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Abstract

We address the problem of multidimensional modal estimation using sparse estimation techniques coupled with
an efficient multigrid approach. Modal dictionaries are obtained by discretizing modal functions (damped complex
exponentials). To get a good resolution, it is necessary to choose a fine discretization grid resulting in intractable
computational problems due to the huge size of the dictionaries. The idea behind the multigrid approach
amounts to refine the dictionary over several levels of resolution. The algorithm starts from a coarse grid and
adaptively improves the resolution in dependence of the active set provided by sparse approximation methods.
The proposed method is quite general in the sense that it allows one to process in the same way mono-and
multidimensional signals. We show through simulations that, as compared to high-resolution modal estimation
methods, the proposed sparse modal method can greatly enhance the estimation accuracy for noisy signals and
shows good robustness with respect to the choice of the number of components.
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1 Introduction
The topic of sparse signal representation has received con-
siderable attention in the last decades since it can find
application in a variety of problems, including mono-and
multidimensional deconvolution [1], statistical regression
[2], and radar imaging [3]. Sparse approximation consists
of finding a decomposition of a signal y as a linear combi-
nation of a limited number of elements from a dictionary
F Î ℂM × N, i.e., finding a coefficient vector x that satisfies
y ≈ Fx, where F is overcomplete (M < N). The sparsity
condition on x ensures that the underdetermined problem
does not have an infinite number of solutions. The dic-
tionary F can be chosen according to its ability to repre-
sent the signal with a limited number of coefficients or it
can be imposed by the inverse problem at hand. In the lat-
ter case, we consider dictionaries whose atoms are func-
tion of some parameters. The different atoms of the
dictionary are then formed by evaluating this function
over a grid which has to be very fine to achieve a certain
degree of resolution. This is the case for the modal estima-
tion problem in which the atoms are formed by discretiz-
ing the frequency and damping factor axes. In this

situation, the challenge is to get a good approximation
without a prohibitive computational cost due to the huge
size of the dictionary.
This study addresses the modal retrieval problem. This is

an important topic in various applications including
nuclear magnetic resonance (NMR) spectroscopy [4], wire-
less communications, radar, and sonar [5]. A modal signal
is modeled as a sum of damped complex sinusoids. Several
methods have been developed to address the modal esti-
mation problem such as maximum likelihood [6,7] and
subspace-based methods [5,8-12]. A special case of modal
estimation is the harmonic retrieval problem (null damping
factor) which has been formulated as a sparse approxima-
tion in a number of contributions. In the case of 1-D har-
monic retrieval problem, we can cite FOCUSS [13], the
method of Moal and Fuchs [14], basis pursuit [15], adaptive
weighted norm extrapolation [16]. Some other contribu-
tions may be found in [17,18]. Nevertheless, only a few
methods have been applied to the damped case. For
instance, [19] presents a sparse estimation example of 1-D
NMR (modal) data by using Lasso [20], LARS [21] and
OMP [22]. Goodwin et al. [23] proposed a damped sinusoi-
dal signal decomposition for 1-D signals using Matching
Pursuit [24]. Similarly, regarding multigrid approaches
associated with sparse approximation methods, only some
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studies are considering the 1-D harmonic signals [25,26].
In the case of 2-D signals, an approach combining adaptive
multigrid decomposition and TLS-Prony estimation was
proposed in [27]. However, to authors knowledge, there is
no study that deals with the problem of estimating para-
meters of multidimensional (R-D) damped sinusoidal sig-
nals by sparse approximation methods. This article
provides a multidimensional generalization of the study
presented in [28,29].
The goal of this article is to present an efficient

approach that reduces the computational cost of sparse
algorithms for R-D modal estimation problems. The main
contributions of the article are as follows. (i) We propose
a procedure which iteratively improves the set of atoms in
the dictionary. The goal of this procedure is to improve
resolution by avoiding computationally expensive opera-
tions due to the processing of large matrices; we refer to
this procedure as the multigrid approach. (ii) We show
how the 1-D modal retrieval problem can be addressed
using sparse estimation approach by building a dictionary
whose atoms are calculated by sampling the modal func-
tion over a 2-D grid (frequency and damping factor) in
order to obtain all possible modes combinations. (iii) We
show how to extend the sparse 1-D modal estimation pro-
blem to R-D modal problems.
The article is organized as follows. In Section 2, we pro-

vide background material and definitions for sparse signal
representation. We present some known sparse methods
and we recall the single best replacement (SBR) [30] algo-
rithm and its advantages as compared to other algorithms
such as OMP, OLS, and CoSaMP, to name a few. In Sec-
tion 3, we present the multigrid dictionary refinement
approach and we discuss its usefulness to accelerate com-
putation and to improve resolution. In Section 4, we see
how the 1-D modal retrieval problem may be addressed
using sparse approximations and how the multigrid
approach can be applied. In Section 5, we extend the
sparse multigrid approach to the R-D modal estimation
problem. In Section 6, experimental results are presented
first to compare SBR to a greedy algorithm (OMP) and a
solver to the basis pursuit problem. Then, the effectiveness
of the multigrid approach will be illustrated on simulated
1-D and 2-D modal signals. Conclusions are drawn in
section 7.
Notations: Upper and lower bold face letters will be

used for matrices and column vectors, respectively. AT

denotes the transpose of A. “⊙” will denote the Khatri-
Rao product (column-wise Kronecker) and “⊗” will
denote the Kronecker product.

2 Sparse approximations
2.1 Key ideas of sparse approximations
Consider an observation vector y Î ℂM which has to be
approximated by a sum of vectors from a matrix F such

that y ≈ Fx, where F = [j1..., jN] Î ℂM × N and x Î
ℂN contains coefficients that select and weight columns
jn. We refer to F as a dictionary and to x as a represen-
tation of the signal y with respect to the dictionary. To
find an accurate approximation for any arbitrary signal
y, the dictionary has to be overcomplete, i.e., has to con-
tain a large number of atoms. Therefore, we have to
solve an underdetermined system when M < N. Clearly,
there is an infinite number of solutions that can be used
to represent y. This is why additional conditions have to
be imposed. Let us introduce the pseudo norm ℓ0, || ⋅ ||
0: ℂ

N ®N, which counts the number of non-zero com-
ponents in its arguments. We say that a vector x is s-
sparse, when ||x||0 = s. In the case for an observed sig-
nal corrupted with noise, the problem of estimating the
sparsest vector x such as Fx approximates y at best can
be stated as an ℓ2 - ℓ0 minimization problem admitting
two formulations:

- the constrained ℓ2 - ℓ0 problem whose goal is to
seek the minimal error possible at a given level of
sparsity s ≥ 1:

argmin
‖x‖0≤s

{E(x) = ∥∥y − �x
∥∥2} (1)

- the penalized ℓ2- ℓ0 problem:

argmin
x∈Cn

{ J (x,λ) = E(x) + λ‖x‖0}. (2)

The goal is to balance between the two objectives (fit-
ting error and sparsity). Here, the solution sparsity level
is controlled by the l parameter.
The ℓ2-ℓ0 problem is known to yield an NP complete

combinatorial problem which is usually handled by
using suboptimal search algorithm. Restricting our
attention to greedy algorithms, the main advantage of
the ℓ2-ℓ0 penalized form is to allow both insertion and
removal of elements in x, while the constrained form
only allows the insertion when optimization is carried
through a descent approach [30,31].
A well known greedy method for sparse approxima-

tion is orthogonal matching pursuit (OMP) [22]. It
minimizes iteratively the error ℰ(x) until a stoping cri-
terion is met. At each iteration the current estimate of
the coefficient vector x is refined by selecting one more
atom to yield a substantial improvement of the signal
approximation.
There are other paradigms for solving sparse approxi-

mation problems by using ℓ2- ℓp minimization for p ≤ 1.
One of these is basis pursuit (BP) [32], which is a princi-
ple for decomposing a signal into an “optimal” superpo-
sition of dictionary elements, where optimal means
having the smallest ℓ1 norm of coefficients among all
such decompositions:
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min ‖x‖1subject to
∥∥y − �x

∥∥ < ε. (3)

This principle leads to approximation that can be
sparse and this minimization problem can be solved via
linear programming [32]. Instead of ℓ2 - ℓ1 penalized
problem, FOCUSS algorithm [13] uses a ℓ2 - ℓppenalized
criterion. For p <1, the cost function is nonconvex, and
the convergence to global minima is not guaranteed. It
is indicated in [33], that the best results are obtained for
p close to 1, whereas the convergence is also slowest for
p = 1.
In this article, we will use the SBR algorithm together

with the multigrid approach. This algorithm has very
interesting performance particularly in the case where
the dictionary elements are strongly correlated [30], this
is precisely the case with modal atoms. The algorithm is
briefly recalled in the following paragraph.

2.2 SBR algorithm for penalized ℓ2 - ℓ0 problem
The heuristic SBR algorithm (see, Table 1) was proposed
in [30] to minimize the mixed ℓ2 - ℓ0 cost function
J (x,λ) defined in (2) for a fixed parameter value l. It
is a forward-backward algorithm inspired by the SMLR
method [34]. It is an iterative search algorithm that
addresses the penalized ℓ2-ℓ0 problem for fixed l. We
denote by Ω • n the insertion or removal of an index n
into/from the active set Ω

� • n =
{

� ∪ {n} if n /∈ �

�\{n} otherwise.
(4)

At each iteration, the N possible single replacements
Ω • n (n = 1,..., N) are tested (i.e., N least square pro-
blems are solved to compute the minimum squared
error ℰΩ•n related to each support Ω•n), then the repla-
cement yielding the minimal value of the cost function
J (x,λ), i.e., J�•n(λ) := ε�•n + λCard(� • n), is selected.
In Table 1, the replacement rule is formulated by “nkÎ...”
in case several replacements yield the same value of
J (x,λ). However, this special case is not likely to occur
when dealing with real data. A detailed analysis and per-
formance evaluation can be found in [30] where it is
shown that SBR performs very well in the case of highly
correlated dictionary atoms (which is the case here). We
note that unlike many algorithms which require to fix

either a maximum number of iterations to be performed
or a threshold on the squared error variation (OMP and
OLS for instance), the SBR algorithm does not need any
stopping condition since it stops when the cost function
J (x,λ) does not decrease anymore. However it requires
to tune the parameter l which is done empirically.

3 Multigrid dictionary refinement
As mentioned before, we restrict our attention to the case
of modal dictionaries whose atoms are calculated by evalu-
ating a function over a multidimensional grid, the grid
dimension being equal to the number of unknown modal
parameters. To achieve a high-resolution modal estima-
tion, a possible way is to define a high resolution diction-
ary often resulting in a prohibitive computational burden.
Rather than defining a highly resoluted dictionary, we pro-
pose to adaptively refine a coarse one through a multigrid
scheme. This results in the algorithm sketched on Table 2,
where the key step is the adaptation of the dictionary as a
function of the previous dictionary and the estimated vec-
tor x. The algorithm amounts to insert (resp, remove)
atoms in (resp, from) F and to re-run the sparse approxi-
mation algorithm. We propose two procedures to refine
the dictionary. The first one consists in inserting new
atoms in the F matrix in the neighborhood of active ones.
In other words, we first restore the signal x(l) related to the
dictionary F(l) by applying a sparse approximation method
(SAM) at level l. Then we refine the dictionary by inserting
atoms in between pairs of F(l), in the neighborhood of
each activated atom and we apply again the SAM at level l
+ 1 to restore x(l+1) with respect to the refined dictionary
F(l+1). Thus we refine iteratively the dictionary until the
maximum level l = L - 1 is reached. This procedure is illu-
strated on Figure 1a where the dictionary atoms depend
on two parameters, f and a. The disadvantage of this pro-
cedure is that the size of the dictionary is increasing as
new atoms are constantly added between two resolution
levels. Hence, the computational cost will be increasing.
To cope with this limitation, we propose a second proce-
dure consisting in adding new atoms as in the first proce-
dure and deleting remote non-active ones (Figure 1b). The
later multigrid approach may suffer from one main short-
coming. Indeed, removing non-active atoms excludes the
possibility of further having active components in the

Table 1 SBR algorithm [30]

- Input. A signal yÎ ℂM, a matrix F Î ℂM × N and a scalar l
- Output. A sparse coefficient vector xÎ ℂN.

1. Initialize. Set the index set Ω1 = ∅, The coefficient vector x1 = [0,..., 0]T and set the counter to k = 1.
2. Identify. Find the replacement nk of F that most decreases the objective function:

nk ∈ argmin
n

{J�k•n(λ) := E�•n + λCard(� • n)}
J�k•nk(λ) < J�k(λ)
�k+1 = �k • nk.
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neighborhood of already suppressed atoms. A possible way
to overcome this problem consists in maintaining all the
atoms from the initial dictionary in all the F(l)’s.
The multigrid dictionary refinement is proposed in the

context of modal analysis. However, it is worth noticing
that this idea can be straightforwardly extended to any
dictionary obtained by sampling a continuous function
over a grid.

4 Monodimensional modal estimation using
sparse approximation and multigrid
4.1 1-D data model
A 1-D complex modal signal containing F modes can be
written as:

y(m) =
F∑
i=1

ciami + e(m) (5)

for m = 0,...,M - 1, where (ai = e(−αi+j2π fi)), with {αi}Fi=1
the damping factors and {fi}Fi=1 the frequencies. {ci}Fi=1 are
complex amplitudes and e(m) is an additive noise. The
problem is to estimate the set of parameters {ai, ci}Fi=1
from the observed sequence y(m). Equation (5) can be
written under a matrix form as:

y = Ac + e (6)

� =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1 · · · 1 · · · 1
φ1,1(1) φ1,2(1) · · · φ1,K(1) φ2,1(1) · · · φ2,K(1) · · · φp,K(1)
φ1,1(2) φ1,2(2) · · · φ1,K(2) φ2,1(2) · · · φ2,K(2) · · · φp,K(2)

...
...

φ1,1(M − 1) φ1,2(M − 1) · · · φ1,K(M − 1) φ2,1(M − 1) · · · φ2,K(M − 1) · · · φP,K(M − 1)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N=PK atoms

(7)

where A is an M × F Vandermonde matrix:

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
a1 a2 · · · aF
a21 a22 · · · a2F
...

...
...

aM−1
1 aM−1

2 · · · aM−1
F

⎤
⎥⎥⎥⎥⎥⎦

and c = [c1,...,cF]
T.

4.2 1-D sparse modal estimation
The problem of modal estimation is an inverse problem
since y is given and A,c, and F are unknown. It can be for-
mulated as a sparse signal estimation problem by defining
the dictionary F gathering all the possible modes obtained
by sampling a (P samples) and f (K samples) on a 2-D
grid. F is expressed in (7) with φp,k(m) = e(−αp+j2π fk)m and
N = PK Provided that a and f are finely sampled, we can
assume that A is a submatrix of F so that c correspond to
the nonzero elements in x. Then the modal estimation
problem can be formulated as a penalized ℓ2 - ℓ0 sparse
signal estimation problem (2). The multigrid approach
presented before can be used to that end.

5 Multidimensional modal estimation using
sparse approximation and multigrid
5.1 R-D data model
A multidimensional complex modal signal containing F
modes can be written as:

y(m1, . . . ,mR) =
F∑
i=1

ci
R∏
r=1

amr
i,r + e(m1, . . . ,mR) (8)

where mr = 0,...,Mr - 1 for r = 1,...,R. Mr denotes the
sample support of the rth dimension, ai,r = e(−αi,r+j2π fi,r) is

the ith mode in the rth dimension, with {αi,r}F,Ri=1,r=1 the

damping factors and {fi,r}F,Ri=1,r=1 the frequencies, {ci}Fi=1 the
complex amplitudes, and e(m1m2...,mR) stands for an
additive observation noise. The problem is to estimate
the set of parameters {αi,r}F,Ri=1,r=1 and {ci}Fi=1 from the
samples y(m1,...,mR).
In order to facilitate the presentation, we rewrite the

data model using the Khatri-Rao product. Given (8), we
define the vector y as:

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0, 0, . . . , 0)
y(0, 0, . . . , 1)

...
y(0, 0, . . . ,MR − 1)
y(0, 0, . . . , 1, 0)

...
y(M1 − 1,M2 − 1, . . . ,MR − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Table 2 Sparse multigrid algorithm

- Input. A signal yÎ ℂM, a matrix F Î ℂM × N, a scaler l and an
integer L
- Output. A sparse coefficient vector xL-1Î ℂN

For l = 0 up to l = L - 1

xl = SAM (�l, y,λ)

�l+1 = ADAPT (�l, xl),

End For.

Add

Add &
remove

Φl: level l Φl+1: level l+ 1

f f

α

α

(b)

(a)

Figure 1 Two multigrid schemes.
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Then, we define R Vandermonde matrices Ar ∈ CMr×F

with generators {ai,r}Fi=1 such that

Ar =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
a1,r a2,r · · · aF,r
a21,r a22,r · · · a2F,r
...

...
...

aMr−1
1,r aMr−1

2,r · · · aMr−1
F,r

⎤
⎥⎥⎥⎥⎥⎦ ,

with r = 1,..., R. It can be checked that

y = (A1 � A2 � · · · � AR)c + e (9)

where c = [c1,c2,..., cF]
T gathers the complex ampli-

tudes and e is the noise vector.

5.2 E-D sparse modal estimation
Similar to the 1-D case, the R-D modal retrieval pro-
blem can be formulated as a sparse signal estimation
problem by defining a dictionary that gathers all possible
combinations of 1-D modes obtained by sampling
damping factors and frequencies for each dimension on
2-D grids. Let Pr be the number of damping factors a1,r,
a2,r,...,aPr,r and Kr the number of frequencies f1,r,f2,r,...,
fKr,r resulting from the sampling of the rth dimension,
then the corresponding dictionary is given by

�(r) =
[
φ
(r)
1,1, . . . ,φ

(r)
1,Kr

,φ(r)
2,1, . . . ,φ

(r)
2,Kr

, . . . ,φ(r)
pr ,Kr

]
,

where φ
(r)
p,k =

[
φ
(r)
p,k(0), . . . ,φ

(r)
p,k(Mr − 1)

]T
and

φ
(r)
p,k(mr) = e(−αp,r+j2π fk,r)mr for p = 1,...,Pr and k = 1,...,Kr.

Finally, the dictionary involved in the R-D sparse modal
approximation is defined by:

� = �(1) ⊗ �2 ⊗ . . . �(R), (20)

where the number of atoms is N = �R
r=1Nr, with Nr =

PrKr. Note that the dictionary F can be seen as a 2R-dimen-
sional sampling of the R-dimensional modal function. Then
the R-D modal retrieval problem can be formulated as a
penalized ℓ2 - ℓ0 sparse signal estimation problem (2).

5.3 Multigrid approach for R-D modal estimation
According to (10), the dictionary is obtained by doing the
Kronecker product of R 1-D modal dictionaries. Thus, we
can still use the multigrid approach presented in section 3
to adapt each 1-D dictionary to form the R-D dictionary.
This results in the algorithm sketched in Table 3.

6 Experimental results
In this section, we present some experimental results for
the multigrid sparse modal estimation. First, we present
two examples on 1-D simulated modal signals. Next, we

present and discuss results on a 2-D simulated signal
and we compare them with those obtained by the sub-
space method “2-D ESPRIT” [5]. We chose the 2-D
ESPRIT method because a comparative performance
study [35] has shown that among different subspace-
based high resolution modal estimation techniques, it
was the one which was giving the best results.

6.1 1-D modal estimation results
First, we compare the results achieved by SBR, OMP,
and the primal-dual logarithmic barrier (log-barrier)
algorithm for solving the BP problem [15]. Here we
used the SparseLaba implementations of OMP and
BP (SolveOMP and SolveBP). Then, we present the
results achieved using the multigrid SBR approach.
The first dataset is a noise-free 1-D modal signal y

composed of M = 30 samples and made up of three 1-D
superimposed damped complex sinusoids having the
same amplitude. The 1-D modes are:

(f1,α1) = (0.2, 0.050);

(f2,α2) = (0.3, 0.025);

(f3,α3) = (0.9, 0.050).

The dictionary is constructed using 20 equally spaced
frequency points in the interval [0 1], where each fre-
quency point is coupled with 20 points of damping factors
in [0 0.5] and each atom represents a 1-D complex sinu-
soid of M samples. Thus, the dictionary F is of size 30 ×
400. We notice that the simulated 1-D modes belong to
the dictionary. Thus, in the noise free case, it is possible to
have an exact representation of the signal.
We estimate the parameters of y using SBR, OMP, and

log-barrier; the results are shown in Figure 2. The repre-
sentation given at the bottom of Figure 2 plots the active
modes in the frequency-magnitude plane: the vertical lines
are located at the frequencies of the active set Ω and their
heights represent the corresponding estimated magnitudes
|xΩ|. The horizontal segments represent the damping fac-
tors. Clearly, the results obtained by SBR and OMP are
more sparse than those achieved by the BP solver because
BP detects much more than three modes. This is due to
the fact that BP is an l2- l1 solver and thus tends to detect
many atoms having low amplitudes, while OMP and SBR
do not impose any l1 penalty on the amplitudes allowing
for the detection of a small number of atoms possibly hav-
ing large amplitudes. SBR exactly yields the three modes
(exact recovery) whereas OMP gives the true frequencies
but leads to a wrong a2. The Fourier transform of signal y
and its estimates obtained by SBR, OMP and log-barrier
algorithms are given on Figure 2 (top). We observe that
unlike OMP and log-barrier, SBR correctly estimates the
modal parameters of y. Although log-barrier algorithm
estimates correctly the frequencies for harmonic signals, it
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does not estimate correctly the parameters of 1-D modal
signals and the solution is less sparse than the solutions
provided by SBR and OMP.
In the second example, SBR algorithm coupled to

multigrid approach is applied to estimate the 1-D
modes from a simulated 1-D modal signal expressed in
(5) with 30 samples embedded in additive Gaussian
white noise such that the SNR is 23 dB. We start
restoration using the same dictionary described in the

first example, then we refined it with the multigrid
approach. The simulated modes are:

(f1,α1) = (0.19, 0.025),

(f2,α2) = (0.23, 0.050).

These modes are chosen in such a way that they can-
not be separated by the Fourier transform (Figure 3)

Table 3 R-D sparse multigrid algorithm

- Input. A signal y ∈ CM1M2...MR R matrices �
(r)
0 ∈ CMr×Nr , a scaler l and an integer L

- Output. A sparse coefficient vector xL-1Î ℂN

For l = 0 up to l = L - 1

�l = �
(1)
l ⊗ �

(2)
l ⊗ · · · ⊗ �

(R)
l

xl = SAM(�l,y,λ)

For r = 1 up to r = R

�
(r)
l+1 = ADAPT(�(r)

l , xl)

End For
End For.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
Spectrum

f

|Y
(f

)|

 

 
Signal y
SBR
OMP
Log−barrier, it = 50
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0.4
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0.6
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

|

 

 
Original y
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Figure 2 Spectrum of y and its estimates by SBR, OMP, and
log-barrier (top), frequencies and damping factors of
estimated modes (bottom).
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(a) Level 1: fi = 0.15, 0.2, 0.25 and αi = 0.125, 0.15, 0.225 resp.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

Spectrum

f

|Y
i(f

)|

 

 
Original y
Mode 1
Mode 2

(b) Level 7:fi = 0.1917, 0.2302 and αi = 0.05, 0.025 resp.

Figure 3 Spectrum of y and estimated modes by SBR and
multigrid, (a) level 1; (b) level 7, SNR = 23 dB.
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and they are not initially in the dictionary F. Figure 3a
shows the spectrum of each sinusoid activated in the
first level. Using the second multigrid procedure pre-
sented before, we see on Figure 3b that the two 1-D
modes have been well separated in level 7, which proves
the effectiveness of the approach. To give some figures
about the efficiency of the multigrid approach, it is
interesting to compare the size of the dictionary at the
7th degree of resolution to the uniform dictionary allow-
ing the same resolution. For our example, F(7) is of
dimension 30 × 520 while the uniform one achieving
the same resolution would require a dictionary of size
30 × 6553600. This dramatic increase in the number of
atoms is due to the bidimensional nature of the diction-
ary. Obviously, this complexity becomes huge for bi-and
multidimensional modal signals.

6.2 2-D modal estimation results
First, SBR is used in combination with the multigrid
approach to estimate parameters of a 2-D simulated signal
(ysim) of dimensions 20 × 20 which contain three modes

with parameters:

(f1,1,α1,1; f1,2,α1,2) = (0.100, 0.00; 0.2, 0.0),

(f2,1,α2,1; f2,2,α2,2) = (0.125, 0.00; 0.2, 0.0),

(f3,1,α3,1; f3,2,α3,2) = (0.125, 0.05; 0.3, 0.1).

Note that the first two modes are not separated by 2-D
Fourier transform. Amplitudes are (c1, c2, c3) = (1,1,3) and
the additive white noise variance is such that the SNR of
the first mode is 7 dB (SNR1 = 7). In the following simula-
tions we use this simulated 2-D signal (ysim) with the same
modes and amplitudes, we only change the SNR value.
The spectrum of the simulated signal is represented by
contour lines in Figure 4a where it is verified that the first
two peaks are not separable by Fourier transform. The
SBR method coupled with the proposed multigrid
approach detects well the three components at the third
resolution level. Their respective spectras are shown in
Figure 4b. To give an idea about the gain in computational
cost, the size of the dictionary at the third level is equal to
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Figure 4 Frequency resolution of the proposed method with
SNR1 = 7 dB. The position of simulated modes is presented by a
circle.
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Figure 5 Comparison between 2D-ESPRIT and the proposed
method with SNR1 = 20 dB. (○) Frequencies of simulated 2-D
modes; (•) Frequencies of estimated 2-D modes; (⋄) The diagonals
of the diamonds represent the 2-D damping factors.
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400 × 3136. The size of the uniform dictionary achieving
the same resolution is 400 × 409600; the gain in term of
size is a multiplicative factor 130.
In Figure 5, we compare the estimated modes

obtained by the 2-D ESPRIT [5] and our proposed tech-
nique. We use the 2-D simulated signal (ysim) with the
SNR set to 20 dB. Both our technique and 2-D ESPRIT
are able to separate the three modes, whereas there is a
slight error made by 2-D ESPRIT on the first and sec-
ond modes. In Figure 6, we decrease the SNR to 7 dB,
and only the proposed algorithm is still able to estimate
the three modes with an accuracy similar to what was
obtained when the SNR equals 20 dB. In that case, the
2-D ESPRIT performance decreases and the modal para-
meters are biased.
In Figure 7, we test the sensitivity of our technique to

the correct determination of the number of modes in
the signal. In the previous examples, the parameter l of
the penalized cost function in SBR algorithm was fixed
to 0.01 and we did not give any constraint on the

number of modes to be estimated. However, in the
example presented in Figure 7, we use the 2-D simu-
lated signal with SNR equal to 20 dB, and we force 2-D
ESPRIT and the proposed algorithm to estimate 5
modes (while the actual number of modes is 3). We
observe that the proposed algorithm is not very sensitive
to the correct determination of the number of existing
modes in the sense that the true modes are activated
and the other active atoms lies in the neighborhood of
the true modes. On the contrary, the 2-D ESPRIT yields
spurious modes located very far from the true ones.
In Figure 8, we analyze the sensitivity of the multigrid

algorithm to noise power. We use the same signal ysim
with different noise levels SNR1. For each noise level we
do 20 Monte Carlo trials and then we calculate the per-
centage of successful estimations obtained after three
multigrid levels. We can see that the proposed algorithm
reconstruct exactly the signal with a rate upper than
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Figure 6 Comparison between 2-D ESPRIT and the proposed
method with SNR1 = 7 dB. (○) Frequencies of simulated 2-D
modes; (•) Frequencies of estimated 2-D modes; (⋄) The diagonals
of the diamonds represent the 2-D damping factors.
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Figure 7 Simulation results with number of estimated modes
forced to be 5 and SNR1 = 20 dB (on the first mode). Estimated
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80% for an SNR1 more than 6 dB; and the rate of suc-
cess is 100% with an SNR1 upper than 15 dB.

7 Conclusion
We presented a multigrid technique that adaptively
refines ordered dictionaries for sparse approximation.
The algorithm may be associated with any sparse
method, but clearly the accuracy of the final results will
depend on the accuracy of the sparse approximation.
Then sparse approximation associated to multigrid are
used to tackle mono-and multidimensional modal
(damped sinusoids) estimation problem. Thus, we
applied the SBR algorithm which is shown, using simu-
lation results, to perform better than OMP and Basis
Pursuit for modal approximation. Finally, we examined
performances of our proposed algorithm over existing
R-modal estimation algorithms. It allows one to separate
modes that the Fourier transform cannot resolve with-
out a huge increase in the computational cost, improves
robustness to noise and does not require initialization.
As perspectives, we will study possible improvements
for the sparse multigrid approach in the case of multidi-
mensional modal signals. In particular, we can envisage
to used multiple 1-D modal estimation to get a low
dimension initial dictionary for R-D modal estimation.
We also are planning to study the convergence proper-
ties of the multigrid approach and we will apply the
method to the modal estimation of real NMR signals.

Endnote
ahttp://sparselab.stanford.edu.
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