desire, thus obtaining
more accurate results. The article shows that this is
reached at the cost of only a negligible rise in computa-
tional and memory complexities. Furthermore, it has
been shown that the very last iteration of the algorithm
can be substituted with a multiplication which is little
more effective.

Acknowledgements
This work was supported by projects of the Czech Ministry of Education,
Youth and Sports MSM0021630513, the Czech Ministry of Industry and Trade
FR-TI2/220, and the Czech Science Foundation 102/09/1846.

Competing interests
The authors declare that they have no competing interests.

Received: 10 May 2011 Accepted: 6 March 2012
Published: 6 March 2012

References
1. RG Lyons, Understanding Digital Signal Processing, 2nd edn. (Prentice Hall

PTR, NJ, 2004)
2. P Duhamel, M Vetterli, Fast Fourier transforms: A tutorial review and a state

of the art. Signal Process. 19, 259 (1990). doi:10.1016/0165-1684(90)90158-U
3. H Sorensen, C Burrus, Efficient computation of the DFT with only a subset

of input or output points. IEEE Transn Signal Process. 41(3), 1184 (1993).
doi:10.1109/78.205723

4. SL Gay, J Hartung, GL Smith, Algorithms for Multi-Channel DTMF Detection
for the WE DSP32 Family, in IEEE on Proceedings of International Conference
on Acoustics, Speech, and Signal Processing Glasgow, 1134–1137 (1989)

5. Q.23, Technical Features of Push-Button Telephone Sets (ITU-T, Geneva, 1988)
6. P Mock, Add DTMF generation and decoding to DSP-uP designs, in Digital

Signal Processing Applications with the TMS320 Family, vol. 1. (Prentice-Hall,
NJ, 1987), pp. 543–557

7. G Goertzel, An algorithm for the evaluation of finite trigonometric series.
Am. Math Monthly. 65(1), 34 (1958). doi:10.2307/2310304

8. AV Oppenheim, RW Schafer, JR Buck, Discrete-time Signal Processing, 2nd
edn. (Prentice-Hall, NJ, 1998)

9. Wikipedia contributors. in Wikipedia: the Free Encyclopedia, (Wikipedia
Foundation, St. Petersburg, Florida, 2010), http://en.wikipedia.org/wiki/
Goertzel_algorithm. 29. 6. 2005, 19. 1. 2010 [cit. 6. 4. 2010]

10. P Rajmic, Matlab codes for the generalized Goertzel algorithm (2012).
http://www.mathworks.com/matlabcentral/fileexchange/35103

doi:10.1186/1687-6180-2012-56
Cite this article as: Sysel and Rajmic: Goertzel algorithm generalized to
non-integer multiples of fundamental frequency. EURASIP Journal on
Advances in Signal Processing 2012 2012:56.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Sysel and Rajmic EURASIP Journal on Advances in Signal Processing 2012, 2012:56
http://asp.eurasipjournals.com/content/2012/1/56

Page 8 of 8

http://en.wikipedia.org/wiki/Goertzel_algorithm
http://en.wikipedia.org/wiki/Goertzel_algorithm
http://www.mathworks.com/matlabcentral/fileexchange/35103
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	1.1 Example of utilization of Goertzel algorithm—DTMF
	1.2 Notation

	2 Standard Goertzel algorithm
	2.1 Derivation of standard Goertzel algorithm
	2.2 Comparison of Goertzel algorithm and FFT
	2.2.1 Properties
	2.2.2 Computational and memory complexities

	3 Generalized Goertzel algorithm
	3.1 Generalizing to non-integer k
	3.2 Reducing number of iterations
	3.3 Computational and memory complexities
	3.4 Yet another approach utilizing standard Goertzel algorithm

	4 Software
	5 Conclusion
	Acknowledgements
	Competing interests
	References

