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Abstract

model-based Lorentzian iterative hard thresholding.

tially known support (OMP-PKS)

The Lorentzian norm of robust statistics is often applied in the reconstruction of the sparse signal from a compressed
measurement signal in an impulsive noise environment. The optimization of the robust statistic function is iterative and
usually requires complex parameter adjustments. In this article, the impulsive noise rejection for the compressed
measurement signal with the design for image reconstruction is proposed. It is used as the preprocessing for any
compressed sensing reconstruction given that the sparsified version of the signal is obtained by utilizing octave-tree
discrete wavelet transform with db8 as the mother wavelet. The presence of impulsive noise is detected from the
energy distribution of the reconstructed sparse signal. After the noise removal, the noise corrupted coefficients are
estimated. The proposed method requires neither complex optimization nor complex parameter adjustments. The
performance of the proposed method was evaluated on 60 images. The experimental results indicated that the
proposed method effectively rejected the impulsive noise. Furthermore, at the same impulsive noise corruption level,
the reconstruction with the proposed method as the preprocessing required much lower measurement rate than the
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1. Introduction

Compressed sensing (CS) is a sampling paradigm that
provides compressible signals at a rate significantly
below the Nyquist rate. It reveals that a compressible or
sparse signal can be recovered by a small amount of
measurements [1-3]. The connection between sampling
and reconstruction methods of CS and those of other
sparse signal processing is presented in [4]. The descrip-
tion of commonly used reconstruction algorithms is also
given. Consider a measurement process in CS that is
modeled as

y = ®x, )

where y and @ are an M x 1 compressed measurement
signal and an M x N random measurement matrix,
respectively; x is an N x 1 compressible signal. In CS, it is
considered that M <N. A signal is compressible if it is
sparse in some domain; thus, x can be written as follows

* Correspondence: Asupatana@yahoo.com

'Department of Electrical Engineering, Chulalongkorn University, Bangkok
10330, Thailand

Full list of author information is available at the end of the article

@ Springer

x = Ws, (2)

where s and W are a k-sparse signal and an N x N
orthogonal basis matrix, respectively. k is the number of
non-zero elements or a sparsity level. Without loss of
generality, ¥ is defined as an identity matrix in this arti-
cle and x is equivalent to s.

In practice, y can be corrupted by noise during trans-
mission in a noisy channel. The measurement process
in the noisy channel is modeled as

y=®s+e 3)

where e is the additive noise.

CS reconstruction methods aim to find the sparsest s
that creates y. The reconstruction of s in the noisy
channel can be written as the following optimization
problems.

argmsin Isllos.t. [y — ®s||, <e, (4)

where ¢ and ||u||, are the error bound and the Lp
norm of u, respectively. The error bound is set based on
the noise characteristics, such as bounded noise,
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Gaussian noise, finite variance noise, etc. [5-14]. L,
norm in Equation (4) is relaxed to L; norm in the
reconstruction by Basis Pursuit Denoising (BPDN),
whereas it is replaced by heuristic rules in the recon-
struction by greedy algorithms.

The optimization problems in BPDN [6] is

arg rnsin IIs]lys.t. ||y— <I>s||2 <e, (5)
which is equivalent to
1 2

argmin ly — @s|; +lisll;, (6)

where 7 is a regularization parameter.

When the noise is impulsive noise, e is considered to
be very large. It is well known that the optimization of
L, norm is not robust to outliers in y; thus, the optimi-
zation leads to the incorrect result of s. In [15], the
reconstruction from the signal corrupted by the impul-
sive noise is performed by solving one of the following
two optimization problems.

o1 2
argmin _ |y — ®s —es]|; + lleslly + lisll, (7)
s 2o

o1 2
argrnsln 2 ||y— Ps — e; ||2 + lleslly + TlIslmvs (8)

where e; and « are a sparse vector with large non-zero
coefficients (impulsive noise) and a pre-defined threshold,
respectively; ||u||tv is a total variation norm of u. This
method first estimates s and then estimates es. The esti-
mation is performed iteratively. However, the unique solu-
tion is guaranteed only when the cost function is convex.
The effect of impulsive noise can be suppressed by apply-
ing robust statistics [16-22]. The Generalized Cauchy Dis-
tribution (GCD)-based maximum likelihood has been
proposed as the optimization algorithm that is robust to
impulsive noise [16-22]. The Lorentzian norm, which is
the special case of GCD, is utilized in a number of robust
CS reconstructions [18-20,22]. The Lorentzian norm is
used in the place of L, norm in Equation (5) for the
Lorentzian-based Basis Pursuit (LBP) [18]. Similar to Basis
Pursuit (BP), the LBP is slow to solve. Furthermore, it
requires complex parameter adjustments for the effective
optimization of the Lorentzian norm. The reconstruction
in [19,20] applies the iterative algorithm and the weighted
myriad operator to solve the following problem.

argmin IH—=R"s|,, +lsll, )

where ||u||.,, H and R are the Lorentzian norm of u,
a Cauchy random projection signal and a Cauchy ran-
dom projection matrix, respectively. The reconstruction
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in [21] applies the weighted median operator and the
iterative thresholding to solve the following L,-regular-
ized Least Absolute Deviation regression problem.

M
arg msinZ |(vi — @ s)| + zlIsllo, (10)

i=1

where y; and ¢/ are the ith element of y and the ith

row of @, respectively. The Lorentzian-based Iterative
Hard Thresholding (LIHT) approach is proposed as the
fast reconstruction method in [22]. Iterative Hard
Thresholding (IHT) is used in the place of BP to
increase the speed of LBP. However, it faces the same
problem as IHT in that it requires high measurement
rate in order to acquire successful reconstruction [13].
Consequently, LIHT is suitable for very sparse signals.

The noise tolerance can be increased by including
prior knowledge. One of the popular knowledge is the
model of a sparse signal [23-29], such as the wavelet-
tree structure. Model-based reconstruction methods
have three benefits: (1) the reduction of the number of
measurements, (2) the increase in robustness, and (3)
the faster reconstruction.

Even though robust statistic provides the tolerance
against impulsive noise, its optimization problem is
often difficult. In this article, the impulsive noise rejec-
tion method for image data is proposed. It is used as
the preprocessing to estimate the noise-free y. It itera-
tively applies the heuristic rule that is based on the
energy distribution of the image data in wavelet domain
to detect the existence of the impulsive noise. Octave-
tree discrete wavelet transform (DWT) is used to trans-
form signals to sparse domain in this article. In an
image, most energy should be contained in the third-
level subband. The existence of the impulsive noise
leads to the high ratio of the energy outside the third-
level subband to the total energy. The rejection and the
estimation of the noise corrupted elements are made
possible by the following fact. In most images, the
k-sparse signal s can successfully be reconstructed even
though some elements in y are removed, because the
image data are redundant. The proposed rejection
method requires only two parameters: the energy-ratio
threshold and the rejection-ratio threshold. These two
parameters are easily adjusted and are evaluated for the
optimal values as presented in the “Experimental”
section.

The proposed method and the impulsive noise cancel-
lation method in [30] are similar as they have two
stages: the noise detection and the signal estimation
stages. Both methods detect impulsive noise iteratively.
However, they are different in a number of aspects.
Only a few are mentioned here. The proposed method
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detects the impulsive noise via the energy distribution of
the projected sparse signal. Its estimation stage is sepa-
rated from its detection stage. The estimation is per-
formed only once after the noise detection has been
completed. On the other hand, the method in [30]
detects the noise via the difference between the original
noisy and the estimated signals; consequently, its esti-
mation stage is integrated into the same loop as its
detection stage. The estimation is performed iteratively.

The remainder of this article is organized as follows.
Section 2 addresses a brief review of CS, the reconstruc-
tion by Orthogonal Matching Pursuit (OMP) and OMP
with Partially Known Support (OMP-PKS). Section 3
describes the proposed impulsive noise rejection method.
The block processing and the vectorization are also
given. In Section 4, the proposed method is evaluated.
The conclusion is given in Section 5.

2. Background
2.1. Compressed sensing
CS is based on the assumption of the sparse property of
signals and incoherency between the basis of the sparse
domain and the basis of measurement vectors [1-3]. CS
has three major steps: the construction of k-sparse repre-
sentation, the measurement, and the reconstruction. The
first step is the construction of the k-sparse representa-
tion, where k is the sparsity level of the sparse signal.
Most natural signals can be made sparse by applying
orthogonal transforms such as wavelet transform, Fast
Fourier Transform, or Discrete Cosine Transform. This
step is represented as Equation (2).

The random measurement matrix is applied to mea-
sure the signal by the following equation.

y=®x = dUs (11)

Since ¥ is an identity matrix in this article, s is
equivalent to x. The sufficient condition for the high
probability of successful reconstruction is as follows.

M > Cu?(®,¥)k log N, (12)

for some positive constant C. u(®, ¥) is the coherence
between @ and ¥, and defined by

(@, ¥) = VN max (i )|, (13)

where ¢; and y; are the ith and the jth column in @ and
¥, respectively. If the elements in ® and W are correlated,
the coherence is large. Otherwise, it is small. From linear

algebra, it is known that u(®, ¥) € [1, x/N] [2]. In the

measurement process, the error (due to hardware noise,
transmission error, etc.) may occur. The error is added
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into the compressed measurement signal as described in
Equation (3).

The final step is the reconstruction. There are two
major reconstruction approaches: L;-minimization [5-8]
and greedy algorithm [10-14,31]. Convex optimization is
applied in the reconstruction by L;-minimization
approach. The successful reconstruction depends on the
degree that @ complies with the Restricted Isometry
Property (RIP). RIP is defined as follows.

(1 =8 lIsll3 < 1@sll5 < (1 +8) lIsl3, (14)

where J, is the k-restricted isometry constant of ®.
RIP is used to ensure that all the subsets of k columns
taken from @ are nearly orthogonal. It should be noted
that @ has more columns than rows; thus, ® cannot
exactly be orthogonal [2].

The reconstruction by L;-minimization as in BP is stable
but slow. Greedy algorithms increase the reconstruction
speed by applying heuristic rules. In OMP [31], the heuris-
tic rule is created based on the assumption that y has the
large correlation to the bases corresponding to the non-
zero elements (or the elements with large magnitude) of s.
OMP selects the bases of the non-zero elements according
to the correlation and estimates the values of the non-zero
elements by the least squared method. The selection is
iterated until the certain condition is reached. The recon-
struction by greedy algorithms has a fast runtime, but
lacks stability and uniform guarantee. RIP is not seriously
considered in the greedy algorithms [12].

2.2 Orthogonal matching pursuit

OMP is a well-known reconstruction algorithm [31]. It
was developed from matching pursuit [32] using differ-
ent method to estimate the magnitude of the non-zero
elements in s. Instead of projecting the residual signal
onto the selected basis, it estimates the magnitude of
the non-zero elements by solving the least squared error
between the projection of the reconstructed s and y.
OMP has the advantage of simple and fast implementa-
tions. The algorithm is as follows.

Input:

o« The M x
Q=[¢1¢...0n]
+ The M-dimension compressed measurement sig-
nal, y

« The sparsity level of the sparse signal, k

N measurement matrix,

Output:

« The reconstructed signal, §
+ The set containing k indexes of non-zero elements
in §, Ak = {/11, 12, ey /lk}
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Procedure:
(a) Initialize the residual (ry), the index set (Ay) and
the iteration counter (£) as follows.

1'0=y,A()=®, t=1

(b) Find the index A, of the measurement basis that
has the highest correlation to the residual in the pre-
vious iteration, r; ;.

,,,,,,

If the maximum occurs in multiple bases, select one
deterministically.

(c) Augment the index set and the matrix of chosen
bases: A, = A;.; U{A} and @, = [<I>t,1 901[], where ®,
is an empty matrix.

(d) Solve the following least squared problem to
obtain the new reconstructed signal, z,.

z, = argmin ly — @.z],

(e) Calculate the new approximation, a,, that best
describes y. Then, calculate the residual of the t-th itera-
tion, r;.

a =Pz
n=y—a

(f) Increment ¢ by one.

(g) If ¢t >k, terminate; otherwise, go to step (b).

The reconstructed signal, §, has non-zero elements at
the indexes listed in A;. The value of the A; th elements
in § equals to the jth element of z; (j = 1,2,...,k). The ter-
mination criterion can be changed from ¢ >k to that r; ;
is less than the predefined threshold.

2.3. OMP with partially known support
OMP-PKS [28] is adapted from the classical OMP [31].
The partially known support gives a priori information
to determine which subbands in the sparse signal struc-
ture are more important than the others and should be
selected as non-zero elements. It has the characteristic
of OMP that the requirement of RIP is not as severe as
BP’s [6]. It has a fast implementation but may fail to
reconstruct the signal (lacks stability). It requires very
low measurement rate. It is different from Tree-based
OMP (TOMP) [24] in that the subsequent basis selec-
tion of OMP-PKS does not consider the previously
selected bases, while TOMP sequentially compares and
selects the next good wavelet sub-tree and the group of
related atoms in the wavelet tree.

The wavelet transform of an image is realized using fil-
ter banks as shown in Figure 1. The image is decomposed
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into four subbands: HH, HL, LH, and LL. These four
subbands contain diagonal details, vertical details, hori-
zontal details, and approximation coefficients, respec-
tively. In this article, octave-tree DWT is used to obtain
the sparse representation of images. The second and the
third-level subbands are constructed by applying the fil-
ter bank analysis to the LL subband in the first and the
second levels, respectively. The example of octave-tree
DWT is shown in Figure 2. The original and the wavelet
transformed images are shown in Figure 2a, b, respec-
tively. Since the LL subband in the third level (LL3 sub-
band) contains most information in the image, the signal
in the LL3 subband must be included for successful
reconstruction. All elements in the LL; subband are
selected as non-zero elements without testing for the cor-
relation. The algorithm for OMP-PKS when the data are
represented in wavelet domain is as follows.
Input:

e« The M x
®=[p1902..0n]
+ The M-dimension compressed measurement sig-
nal, y

« The set containing the indexes of the bases in LL3
subbands, I' = {5, %, ..., %)}

+ The sparsity level of the sparse signal, k

N measurement matrix,

Output:

« The reconstructed signal, §
+ The set containing k indexes of the non-zero ele-
ment in §, Ay = {4, Ao, oy A4

Procedure:
Phase 1: Selection without correlation test
(a) Select every basis in the LL3 subband.

t=1I]
At=F

o, = [‘pyl Py, - ‘p)/z]

(b) Solve the least squared problem to obtain the new
reconstructed signal, z,.

z, = argmzin ly - ‘I’tZ“z

(c) Calculate the new approximation, a,, and find the
residual (error, ry). a; is the projection of y on the space
spanned by ®,.

a; =Pz

In=y—a
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Figure 1 Wavelet decomposition by filter bank analysis. HP and LP are high pass filter and low pass filter, respectively.
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Phase 2: Reconstruction by OMP

(a) Increment ¢ by one, and terminate if ¢ >k.

(b) Apply steps (b)-(g) of OMP described in Section
2.2 to find the remaining k-|T'| non-zero elements of §.

The reconstructed sparse signal, §, has the indexes of
non-zero elements listed in Az The value of the A;th
element of § equals to the jth element of z.

3. Proposed method
The proposed impulsive noise rejection method is
described in this section. Block processing and the

vectorization of the wavelet coefficients are addressed
before a description of the noise rejection method. The
block processing is applied to reduce the computation
cost. The proposed noise rejection method is applied
before the reconstruction and divided into two stages.
In the first stage, the algorithm to detect impulsive
noise is applied. Then, OMP-PKS is applied to estimate
the information that is lost due to the impulsive noise.
The algorithm to detect the impulsive noise and the
estimation of the missing information are described in
Sections 3.2 and 3.3, respectively.

(a)

Figure 2 The example of octave-tree DWT: (a) the original image and (b) the wavelet transformed image. Subbands inside the blue,
orange and green windows are the first, the second, and the third level subbands, respectively.
A\

(b)
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3.1. Block processing and the vectorization of the wavelet
coefficients

In this article, the DWT is used to obtain the sparsified
version of an image. Figure 3 shows an example of block
processing and the vectorization of the wavelet coeffi-
cients. Figure 3a shows the structure of a wavelet trans-
formed image. The LL3 subband is presented in red. Other
subbands (LH, HL, and HH) in the third, the second, and
the first levels are presented in green, orange, and blue,
respectively. The LL3 subband is the most important sub-
band, because it contains most of the energy in the image.
Figure 3b shows the re-ordering of the wavelet coeffi-
cients. The coefficients are ordered such that the LL3 sub-
band is located at the beginning of each row. The LL;
subband is followed by the other subbands in the third,
the second, and the first levels.

The wavelet-domain image in Figure 3b is divided into
blocks along its rows as shown in Figure 3c. In Figure 3c,
the image has eight rows; consequently, it is divided into
eight blocks. Each row in Figure 3c is considered as a
sparse signal in this article.

The signal can be made more sparse by the wavelet
shrinkage thresholding [33]. In the wavelet shrinkage
thresholding, all the coefficients in the LL3 subband are
preserved, while coefficients outside the LL; subband
with magnitude less than the wavelet shrinkage threshold
are set to zero. Note that not all coefficients outside the
LL; subband are set to zero. Since only the small coeffi-
cients in high-frequency subband are set to zero, most
distinct edges in the image are preserved. The sparsifying
transformation by the wavelet shrinkage thresholding has
little distinct visual degradation if the wavelet shrinkage
threshold is selected properly.
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In the experiments, it is found that the vectorization
according to the structure of Figure 3c is better than the
one by the lexicographic order of Figure 3a. Figure 4
shows some reconstruction examples when these two
vectorization methods were used. The sparsity rate (k/N)
and the measurement rate (M/N) were set to 0.1 and 0.3,
respectively. All images were reconstructed by OMP-
PKS. The top row of each image shows the reconstruc-
tion when the vectorization in each block was done such
that it had the structure as shown in Figure 3c. The bot-
tom row of each image shows the reconstruction when
the vectorization in each block was done by the lexico-
graphic order of the structure shown in Figure 3a. There
was no fail reconstruction (dark spot) in the top row,
whereas there were some in the bottom row.

3.2. The detection of the impulsive noise
Figures 5 and 6 show the examples of the reconstruction
from y corrupted by impulsive noise. Figures 5a-c and
6a-c show the original blue y corrupted by the red impul-
sive noise, the original s, and the reconstructed § from
Figures 5a and 6a, respectively. The figures clearly indi-
cate that the energy distribution was different. The
energy of the signals in Figures 5¢ and 6¢ was spread out,
while most energy of the signals in Figures 5b and 6b was
contained in the third-level subbands.

Even though there is no definite structure of y, Figures
5 and 6 indicate that the energy distribution of s can be
exploited to detect the existence of impulsive noise. The
large impulsive noise leads to a bad approximation of §
whose energy leaks out of the third-level subband. The
ratio of the energy outside the third-level subband to
the total energy is used to determine the existence of

(a)

-

(b)

(c)

Figure 3 The illustration of block processing and vectorization in Section 3.1: (a) wavelet transformed image; (b) wavelet subbands
vectorization and reorganization; and (c) wavelet blocks.
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Type I

Typell

Type I

Typell
7

N

ificial image

Type I

Typell

Typel

Typell

(d) Flower

Figure 4 The reconstruction examples for different vectorization of the wavelet blocks. Types | and Il indicate the vectorization according
to the structure in Figure 3c and the vectorization by the lexicographic order of Figure 3a, respectively. (a) Lena, (b) Artificial image, (c) Dog,
and (d) Flower.

the impulsive noise in y. The high ratio indicates that magnitude in comparison to y. Consequently, if the
the energy is spread out; thus, the existence of the impulsive noise exists, it has the largest magnitude. The
impulsive noise. The impulsive noise has very large removal of the impulsive noise is simply the removal of
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Figure 5 The first reconstruction example when y was corrupted by impulsive noise. (a) The 128-D y corrupted by six impulsive noise, (b)
the original 256-D s (k = 25), and (c) the signal reconstructed from (a) by OMP-PKS. In (b, c), the area to the left of the red dashed line belongs
to the third-level subband; the area to the right belongs to the first- and the second-level subbands.
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Figure 6 The second reconstruction example when y was corrupted by impulsive noise. (a) The 128-D y corrupted by six impulsive noise,
(b) the original 256-D s (k = 25), and (c) the signal reconstructed from (a) by OMP-PKS. In (b, c), the area to the left of the red dashed line
belongs to the third-level subband; the area to the right belongs to the first- and the second-level subbands.
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the elements with the largest magnitude. The size of the
impulsive noise may vary, so the removal is performed
iteratively until either of the following two stopping cri-
teria is satisfied.

(1) The reconstructed $§ has most of its energy inside
the third-level subband.

(2) The reconstruction is unlikely to be successful
because too many elements in y have been removed.

According to the stopping criteria, there are two
thresholds that need to be defined. The threshold in the
first criterion is used to indicate the amount of the
energy that is allowed to be leaked out of the third-level
subband. The amount of the energy is measured as the
ratio to the total energy. The threshold is defined as the
energy-ratio threshold, 1. The threshold in the second
criterion is required to ensure that there is sufficient
information left for the reconstruction. This threshold is
called rejection-ratio threshold, 7, which is defined as
the ratio between the numbers of the removed elements
to the size of y(M). Thus, the maximum number of the
elements that can be removed is TM. The optimum
values of 1 and T are investigated in Section 4.2.

At each iteration, the noise-corrupted elements are
removed and the size of the available measurement sig-
nal becomes smaller. Hence, it is required that the
reconstruction algorithm is still effective at low mea-
surement rate. OMP-PKS is adopted by including the
algorithm for the detection and the removal of impul-
sive noise as follows.

Input:

e« The M x
Q=[¢g1¢2...07]
+ The M-dimension compressed measurement sig-
nal, y

» The sparsity level of the sparse signal, k

« The number of wavelet coefficients in the third-
level subband, /5

+» The energy-ratio threshold, 1

« The rejection-ratio threshold, T

N measurement matrix,

Output:

+ The number of impulsive noise corrupted ele-
ments, n;
» The set containing the #; indexes of the impulsive

noise-corrupted elements, ¢; = {wl, wy, ... w,,a}
Procedure:

(a) Initialize t = 0, n5 =0, ¢5 = J, y, = y, D, = D.
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(b) Apply OMP-PKS to reconstruct § from y, and ®,.
(c) Calculate the energy-ratio (ER).

where §; is the ith element of §.

(d) Terminate if ER <7.

(e) Assign the elements in y, having the maximum
magnitude as the impulsive noise. o,
(m=1,2,...,ns; nsis the number of the elements
having the maximum magnitude in y,) are defined as
the indexes of the recently assigned impulsive noise
elements. Note that ¢,,, are the indexes of y. In case
that there are more than one element having the
maximum magnitude (ns, > 1), all of them are to be
removed in step (i).

(f) Increment ns by 15, and add o, to ¢;.

(g) Terminate if ns > TM.

(h) Set ¢ = t+1.

(i) y; is assigned the value of y after the noise ele-
ments (the elements with the indexes in ¢5) are
removed from y. ®; is assigned the value of @ after
the rows corresponding to the noise elements are
removed from ®.

(j) Go to step (b).

If the algorithm is terminated in step (g), then the
removal of impulsive noise is unsuccessful. Too many
elements have been removed and it is unlikely that
there is sufficient information to reconstruct § and esti-
mate the missing information in the next stage.

It should be noted that the proposed algorithm is
applicable to images because image data have some
degree of redundancy. The rejection-ratio threshold, 7,
can be set quite large. For the signal data that have low
degree of redundancy, the value of T has to be very
small. In this case, the reconstruction is unlikely to suc-
ceed if every information in y is not used.

3.3. Estimation of the missing information

The outputs from the detection stage and y are used as
the inputs of this stage. The noise-corrupted elements,
specified in ¢s5, are removed. After the noise removal,
the size of the compressed measurement signal y is
smaller than the size of the original y; consequently,
the reconstruction methods requiring high measure-
ment rate may fail to reconstruct §. It is necessary to
estimate the values of the removed elements to pre-
serve the measurement rate. In the proposed method,
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the values are estimated such that they comply with (c) Define y = ®@§; and estimate the ith elements in ¥
other noiseless elements. The estimation algorithm is as follows.
as follows.
Input: §i = {)ji;l:¢§8 )
Viil€Gs

o The M-dimension compressed measurement sig- N )
P & where the subscript i indicates the ith elements of the

nal, . .
Y . . . signal and i = 1, 2, ..., M.
+ The number of impulsive noise-corrupted ele- ) . . .
ments. 1 After this process, the impulsive noise-corrupted ele-
» o

ments in y are replaced by values complying with noise-
free elements. Conventional CS reconstruction methods
can be applied to reconstruct § from the impulsive
noise-free .

» The set containing the #; indexes of the impulsive

noise-corrupted elements, ¢; = {wl, W, .., wna}

Output:
) ) X 4. Experiment and discussion
+ The estimated noise-free y, ¥ 4.1. Experimental environment
The experiment was conducted on a PC with 2.83-GHz
Procedure: Intel Core 2 Quad CPU and 4-GB RAM. All methods

were implemented by 64-bit MATLAB R2011a. The
(a) Define y; as y with its w;th (i = 1, 2, ..., 15) ele- proposed method was tested on 60 images. All the test
ments removed. Define ® as @ with its with (i = 1, images were resized to 256 x 256. Figure 7 shows the
2, .., ) rows removed. test images that consist of 10 standard test images, 12
(b) Apply OMP-PKS to reconstruct §; from ys and  artificial images, and 38 natural images. The artificial

IFRESNZERIO

Figure 7 The images used in the experiment. Images in the first row are the standard test images. Images in the second row and the first
two images in the third row are the artificial images. The remaining images are the natural images. (The artificial and natural images are
available at http://sourceforge.net/projects/testimages/files/).

\
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Table 1 The percent of inaccurate noise rejection of the
proposed method

n The magnitudes of impulsive noise
125 Ymax 25 Ymax 3 Ymax 5 ¥Ymax 10 Ymax

001 9.09 841 840 839 834
0.02 4.02 1.71 1.76 1.70 1.72
003 5.28 0.60 0.60 054 0.54
0.04 846 0.35 033 0.28 0.28
0.05 12.00 0.24 0.13 0.17 0.15
0.1 3304 122 030 0.16 0.10
0.15 50.07 521 1.68 0.16 0.14
0.2 61.62 13.98 535 030 0.18
0.25 68.34 24.28 12.64 094 0.26
03 73.98 36.53 2203 2.00 0.60

The bold style is the minimum percent of inaccurate noise rejection.

and the natural images are available at http://source-
forge.net/projects/testimages/files/.

Octave-tree DWT was used to transform test images
to sparse domain. The mother wavelet used in the
implementation was Daubechies 8 (db8). The wavelet
shrinkage thresholding [33] was applied to make the
signal more sparse. The probability of impulsive noise
is denoted as p; p € {0, 0.05, 0.10, 0.15, 0.20}. The
magnitude of impulsive noise was set relative to the
maximum magnitude in y(ynax). The measurement
matrix was Hadamard matrix. Each wavelet image was
divided into 256 blocks of 1 x 256. The sparsity rates
(k/N) of blocks in an image were intentionally varied
to demonstrate that one set of thresholds was applic-
able for various sparsity rates. The average sparsity
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rate in each test image was set to 0.1. The measure-
ment rate (M/N) of an image was the rate averaged
over every block in the image. The average measure-
ment rates used in the experiment were 0.2, 0.3, 0.4,
0.5, and 0.6.

The experiment consists of two parts: (1) the evalua-
tion of the two thresholds (7 and 7) and the minimum
size of the detectable impulsive noise given in Section
4.2 and (2) the performance evaluation of the proposed
method given in Section 4.3.

4.2. Evaluation of the two thresholds and the minimum
size of the detectable impulsive noise

In this section, 500 blocks were randomly selected from
blocks in 60 test images. The sparsity rate was fixed at
0.1. Table 1 lists the percentage that the proposed
method was unable to correctly reject the impulsive
noise-corrupted elements. The threshold value 1 and
the magnitude of impulsive noise were varied. The value
in the table was the value averaged over five values of p
and five values of measurement rates. The values in the
table indicated that the proposed method was unable to
keep the percentage of inaccurate rejection to less than
1% if the magnitude of the impulsive noise was less
than 2.5 yax.

Table 1 also indicated the relationship of 1 to the
percentage of inaccurate rejection. The inaccurate
rejection was the result of (1) the rejection of the
noise-free elements and (2) the failure to reject the
noise-corrupted elements. When 1 was too small, the
energy-ratio criterion was too strict and the proposed
method did not accept even the correct energy

8000 T T T T T T T T T
= Measurement rate = 0.2
7000 Measurement rate = 0.3 .
Measurement rate =04
S000 | Measurement rate =05 T
heasurement rate = 0.6
5000 + =
g 4000 | E
=
3000 -
2000 -
1000 + -
() — — é
0.1 0.15 0.2 0.25 03 0.35 0.4 045 0.5 0.55 0.6
T

Figure 8 The MSE of the reconstructed signal when T was varied. The sparsity rate was set to 0.1.
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distribution of §; consequently, it started to remove the
elements uncorrupted by noise. In the opposite case,
when 7 was too large, the energy-ratio criterion
became too lax and the proposed method accepted
even the incorrect energy distribution of §; conse-
quently, it failed to remove the noise-corrupted ele-
ments. The range of 71 giving less than 1% of
inaccurate rejection was larger, when the magnitude of
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the impulsive noise was larger. This was because the
effect of the impulsive noise to the energy distribution
became more distinct and easier to detect when the
size of the noise was larger. When the magnitude of
the impulsive noise was at least 2.5 y,,.x, the values of
n giving less than 1% inaccurate rejection were 0.03,
0.04, and 0.05. Among the three values, the values of n
= 0.05 gave the most accurate rejection.

(@ p=0

(b) p=005
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(e) p=02
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PSNR(dB)

PSNR(dB)

PSNR(dB)

PSNR(dB)

PSNR(B)

PSNR

===-MLIT+R
===-OMP PKS+R
—8— MLIHT
—8— OMP-PKS

03 04
Measurement rate

0.5

Computation time

s~

=== MLIIT+R
~==: OMP PKS‘R

Compuation time (s)

Compuation time (s)

=== MLIHT+R

===+ OMP-PKS+K

Compuation time ()

03 0.4 05 0.6
Measurement rate

14q=="
by
12!
N
02 03 04 oF 08
Measurement rate
__________________ -3
28 - /
’ ’
26 e s
3
/
24 , /
. s
- /s
= e S
-~ y)
20 - Pt
’ -
- e
R fz/ === MLIHT+R
16+ Pl —==: OMF-FKS+R
Pl —&— MLIHT

14p- —&— OMP-PKS
12 i—

02 03 04 o5 o6

Measurement rate

Compuation time (s)

03 0.4 05 0.6
Measurement rate

03 0.4 05 0.6
Measurement rate

Figure 9 The performance comparisons for standard test images at various measurement rates when the noise probability (p) is (a) 0,
(b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The graphs in the first column (second column) show the relationship between PSNR (the computation
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The evaluation for the optimum rejection-ratio thresh-
old, T, was performed by investigating for the maximum
number of the elements in y that can be removed with-
out causing the high error between § and s. Figure 8
shows the MSE of the signals reconstructed by OMP-
PKS when TM elements in y were removed. Different
measurement rates were presented with different colors.
The figure indicated that when the measurement rate
increased, more elements could be removed without
causing a drastic change in MSE. At the measurement
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rate of 0.2, MSE approximately increased at the expo-
nential rate, when 7 was larger or equal to 0.45. At the
higher measurement rates, the effect of 7' was not dis-
tinct, even when more than half of y was removed.
Because the benefit of CS is the capability of compres-
sing the signal to very small size, the measurement rate
should be kept low. It is recommended that 7 be
selected such that it is applicable even at low measure-
ment rate. In the following section, T" was set to 0.4 to
ensure the high probability of successful reconstruction.

PSNR

Computation time

g
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Figure 10 The performance comparisons for artificial images at various measurement rates when the noise probability (p) is (a) 0, (b)
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The value of 11 was set to 0.05 as it was the optimal

value (Table 1).

4.3. Performance evaluation
In this section, the following four reconstruction meth-
ods were investigated.

(1) OMP-PKS

(2) OMP-PKS with the proposed rejection method as

the preprocessing (OMP-PKS+R)
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(3) Model-based LIHT (MLIHT) which is the LIHT
that is forced to consider the elements in LL3 sub-
band as non-zero elements.

(4) MLIHT with the proposed rejection method as
the preprocessing (MLIHT+R)

The Lorentzian parameter and the number of iteration

for

MLIHT were 0.25 and 100, respectively. The values

of n and T were 0.05 and 0.4, respectively. There were

256 y’s in an image and y,,,,x was chosen as the maximum
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Figure 11 The performance comparisons for natural images at various measurement rates when the noise probability (p) is (a) 0, (b)
0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The graphs in the first column (second column) show the relationship between PSNR (the computation
time) and the measurement rate.
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magnitude among 256 y’s in the image. The magnitude of
impulsive noise varied according to the Gaussian pdf
with the mean of 7 y,.« and the standard deviation of
Ymax-

The performance is evaluated based on the PSNR of
the reconstructed images, the computation time and the
visual quality of the reconstructed images.
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Figure 9 shows the experimental results of the standard
test images. Figure 9a-e shows the PSNR (the left col-
umn) and the computation time (the right column) at
different p (noise probability). At p = 0 (noiseless), the
addition of the proposed method to OMP-PKS and
MLIHT did not reduce the PSNR of the reconstructed
images. It indicated that the proposed method preserved

PSNR =
Time = 115.55s.

Time=11536s.

MLIHT+R

20.38dB, PSNR =20.38dB, PSNR=

Time = 180.03 s.

HEN

PSNR =22.74 dB, PSNR =20.38 dB, PSNR— 11 91 dB PSNR =28.41 dB,

2491 dB, PSNR =20.38dB, PSNR—]]SSdB PSNR =

12.42 dB, PSNR =20.38dB, PSNR= 11 77 dB, PSNR=28.45dB,

12.24 dB, PSNR =20.38 dB, PSNR—]]74dB PSNR =28.41 dB,

(b) p=0.05 e 11735s.  Time=21450s.

© p=01 Piljf:: 117.32s.  Time=215.86s.
. r

(d) p=0.15 PTSEII:_ 118.48s. Time=214.98s. —
& FE

() p=02 PSNR = |

Time =213.34 s.
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i1

OMP-PKS+R

.

28.42 dB, PSNR =28.42 dB,
Time=41.21s. Time=102.21s.

Time =40.74 s. Time =133.43 s.

28.37dB,

Time = 40.73 s. Time = 133.65 s.

Time = 39.06 s. Time = 129.56 s.

Time =37.80 s. Time = 128.27 s.

Figure 12 The part of the reconstructed Peppers at the measurement rate of 0.5 with the noise probability (p) of (a) 0, (b) 0.05, (c)
0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT, MLIHT+R, OMP-PKS,
and OMP-PKS+R, respectively.
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y when there was no impulsive noise. When y was cor-
rupted by impulsive noise (p > 0), the reconstruction
based on OMP-PKS (the blue line) gave very low PSNR,
because OMP-PKS is designed with the assumption of
bounded noise. The reconstruction based on OMP-PKS
could not be improved by increasing the measurement
rate. However, when the noisy y was preprocessed by the
proposed method, the reconstruction based on OMP-
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PKS (the dashed blue line) was very effective. At the mea-
surement rate of 0.4 and higher, the reconstruction from
the noisy y by OMP-PKS+R had the comparable PSNR
to the reconstruction from the noiseless y by OMP-PKS.
At p = 0.05, the effect of adding the proposed method
as the preprocessing to MLIHT was minimal; however,
at higher p, the addition of the proposed method (the
dashed red line) resulted in higher PSNR than the

Time=117.63s.

Time = 136.97 s.

PSNR =22. 80 dB, PSNR =22.80dB,
Time = 169.84 s.

PSNR =22.36 dB, PSNR =22, SOdB

(b) p=0.05 PSNR =13.03 dB, PSNR=24.03 dB,
P Time=123.55s. Time=212.68s. Time =32.92 s. Time=118s.
© p—01 PSNR =14.59 dB, PSNR =22.79 dB, PSNR =13.24 dB, PSNR=24.02dB,
P Time=122.84s.  Time=209.35s. Time=31.94s.  Time=119.38s.
@ p=0.15 PSNR = 14.53 dB, PSNR =22.80dB, PSNR=1298dB, PSNR=24.02 dB,
p=0 Time=122.93s. Time=212.26s. Time =34.61 s. Time =123.13 s.
©p=02 PSNR =13.43 dB, PSNR=22. 80 dB, PSNR=13 47 dB, PSNR=23.30dB,

Time = 246.75 s.
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PSNR =24, 03 dB, PSNR =24.03 dB,
Time = 82.19 s.

Time =37.42 s.
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Figure 13 The part of the reconstructed Mandrill at the measurement rate of 0.5 with the noise probability (p) of (a) 0, (b) 0.05, (c)
0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT, MLIHT+R, OMP-PKS,
and OMP-PKS+R, respectively.
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reconstruction by MLIHT alone (the red line). When p
was 0.15 or higher, MLIHT was no longer an effective
reconstruction method, but MLIHT+R was still effective.
It indicated that the addition of the proposed method
increased the robustness against p to MLIHT.

It should be noted that even though MLIHT was
based on LIHT which was designed to be robust
against impulsive noise. MLIHT+R provided less PSNR
than OMP-PKS+R, because MLIHT required the
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higher measurement rate. Figure 9 indicated that
MLIHT+R was as effective as OMP-PKS when the
measurement rate was 0.6 and it should become better
at the higher measurement rate. However, the improve-
ment by increasing the measurement rate is not recom-
mended because it leads to the large size of y and
eliminates the benefit of CS.

Figure 9 also indicates the relationship between mea-
surement rate and p (noise probability). When p was
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Figure 14 The part of the reconstructed artificial image (Ripple) at the measurement rate of 0.5 with the noise probability (p) of (a) O,
(b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT, MLIHT
+R, OMP-PKS, and OMP-PKS+R, respectively.
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higher, the measurement rate should be set higher. This
was because the number of the noise-corrupted elements
was larger at higher p. Consequently, the larger size of y
was required to cope with the removal of more elements.
The figure shows that in OMP-PKS+R, the measurement
rate of 0.4 gave the good reconstruction for all p in this
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experiment. The right column of Figure 9 shows the com-
putation time of OMP-PKS, OMP-PKS+R, MLIHT, and
MLIHT+R. Since at least one reconstruction is required in
the proposed method, the computation time will be at
least doubled. The computation time for reconstructing
256 blocks in an image could be reduced as follows.

Original image MLIHT MLIHT+R OMP-PKS OMP-PKS+R
(a) p=0 PSNR =11.81dB, PSNR=11.81dB, PNSR=20.19dB, PSNR =20.19dB,
ap Time = 124.36s. Time=173.93s. Time = 40.98 s. Time = 82.28s.
b) p=005 PSNR=10.94dB, PSNR=11.81dB, PNSR=6.18dB, PSNR=20.21dB,
©) p=0. Time = 123.99s. Time = 200.84 s. Time =32.35 s. Time = 113.31 s.
© p=0.1 PSNR =13.79dB, PSNR=11.81dB, PSNR=599dB, PSNR=20.17dB,
€ p=u Time = 120.61 s. Time = 202.19 s. Time =33.61 s. Time =113.35s.
(d) p=015 PSNR=6.40dB, PSNR=11.82dB, PSNR=6.08dB, PSNR =20.18dB,
o Time =125.24 s. Time=226.50s. Time =34.11 s. Time = 135.07 s.
o' |“
(©p=02 PSNR=6.09dB, PSNR=11.82dB, PSNR=5.98dB, PSNR=20.14dB,
p== Time=140.15s.  Time=29320s. Time=41.65s.  Time=172.26s.
Figure 15 The part of the reconstructed artificial image (Arc) at the measurement rate of 0.5 with the noise probability (p) of (a) 0, (b)
0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT, MLIHT+R,
OMP-PKS, and OMP-PKS+R, respectively.
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(a) Apply the proposed rejection method to the first
block. Define B as the smallest magnitude of the
noise corrupted elements in the first block.

(b) Move to the next block. Define the compressed
measurement of the new block as y,,

(c) Assign the elements in y,.,, having the magni-
tude not less than f as the impulsive noise. Initialize
variables in step (a) of Section 3.2 such that they
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reflect the removal of the elements with the magni-
tude not less than f3.

(d) Apply the proposed rejection method to y -
If B is larger than the smallest magnitude of the
noise corrupted elements in y.,,,, set B to this
value.

(e) If the current block is the last block in the image,
terminate. Otherwise, go to step (b).
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Figure 16 The part of the reconstructed natural image (Building) at the measurement rate of 0.5 with the noise probability (p) of (a)
0, (b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT,

MLIHT+R, OMP-PKS, and OMP-PKS+R, respectively.
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The assumption of the above algorithm is that the
magnitude of impulsive noise in every block is approxi-
mately the same (or share the same distribution). The
graphs indicated that the computation time of the
reconstruction with the proposed rejection method was
no more than four times the computation time of the
reconstruction without the proposed rejection method.

Figures 10 and 11 show the results from the artificial
and the natural images, respectively. The trends of the

Page 20 of 23

PSNR and the computation time were similar to Figure
9. From the three figures, it could be concluded that the
proposed method should be included in the reconstruc-
tion from the impulsive noise corrupted y. The addition
of the proposed method increased the computation time
no more than four times the original computation time.
Finally, OMP-PKS+R was more optimal than MLIHT+R.

Figures 12, 13, 14, 15, 16, and 17 show the examples of
the reconstruction results when the measurement rate

Original image

MLIHT

MLIHT+R

OMP-PKS

OMP-PKS+R

—

PSNR = 18.64 dB,

(@) p=0 Time = 106.51 s.
® pooss Tono
@ p=0 ey
@ p=o1s M e
(e)p=02 SN , dB,

Time= 12492 s.

PSNR = 18.64 dB,
Time = 136.21 s.

PSNR = 18.64 dB,
Time = 161.67 s.

PSNR = 18.64 dB,
Time =171.87 s.

PSNR = 18.64 dB,
Time =179.31s.

PSNR = 18.64 dB,
Time = 19544 s.

.|

PSNR =33.94 dB, PSNR =33.94 dB,
Time =29.02 s. Time = 58.04 s.

PSNR = 11.62 dB, PSNR=33.93 dB,
Time =24.72 s. Time = 83.44 s.

PSNR =11.07 dB, PSNR=33.97dB,
Time=25.88 s. Time = 90.03 s.

PSNR = 10.73 dB, PSNR = 33.93 dB,
Time =26.82 s. Time =95.15 s.

PSNR = 10.66 dB, PSNR =33.83 dB,
Time=28.33 s. Time =101.47 s.

Figure 17 The part of the reconstructed natural image (Wing) at the measurement rate of 0.5 with the noise probability (p) of (a) O,
(b) 0.05, (c) 0.1, (d) 0.15, and (e) 0.2. The images from left to right are the original image and reconstructed images based on MLIHT, MLIHT
+R, OMP-PKS, and OMP-PKS+R, respectively.
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Reconstruction from Gaussian noise Reconstruction from Gaussian and
corrupted y by OMP-PKS impulsive noise corrupted y by OMP-PKS
(a) Peppers
(b) Mandrill
(c) Ripple
= f“n \ !
PSNR =14.01 dB
(d) Arc
(e) Building
() Wing
PSNR = 19.83 dB PSNR = 19.58 dB
Figure 18 The parts of reconstructed: (a) Peppers, (b) Mandrill, (c) Ripple, (d) Arc, (e) Building, and (f) Wing. The first column shows the
reconstruction results based on OMP-PKS when y was corrupted by Gaussian noise only. The second column shows the reconstruction results
based on OMP-PKS+R when y was corrupted by Gaussian and impulsive noises. The measurement rate was 0.5. The signal with Gaussian noise
has 20 dB SNR and p = 0.1.
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was 0.5. The original image is shown in the first column.
The reconstruction results based on MLIHT, MLIHT+R,
OMP-PKS, and OMP-PKS+R are shown in the second,
the third, the fourth, and the fifth columns, respectively.
When the impulsive noise was added to vy, the recon-
struction based on OMP-PKS failed in every case. The
reconstruction based on MLIHT failed in some cases at p
= 0.1, and failed in every case at p > 0.15. The addition of
the proposed algorithm to OMP-PKS and MLIHT,
namely, OMP-PKS+R and MLIHT+R, led to the success-
ful reconstruction in every case. Furthermore, the recon-
struction based on OMP-PKS+R provided the
reconstruction results that were more similar to the ori-
ginal images than the ones based on MLIHT +R. These
results complied with the conclusion that was drawn
from the PSNR graphs in Figures 9, 10, and 11.

It is possible that more than one kind of noise exist in
the system. The proposed method was applied to the
reconstruction from y corrupted by both Gaussian and
impulsive noises. The examples of the reconstruction
results are shown in Figure 18. The Gaussian noise was
applied such that the SNR of y was 20 dB. The noise
probability (p) and the measurement rate were set to 0.1
and 0.5, respectively. The first column shows the recon-
struction results when the impulsive noise was correctly
removed. The second column shows the reconstruction
results when OMP-PKS+R was applied to the recon-
struction from y corrupted by both Gaussian and impul-
sive noises. In order to cope with the higher error from
the Gaussian noise, more energy was allowed outside
the third-level subband and more data were required for
the reconstruction. The values of 11 and T were set to
0.1 and 0.3, respectively. The images in the first and the
second columns were quite similar. The artifacts in the
reconstruction based on OMP-PKS+R were mostly the
result of the Gaussian noise. Figure 18 demonstrated the
prospect of using the proposed method to remove the
impulsive noise in the environment corrupted by more
than one type of noise. However, further test for y cor-
rupted by more than one type of noise is necessary and
is the part of our future research.

5. Conclusion

The impulsive noise rejection for CS reconstruction of
image data is proposed. The sparsified version of an
image is obtained by applying octave-tree DWT using
db8 as the mother wavelet. The structure of energy dis-
tribution in wavelet domain and the capability to recon-
struct the signal from an incomplete y are exploited in
order to detect the presence of the impulsive noise.
After the noise-corrupted elements are removed, the
values of the removed elements are estimated. The
experimental results of 60 test images indicated that the
proposed rejection method improved the robustness
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against the impulsive noise of the conventional CS
reconstruction methods. The robustness of the recon-
struction method against both Gaussian and impulsive
noises was also investigated.
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