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Abstract

In this article, we consider the problem of adaptive detection for a multichannel signal in the presence of spatially
and temporally colored compound-Gaussian disturbance. By modeling the disturbance as a multichannel
autoregressive (AR) process, we first derive a parametric generalized likelihood ratio test against compound-
Gaussian disturbance (CG-PGLRT) assuming that the true multichannel AR parameters are perfectly known. For the
two-step GLRT design criterion, we combine the multichannel AR parameter estimation algorithm with three
covariance matrix estimation strategies for compound-Gaussian environment, then obtain three adaptive CG-PGLRT
detectors by replacing the ideal multichannel AR parameters with their estimates. Owing to treating the random
texture components of disturbance as deterministic unknown parameters, all of the proposed detectors require no
a priori knowledge about the disturbance statistics. The performance assessments are conducted by means of
Monte Carlo trials. We focus on the issues of constant false alarm rate (CFAR) behavior, detection and false alarm
probabilities. Numerical results show that the proposed adaptive CG-PGLRT detectors have dramatically ease the
training and computational burden compared to the generalized likelihood ratio test-linear quadratic (GLRT-LQ)
which is referred to as covariance matrix based detector and relies more heavily on training.

Keywords: compound-gaussian disturbance, multichannel autoregressive process, generalized likelihood ratio test
(GLRT), covariance matrix estimation, adaptive detection

1 Introduction
In an airborne radar system, space-time adaptive proces-
sing (STAP) has been widely used in radar target detec-
tion; see [1-4] and references therein. Various well-
known STAP based detectors have been extensively
investigated under Gaussian assumption [4-7]. However,
with the support of measured data, the Gaussian model
is no longer suitable for background disturbance in
many situations of practical interest. The conventional
STAP detectors may suffer severe performance degrada-
tion when the disturbance is non-Gaussian. Instead, a
compound-Gaussian model can successfully describe the
non-Gaussian disturbance as a product of a spatially
and temporally “slowly varying” texture and a locally
“rapidly varying” Gaussian speckle component [8,9]. The
texture component accounts for random power

variations over range cells. This model includes the so-
called spherically invariant random processes (SIRPs).
Working with the compound-Gaussian model, a multi-
tude of adaptive detectors have been studied in the past
few years, for instance, the generalized likelihood ratio
test-linear quadratic (GLRT-LQ) which was indepen-
dently derived in [10,11], the detectors with Rao and
Wald tests [12], the Bayesian optimum radar detector
(BORD) [13], and so forth. Notice that all of the afore-
mentioned STAP detectors proposed in Gaussian and
compound-Gaussian environment can be considered as
covariance matrix based detectors [8,14]. Implementing
these detectors involves estimating and inverting a
space-time covariance matrix of the disturbance signal
for each cell under test (CUT) utilizing independent and
identically distributed (IID) target-free training data (or
secondary data). Obviously, when the joint spatial-tem-
poral dimension is large, the training and computational
requirements will be quite onerous. Moreover, some
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practical situations may exacerbate the training data
selection and collection problem and limit the amount
of appropriate IID training data. The lack of training
may lead to ill-conditioned covariance matrix estimate
and significant degradation in the covariance matrix
based detection procedure.
To overcome the above difficulty caused by large joint

spatial-temporal dimension, the structural information
about the disturbance space-time covariance matrix can
be exploited. More precisely, a multichannel autoregres-
sive (AR) process has been found to be able to model
the spatial-temporal correlation of the disturbance effi-
ciently [15-18]. In [15], based on approximating the dis-
turbance spectrum with a multichannel AR model of
low order, a parametric adaptive matched filter (PAMF)
for STAP detection was presented for multichannel sys-
tem in Gaussian environment. The PAMF detector,
which has been proved to be equivalent to a parametric
Rao detector in [16], has dramatically outperformed the
conventional adaptive matched filter (AMF) [6,7] with
small training size. Also in Gaussian background, a
parametric GLRT [17] and a simplified parametric
GLRT [18] have been successively developed by utilizing
a parametric model (multichannel AR model) in the
GLR principle. Experimental results on simulated and
real data show that two parametric GLRT detectors
work well with limited or even no range training data
[18-20]. However, under such conditions, the AMF
detector and Kelly’s GLRT cannot be implemented.
Moreover, application of the multichannel AR model in
non-stationary Gaussian clutter for STAP are investi-
gated in [21-23].
For the corresponding problem in compound-Gaus-

sian environment, a non-Gaussian parametric adaptive
matched filter (NG-PAMF) has been derived in [24].
However, this test involves explicit knowledge of the
disturbance statistics, which are not always available.
Unlike the NG-PAMF, the normalized parametric adap-
tive matched filter (NPAMF) reported in [8,14] requires
no a priori knowledge about the disturbance statistics.
This feature is rather important in real-time operation.
However, Michels et al. [14] still combined the multi-
channel AR identification algorithm with the sample
covariance matrix (SCM) even in compound-Gaussian
background. The sample matrix is the maximum likeli-
hood estimate (MLE) of the covariance matrix for Gaus-
sian disturbance, but is no longer the MLE for
compound-Gaussian disturbance. The covariance matrix
estimation in compound-Gaussian environment is gen-
erally intractable. Conte et al. have advocated the use of
a normalized sample covariance matrix (NSCM) in [25].
Also, considering the texture component as an unknown
deterministic quantity, an approximate ML (AML) esti-
mator has been derived by Gini et al. [26].

Motivated by the previous studies, the main purpose
of this article is to derive a parametric GLRT (PGLRT)
for detecting a multichannel signal in the presence of
compound-Gaussian disturbance modeled as a multi-
channel AR process. Without any knowledge about the
disturbance statistics, we resort to a suboptimal GLRT
algorithm considering the texture components as
unknown deterministic parameters. In further deriva-
tion, to get round the difficulty in performing the joint
maximization for all the unknown parameters, a two-
step GLRT design criterion is adopted in this article.
We first derive the model-based parametric GLRT in
compound-Gaussian environment (CG-PGLRT), which
possesses the perfect knowledge about the multichannel
AR parameters. We apply three covariance matrix esti-
mation strategies, i.e., sample covariance matrix (SCM),
normalized sample covariance matrix (NSCM) and
approximate ML (AML) estimator, to the multichannel
AR parameter estimation procedure for estimating the
unknown AR coefficient matrices. Then three adaptive
versions of the CG-PGLRT detector: CG-PGLRT-SCM,
CG-PGLRT-NSCM, and CG-PGLRT-AML are obtained.
Finally, the performance assessments are presented.
Numerical results indicate that the CG-PGLRT-SCM
detector has no texture CFAR property, while all of the
CG-PGLRT, CG-PGLRT-NSCM, and CG-PGLRT-AML
detectors ensure CFAR property with respect to the tex-
ture probability density function (PDF). Compared to
the covariance matrix based detector, all of the proposed
adaptive detectors can handle the training-limited case
and significantly decreased the computation complexity
in compound-Gaussian environment.
This article is organized as follows. The problem state-

ment and the signal and disturbance models are pre-
sented in Section 2. The parametric GLRT detector for
compound-Gaussian environment (CG-PGLRT) and
adaptive CG-PGLRT detectors are derived in Section 3.
Then the performance assessment of the proposed
detectors is displayed in Section 4. Finally, conclusions
are given in Section 5.
Notation: Vectors (matrices) are denoted by boldface

lower (upper) case letters, all vectors are column ones,
superscripts (•) T and (•) H denote transpose and com-
plex conjugate transpose, respectively, CN (μ,R)
denotes the multivariate complex Gaussian distribution
with mean μ and covariance matrix R. C denotes the
complex number field and det{•} takes the determinant
of a matrix.

2 Problem statement and signal model
2.1 Problem statement
Consider the scene that the radar transmits a coherent
train of N pulses and receives the signal with a uniform
linear array with J sensors. The received data collected
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over K range cells is organized in a J × N × K data cube.
For the range cell under test (CUT), a binary hypothesis
test is applied to the JN-dimensional complex baseband
space-time vector of primary data

x0 = [xT0(0), x
T
0(1), . . . , x

T
0(N − 1)]T ∈ C

JN×1 . Typically,
x0 contains an unwanted additive disturbance signal

d0 = [dT
0(0),d

T
0(1), . . . ,d

T
0(N − 1)]T ∈ C

JN×1 with

unknown space-time covariance matrix R ∈ CJN×JN and
may contain a target signal as with deterministic but
unknown complex amplitude, a, and known target
space-time steering vector
s = [sT(0), sT(1), . . . , sT(N − 1)]T ∈ CJN×1 . The space-
time steering vector takes the form of the Kronecker
product of the normalized spatial and temporal steering
vectors. K IID complex baseband space-time vectors of

target-free training data {xk = dk}Kk=1 ∈ CJN×1 exist for

assisting the signal detection.
The detection problem at hand can be expressed as

the following binary hypotheses test:{
H0 : x0 = d0, xk = dk, k = 1, . . . ,K,
H1 : x0 = αs + d0, xk = dk, k = 1, . . . ,K,

(1)

where

dk = [dT
k (0),d

T
k (1), . . . ,d

T
k (N − 1)]T ,

xk = [xTk (0), x
T
k (1), . . . , x

T
k (N − 1)]T ,

k = 1, . . . ,K.

(2)

The disturbance signals {dk}Kk=0 lump clutter, jam-
ming, and thermal noise, and may be correlated in
space and time.

2.2 Signal model
Herein, a multichannel AR process is applied to model
the disturbance signal dk(n) at time n, k = 0, 1, . . . , K:

dk(n) = −
P∑
p=1

AH(p)dk(n − p) + εk(n),

n = 0, 1, . . . ,N − 1,

(3)

where
{
AH(p)

}P
p=1 denotes the unknown J×J coefficient

matrices for AR process dk(n) of known order P, and εk
(n) denotes the J × 1 spatial noise driving vectors that
are temporally white but spatially colored.
The non-Gaussian driving process εk(n) is modeled as

a compound-Gaussian process. It follows that εk(n) can
be thought of as zero-mean spherically invariant random
vectors (SIRVs), i.e., they can be written in the form
εk(n) =

√
τk · zk(n), k = 0, 1, . . . ,K,n = 0, 1, . . . ,N − 1.

Here the speckle zk(n) are J × 1 complex, zero-mean,

Gaussian vectors with unknown covariance matrix Q.
The texture component τk is a positive random variable
over range, but constant over time when it has long
temporal coherent. The texture PDF fτ(τ) is defined to
be the characteristic PDF of the complex SIRV. Given a
specific value of τk, we have εk(n)|τk ∼ CN (0, τkQ) .
The covariance matrix of the driving process is E{εk(n)εk
(n)H} = E(τk)Q where the mean value E(τk) is also the
average disturbance power.
Utilizing the multichannel parametric model allows

signal whitening adopting a vector one-step linear pre-
diction error filter (PEF), involving temporal whitening
via an inverse moving-average (MA) filter followed by
spatial whitening [27]. Thus, the temporally whitened
versions of the steering vector, the primary data and the
secondary data are obtained as following:

s̃(n) = s(n) +
P∑
p=1

AH(p)s(n − p), (4)

x̃0(n) = x0(n) +
P∑
p=1

AH(p)x0(n − p), (5)

x̃k(n) = xk(n) +
P∑
p=1

AH(p)xk(n − p). (6)

It is worth noting that the Pth-order linear prediction

coefficients
{
AH(p)

}P
p=1 are identically equal to the AR

(P) process coefficients.
The Pth-order predictor error vector is given by

εk(n) = x̃k(n) for the secondary data (7)

and

ε0(n) = x̃0(n) − αs̃(n) for the primary data, (8)

respectively, where a = 0 under H0 and a ≠ 0 under
H1. Equations (7) and (8) imply that
x̃k(n) ∼ SIRV[0,Q, fτ (τk)] and
x̃0(n) ∼ SIRV[αs̃(n),Q, fτ (τ0)] , where SIRV[μ,Q,fτ(τ)]
denotes a complex SIRV obtained by sampling a SIRP
with mean μ, covariance matrix Q, and a characteristic
PDF fτ(τ). As the distribution fτ(τ) is unknown, the tem-
porally whitened vectors x̃k(n), k = 0, 1, . . . ,K can be
modeled as conditionally Gaussian with the unknown
variance τk, i.e., x̃k(n)|τk ∼ CN (0, τkQ) and
x̃0(n)|τ0 ∼ CN (αs̃(n), τ0Q) .
For large data records, the first P values

{xk(n)}P−1
n=0 , k = 0, 1, . . . ,K can be ignored [28]. Thus,

the joint conditional PDF or likelihood function fi(xk(0),
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xk(1), . . . , xk(N - 1)|τk;a,AH,Q) under hypothesis Hi, i =
0 or 1, can be suitably approximated as

fi(xk(P), xk(P + 1), . . . , xk(N − 1)|xk(0), xk(1), . . . ,
xk(P − 1), τk;α,AH,Q)

=
N−1∏
n=P

1

(πτk)
J det{Q} exp

{
−εHk (n)Q

−1εk(n)

τk

} (9)

where εk(n), for k = 1, . . . , K, is a temporally whi-
tened form of the training signals given by (6) and (7),
whereas ε0(n) is given by (4), (5), and (8) with a = 0
under H0 and a ≠ 0 under H1. Notice that the second-

ary data {xk}Kk=1 and the primary data x0 are indepen-

dent. Define X(n) = [xT0(n), x
T
1(n), . . . , x

T
K(n)]

T . The final

joint conditional PDF is given by

fi(X(P),X(P + 1), . . . ,X(N − 1)|X(0),X(1), . . . ,
X(P − 1), τ ;α,AH,Q)

=
K∏
k=0

N−1∏
n=P

1

(πτk)
J det{Q} exp

{
−εHk (n)Q

−1εk(n)

τk

}

=
K∏
k=0

N−1∏
n=P

fi(εk(n)|τk;α,AH,Q)

(10)

where τ = [τ0, τ1, . . . , τK]
T and

AH = [AH(1),AH(2), . . . ,AH(P)] ∈ CJ×JP . Note that AH

(p) is expressed in terms of the Hermitian operation for
notational convenience, but is not necessarily a Hermi-
tian matrix.

3 Parametric GLRT derivation in compound-
gaussian environment
In the Neyman-Pearson sense, the optimum solution for
the composite hypothesis testing problem (1) is the like-
lihood ratio test (LRT). But for the case at hand, it can-
not be implemented due to total ignorance of the signal
parameter a, the multichannel AR parameters Q and
AH and the texture PDF fτ (τ). Hence, we resort to a
suboptimal GLRT algorithm where the τks are modeled
as unknown deterministic parameters, and perform the
maximum likelihood estimation (MLE) for all the
unknown parameters under each hypothesis. Unfortu-
nately, the exact maximization with respect to the
unknown parameters is rather difficult and does not
exist a close-form expression. Therefore, to get round
the above difficulty, the two-step GLRT design criterion
is adopted. We first assume that the AR parameters Q
and AH are perfectly known, and derive the CG-PGLRT
detector based on the primary data. The adaptive ver-
sions of CG-PGLRT detector are then obtained by sub-
stituting the unknown AR parameters with their
estimates based on the training signals only.

3.1 CG-PGLRT detector for known AR parameters
The GLRT for the case at hand, under the assumption
that Q and AH are known as well as τks are modeled as
unknown deterministic parameters, is given by

maxα,τ0
∏N−1

n=P f (ε0(n)|τ0,H1;α,AH,Q)

maxτ0

∏N−1
n=P f (ε0(n)|τ0,H0; 0,AH,Q)

H1

≷
H0

η (11)

where h is the threshold value to be set in order to
ensure the desired probability of false alarm (Pfa). Under
H1 and H0, the joint conditional PDFs of the primary
data are

N−1∏
n=P

f (ε0(n)|τ0,H1;α,AH,Q)

=
1

(πτ0)
(N−P)J det {Q}N−P)

×

exp

{
−

N−1∑
n=P

[x̃0(n) − αs̃(n)]HQ−1[x̃0(n) − αs̃(n)]
τ0

}
(12)

and

N−1∏
n=P

f (ε0(n)|τ0,H0; 0,AH,Q)

=
1

(πτ0)
(N−P)J det {Q}(N−P)

exp

{
−

N−1∑
n=P

x̃H0 (n)Q
−1x̃0(n)

τ0

} (13)

respectively.
The ML estimates of τ0 are easily derived, from the

definition

τ̂0i = argmax
τ0i

N−1∏
n=P

f (ε0(n)|τ0i,Hi;αi,AH,Q),

i = 0 or 1,

τ̂00 =

∑N−1
n=P x̃H0 (n)Q

−1x̃0(n)
(N − P)J

=
tr{ X̃H

0 Q
−1X̃0}

(N − P)J
, (14)

τ̂01 =

∑N−1
n=P [x̃0(n) − αs̃(n)]HQ−1[x̃0(n) − αs̃(n)]

(N − P)J

=
tr{ (X̃0 − αS̃)HQ−1(X̃0 − αS̃)}

(N − P)J
;

(15)

where

S̃ = [s̃(P), s̃(P + 1), . . . , s̃(N − 1)] ∈ C
J×(N−P), (16)

X̃0 = [x̃0(P), x̃0(P + 1), . . . , x̃0(N − 1)] ∈ C
J×(N−P)(17)

and tr{·} denotes the trace operator.
Utilizing the two estimators in (14) and (15), the joint

conditional PDFs under H1 and H 0, respectively, are:
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N−1∏
n=P

f (ε0(n)|τ0,H1;α,AH,Q)

∣∣∣∣∣
τ̂01

=

⎡
⎢⎢⎢⎣ (N − P)J

πetr{ (X̃0 − αS̃)HQ−1(X̃0 − αS̃)}det {Q}
1
J

⎤
⎥⎥⎥⎦

(N−P)J
(18)

N−1∏
n=P

f (ε0(n)|τ0,H0; 0,AH,Q)

∣∣∣∣∣
τ̂00

=

⎡
⎢⎢⎢⎣ (N − P)J

πetr{ (X̃H
0 Q

−1X̃0}det {Q}
1
J

⎤
⎥⎥⎥⎦

(N−P)J
(19)

Performing the maximization of (18) with respect to a
is tantamount to minimizing the following expression:

�(α) = tr{ (X̃0 − αS̃)HQ−1(X̃0 − αS̃)}

= tr{ X̃H
0 Q

−1X̃0} + tr{ S̃HQ−1S̃}
∣∣∣∣∣α − tr{ S̃HQ−1X̃0}

tr{ S̃HQ−1S̃}

∣∣∣∣∣
2

−

∣∣∣tr{ S̃HQ−1X̃0}
∣∣∣2

tr{ S̃HQ−1S̃}
.

When the positive factor containing a is made to van-
ish, the minimum is clearly attained

min
α

�(α) = tr{ X̃H
0 Q

−1X̃0} −

∣∣∣tr{ S̃HQ−1X̃0}
∣∣∣2

tr{ S̃HQ−1S̃}
(20)

with

α̂ =
tr{ S̃HQ−1X̃0}
tr{ S̃HQ−1S̃}

. (21)

Substituting α̂ as well as τ̂00 and τ̂01 into the decision
rule (11), after some algebra manipulations, the detec-
tion statistic for parametric GLRT in compound-Gaus-
sian environment (CG-PGLRT) can be recast as

�CG - PGLRT = −J(N − P) ln

⎡
⎢⎣1 −

∣∣∣tr {S̃HQ−1X̃0

}∣∣∣2
tr

{
S̃
H
Q−1S̃

}
tr

{
X̃
H
0 Q

−1X̃0

}
⎤
⎥⎦H1

≷
H0

ηCG - PGLRT (22)

where hCG-PGLRT is the appropriate modification of
the original threshold in (11).
Note that the normalized parametric adaptive matched

filter (NPAMF), originally developed in [8,14] for com-
pound-Gaussian environment, is closely related to the
CG-PGLRT detector but replaces true Q and AH with
their estimates obtained from the training signals. In

[8,14,29], several multichannel parameter estimation
algorithms are considered in the NPAMF detector,
including the Nuttall-Strand and the multichannel least
squares methods [30]. However, we obtain herein adap-
tive version of the CG-PGLRT detector relying on maxi-
mum likelihood (ML) parameter estimation criterion.
Specifically, our multichannel parameter estimation
approach is similar to that proposed in [16,17] for Gaus-
sian parametric model-based STAP detectors, whereas
we utilize only training signals for parameter estimation.

3.2 Adaptive CG-PGLRT detector for unknown AR
parameters
To make the derived detector (22) fully adaptive, suita-
ble estimates of the multichannel AR parameters Q and
AH must be acquired. Employing the target-free training
signals to estimate the multichannel AR parameters
allows to decouple from estimation of target parameters,
such as complex amplitude a and the texture compo-
nent τ0. However, derivation of the MLEs of Q and AH

with K unknown textures {τk}Kk=1 is still a more challen-

ging task. The similar covariance estimation problem in
compound-Gaussian environment has been solved in
[25,26,31], where three different estimation strategies
are introduced, including SCM, NSCM, and AML
estimators.
In our opinion, the derivation of these three covar-

iance estimators depends upon two different clutter
models, that is, the dependent interference model [31]
and the independent interference model [26], respec-
tively. The former assumes that the textures of training
signals are completely correlated, i.e., τ1 = τ2 = ··· = τK,
and adopts the SCM estimator. The latter, where the
NSCM and AML estimators are usually applied, deals

with the IID {τk}Kk=1 instead.

For our problem, as suggested in [26], a two-step per-
son-by-person maximization is followed. Specifically, we
first assume that the textures of the training signals are
perfectly known for the realization under observation.
Define the training data set

Xt(n) = [xT1(n), x
T
2(n), . . . , x

T
K(n)]

T ,n = 0, 1, . . . ,N − 1 .
Conditioned on the first P values{
xk(n)

}P−1
n=0 , k = 1, 2, . . . ,K , the log-likelihood function

based on training signals is proportional to

−K(N − P)ln det{Q} − J(N − P)ln det
{
Dτ t

} −
K∑
k=1

N−1∑
n=P

εHk (n)Q
−1εk(n)

τk
(23)

where εk(n) = x̃k(n) and Dτ t ∈ CK×K is a diagonal
matrix whose diagonal entries are τ1, . . . , TK. We, next,
use (23) to derive the MLEs of Q and AH.
By setting to zero the derivative of (23) with respect to

Q, we get the MLE of Q given τ1 = [τ1, . . . , τK]
T and
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AH:

Q̃(τt,AH) =
1
L

K∑
k=1

N−1∑
n=P

x̃k(n)x̃
H
k (n)

τk

=
1
L

K∑
k=1

N−1∑
n=P

[xk(n) + AHyk(n)][xk(n) + AHyk(n)]
H

τk

(24)

where yk(n) =
[
xTk (n − 1), . . . , xTk (n − P)T

]
∈ C

JP×1

and L = (N - P) × K. Substituting the above Q̂(τt,AH)
back in (23), we find that maximizing (23) with respect

to AH reduces to minimizing det
{
Q̂(τt,AH)

}
. There-

fore, the MLE of the AR coefficients matrix AH can be

obtained by minimizing det
{
Q̂(τt,AH)

}
with respect to

AH.
We further observe that [17]

LQ̂(τt,AH) = R̂xx(τt) + R̂xy(τt)A + AHR̂yx(τt) + AHR̂yy(τt)A

=
[
AH + R̂

H
yx(τt)R̂

−1
yy (τt)

]
R̂yy(τt)

[
AH + R̂

H
yx(τt)R̂

−1
yy (τt)

]H
+

R̂xx(τt) − R̂
H
yx(τt)R̂

−1
yy (τt)R̂yx(τt)

(25)

where the above correlation matrices conditioned on
τt = [τ1, . . . , τK]

T are expressed as

R̂xx(τt) =
K∑
k=1

N−1∑
n=P

xk(n)xHk (n)

τk
(26)

R̂yy(τt) =
K∑
k=1

N−1∑
n=P

yk(n)y
H
k (n)

τk
(27)

R̂yx(τt) =
K∑
k=1

N−1∑
n=P

yk(n)x
H
k (n)

τk
(28)

and R̂xy(τt) = R̂
H
yx(τt) . Since R̂yy(τt) is non-negative

definite and the second and third terms in (25) do not
depend on AH, it follows that [17]

Q̂(τt,AH) ≥ Q̂(τt,AH)|A=Â(τt) (29)

where

Â
H
(τt) = −R̂

H
yx(τt)R̂

−1
yy (τt). (30)

Inserting (30) into (25), we finally have

Q̂(τt) =
1
L

[
R̂xx(τt) − R̂

H
yx(τt)R̂

−1
yy (τt)R̂yx(τt)

]
. (31)

Obviously, once the MLE of τt = [τ1, . . . , τK]
T, namely

τ̂tML =
[
τ̂1ML, . . . , τ̂KML

]T , is available, the exact MLEs of

AH and Q can be readily obtained according to (30) and
(31). However, so far the explicit solutions for τ̂tML are
still inaccessible. Therefore, in the second step of the
person-by-person maximization, we introduce the afore-
mentioned two clutter models to motivate the use of
the three different covariance estimation strategies.
For the dependent interference model, it is interesting

that the MLE of Q with identical textures is proportional
to the sample covariance matrix estimate of the temporally
whitened training signals within a scalar multiplicative fac-
tor l[26,31]. More precisely, based on the classical sample
covariance matrix (SCM) estimator

Q̂ML , Q̂ML for the dependent interference model is given as

Q̂(λ,AH) =
1
λ
Q̂SCM(A

H)

=
1
L

K∑
k=1

N−1∑
n=P

[xk(n) + AHyk(n)][xk(n) + AHyk(n)]
H

λ

(32)

Likewise, following the derivation of (25), (30), and
(31), the MLEs of AH and Q for the dependent model
can be straightforwardly expressed as

Â
H
SCM = −R̂

H
yxR̂

−1
yy (33)

Q̂SCM(λ) =
1
λ
Q̂SCM =

1
λL

[
R̂xx − R̂

H
yxR̂

−1
yy R̂yx

]
(34)

where

R̂xx =
K∑
k=1

N−1∑
n=P

xk(n)xHk (n) (35)

R̂yy =
K∑
k=1

N−1∑
n=P

yk(n)y
H
k (n) (36)

R̂yx =
K∑
k=1

N−1∑
n=P

yk(n)x
H
k (n) (37)

Notice that an explicit solution for l is not necessary

since the AR coefficients estimate Â
H
SCM

is l-indepen-

dent and the adaptive version of detector (22) only

requires knowledge of Q̂SCM(λ) (l) within a scale multi-

plicative constant.

Define ˆ̃xk(n) and ˆ̃s(n) are the temporally whitened

versions of xk(n) and s(n), respectively, using Â
H
SCM

ˆ̃s(n) = s(n) +
P∑
p=1

Â
H
SCM(p)s(n − p), (38)
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ˆ̃xk(n) = xk(n) +
P∑
p=1

Â
H
SCM(p)xk(n − p),

n = P,P + 1, . . . ,N − 1.

(39)

Thus, we have
ˆ̃S = [ˆ̃s(P), ˆ̃s(P + 1), . . . , ˆ̃s(N − 1)] ∈ C

J×(N−P) and

ˆ̃Xk = [ ˆ̃xk(P), ˆ̃xk(P + 1), . . . , ˆ̃xk(N − 1)] ∈ C
J×(N−P) .

Plugging Q̂SCM,
ˆ̃S, and ˆ̃X0

in place of Q, S̃ , and X̃0

into (22), respectively, leads to our adaptive CG-
PGLRT-SCM detector given by

�CG - PGLRT - SCM = −J(N − P) ln

⎡
⎢⎢⎢⎣1 −

∣∣∣∣tr
{

ˆ̃S
H
Q̂

−1
SCM

ˆ̃X0

}∣∣∣∣
2

tr
{

ˆ̃S
H
Q̂

−1
SCM

ˆ̃S
}
tr

{
ˆ̃X
H

0 Q̂
−1
SCM

ˆ̃X0

}
⎤
⎥⎥⎥⎦

H1

≷
H0

ηSCM (40)

Actually, the dependent interference model can be con-
sidered as a simple extension of the partially-homoge-
neous environment under the assumption of the
deterministic texture component. Recently, two different
parametric Rao tests, referred to as the normalized para-
metric Rao (NPRao) test and the scale-invariant para-
metric Rao (SI-PRao) test, respectively, have been
developed in [32] for the partially-homogeneous envir-
onment. The above parametric Rao tests can be candi-
dates for multichannel parametric detection in the
dependent interference model. Different to the CG-
PGLRT-SCM detector, the NPRao and SI-PRao tests use
both training and test signals for parameter estimation.
However, the above techniques are no longer applicable
to the independent interference model because of the
model mismatch.
In the case of the independent interference model, the

texture PDF fτ(τ) is not always known a prior. To cope
with this uncertainty, the random clutter texture com-
ponent is treated as a deterministic and unknown para-
meter. The first candidate for the independent model is
the normalized sample covariance matrix (NSCM) esti-
mator [26,33]. Here, we normalize each term

{x̃k(n)x̃Hk (n)} in the sums in (24) by the data-dependent

normalization factor τ̂kNSCM in place of true τk to obtain

Q̂NSCM(A
H) =

1
L

K∑
k=1

N−1∑
n=P

x̃k(n)x̃
H
k (n)

τ̂kNSCM

, (41)

where τ̂kNSCM =
tr{ X̃kX̃

H
k }

J(N − P)
is the sample estimate of the

local disturbance power in the reference range cells.

According to (30) and (31), we can also obtain Â
H
NSCM

and Q̂NSCM as

Â
H
NSCM = −


R
H

yx




R
−1

yy , (42)

Q̂NSCM =
1
L

[



Rxx − 


R
H

yx




R
−1

yy




Ryx

]
(43)

where the covariance matrices are also normalized by




Rxx =
K∑
k=1

N−1∑
n=P

xk(n)xHk (n)

τ̂kNSCM

,




Rxx =
K∑
k=1

N−1∑
n=P

xk(n)xHk (n)

τ̂kNSCM

, (44)




Ryy =
K∑
k=1

N−1∑
n=P

yk(n)y
H
k (n)

τ̂kNSCM

, (45)




Ryx =
K∑
k=1

N−1∑
n=P

yk(n)x
H
k (n)

τ̂kNSCM

. (46)

From (41) and (42), it is worth observing that an
interdependent relationship exists between the estima-

tion of τ̂kNSCM and Â
H
NSCM

. Therefore, it is rather difficult

to perform joint estimation for them. The idea pursued

here is to obtain τ̂kNSCM by utilizing Â
H
SCM

, namely, we

get

τ̂kNSCM =

∑N−1
n=P

ˆ̃xHk (n) ˆ̃xk(n)
(N − P)J

=
tr

{
ˆ̃Xk

ˆ̃X
H

k

}
(N − P)J

.
(47)

In like manner, the adaptive CG-PGLRT-NSCM
detector is given by

�CG - PGLRT - NSCM =

−J(N − P) ln

⎡
⎢⎢⎢⎢⎢⎣1 =

∣∣∣∣∣tr
{




S̃
H

Q̂
−1
NSCM




X̃0

}∣∣∣∣∣
2

tr

{



S̃
H

Q̂
−1
NSCM




S̃

}
tr

{



X̃
H

0 Q̂
−1
NSCM




X̃0

}
⎤
⎥⎥⎥⎥⎥⎦

H1

≷
H0

ηNSCM
(48)

where the matrices



S̃ ∈ C
J×(N−P) and




X̃0 ∈ C
J×(N−P)

consist of the temporally whitened versions of

{x(n)}N−1
n=P and {s(n)}N−1

n=P , respectively, using the coeffi-

cient estimate Â
H
NSCM

.

The second candidate for the independent model is
the constrained approximate ML (AML) estimator, pro-
vided by the ML theory. Summarily, the constrained
AML estimates of Q and AH are derived by jointly sol-
ving iteratively the following equations:
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τ̂kAML(i + 1) =
tr

{
¯̃XH

k (Â
H
AML(i))Q̂

−1
AML(i)

¯̃Xk(Â
H
AML(i))

}
(N − P)J

,
(49)

Â
H
AML(i + 1) = −R̄

H
yxR̄

−1
yy ⇐ τ̂kAML(i + 1), (50)

D(i + 1) =
1
L

[
R̄xx − R̄

H
yxR̄

−1
yy R̄yx

]
⇐ τ̂kAML(i + 1), (51)

Q̂AML(i + 1) =
tr{ Q}

tr{ D(i + 1)} · D(i + 1). (52)

for i = 0, 1, 2, . . . , Nit, where Nit is the number of
iterations. Equation (52) guarantees the constraint

tr{ Q̂AML(i + 1)} = tr{ Q} to be satisfied at each iteration.

Note that the covariance matrices R̄xx, R̄yy , and R̄yx have

the same structure as those in (44)-(46), the only differ-
ence being that the normalization factor τ̂kNSCM is
replaced by τ̂kAML(i + 1) which is refreshed at each itera-

tion. Here, Q̂NSCM and Â
H
NSCM

are used as the initializa-

tion matrix for this recursive estimator, i.e.,

Q̂AML(0) = Q̂NSCM and Â
H
AML(0) = Â

H
NSCM

.

The final estimates Q̂AML(Nit) and Â
H
AML(Nit) are

denoted by Q̂AML and Â
H
AML

for the sake of brevity. Uti-

lizing the AR coefficient estimate Â
H
AML

, we obtain the

temporally whitened data matrices ¯̃S and ¯̃X0 respec-

tively. Inserting these estimates in (22), we finally come
up with the adaptive CG-PGLRT-AML detector:

�CG - PGLRT - AML =

−J(N − P) ln

⎡
⎢⎢⎢⎣1 −

∣∣∣∣tr
{

¯̃SHQ̂−1
AML

¯̃X0

}∣∣∣∣
2

tr
{

¯̃S
H
Q̂

−1
AML

¯̃S
}
tr

{
¯̃XH

0 Q̂
−1
AML

¯̃X0

}
⎤
⎥⎥⎥⎦

H1

≷
H0

ηAML
(53)

In general, the adaptive versions of the CG-PGLRT
detector can be defined as a parametric implementation
of the following adaptive GLRT-LQ detector [34]

�GLRT - LQ = −JN ln

⎡
⎢⎣1 −

∣∣∣sHR̂−1
x0

∣∣∣2(
sHR̂

−1
s
)(

xH0 R̂
−1

x0
)

⎤
⎥⎦(54)

where the original GLRT-LQ detector given in [10,11]
has been reintroduced in (54). The space-time covar-
iance matrix estimate R̂ can be also obtained by exploit-
ing the SCM, NSCM, and AML estimators, respectively.
However, taking the SCM estimator as an example, we

at least need K ≥ JN training signals to ensure a full-
rank estimate of the JN × JN matrix R. Obviously, the
large JN spatio-temporal product will impose excessive
training and computational burdens to the detector.

3.3 Complexity issues
We provide the floating-point operations (flops)
involved in each step of the parametric and non-para-
metric STAP detector with different covariance estima-
tors in Tables 1 and 2, respectively. Only the complex
multiplication and division are considered but the com-
plex addition and subtraction are ignored.
Note that the adaptive parametric implementations

differ mainly in parameter estimation, they share identi-
cal steps in signal whitening and calculating the test sta-
tistic. The CG-PGLRT-NSCM detector is slightly more
complex than the CG-PGLRT-SCM detector since it

requires evaluating τ̂kNSCM by utilizing Â
H
SCM

for normali-

zation. However, the CG-PGLRT-AML detector is the
most complex detector among the three. Likewise, simi-
lar conclusion can be made for the adaptive versions of
the GLRT-LQ detector. For a quick comparison, sup-
pose KN >JP for the parametric detectors in Table 1.
Clearly, it can be seen from Tables 1 and 2 that the
parametric detectors can reduce the computational
complexity of their non-parametric counterparts, espe-
cially when the spatial-temporal dimension JN is large.

4 Performance assessment
This section is devoted to the performance analysis of
the proposed detectors: CG-PGLRT, CG-PGLRT-SCM,
CG-PGLRT-NSCM, and CG-PGLRT-AML in terms of
the probability of false alarm (Pfa) and the probability of
detection (Pd). For compound-Gaussian environment,
the closed-form expressions for both Pfa as well as Pd
are not available. Hence, we carry out the analysis via
Monte-Carlo techniques based on 100/Pfa and 100/Pd
independent trials, respectively. In order to limit the
computational burden, we set the probability of false
alarm Pfa = 10-3 and the number of sensors J = 4
throughout the section.
Moreover, the following statements hold for this

section:
(i) The spatial driving noise is K-distributed, which is

obtained assuming that the texture component is
Gamma distributed [35]

fτ (τ ) =
1

�(v)

(
v
μ

)v

τ v−1 exp
(

− v
μ

τ

)
u(τ ) (55)

where Г(·) is the gamma function, μ = E{τ} denotes the
mean of the distribution, and ν is the shape parameter
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which provides a measure of noise spikiness. Lower ν
means more spikes will appear in disturbance. Without
loss of generality, we set μ = 1.
(ii) The disturbance signal is generated as a multi-

channel AR(2) compound-Gaussian process with the
method in [36,37]. We assume that the order P of the
multichannel AR process is known. If P is unknown, it
can be selected using some model order selection criter-
ion [38]. The following correlation matrices are utilized
to synthesize simulated data [39]

[Rd(l)]mn = E[d(t)dH(t − l)] = ρρ|m−n|
s ×

exp{−ρt l2 + j(m − n + l)ω},
m,n, = 0, 1, . . . , J − 1

(56)

and

Rd(l) = RH
d (−l), l = 0, 1, . . . .P (57)

where r relates to the disturbance power, rs decides
the spatial correlation, rt controls the temporal correla-
tion, and {(m - n + l)ω} defines the phase of the correla-
tion function (56). Here, we choose the value of r to
satisfy tr{Q} = J.

(iii) The target steering vector sequence {s(n)} for a
uniform linear array is of the form [15]

s(n) =
1√
N
ej2πnftds(fts), n = 0, 1, . . . ,N − 1 (58)

where fts and ftd denote the target normalized spatial
and Doppler frequencies, respectively, and the target
spatial steering vector s(fts) is defined as

s(fts) = (1/
√
J)

[
1 ej2π fts . . . ej2π(J−1)fts

]T
. In simulation,

we set fts = 0 and ftd = 0.25.
(iv) The SINR has been defined as

SINR =
|α|2
μ

sHR−1s (59)

For reader’s convenience, we give an overview of rele-
vant parameter settings for the simulation processes in
Table 3.
In Figures 1, 2, 3, 4, and 5 the CFAR properties of the

proposed detectors: CG-PGLRT, CG-PGLRT-SCM, CG-
PGLRT-NSCM and CG-PGLRT-AML are investigated.
Figure 1 plots the detection threshold versus shape para-
meter ν for the proposed detectors with training size K

Table 1 Complexity of the CG-PGLRT-SCM detector, CG-PGLRT-NSCM detector, and CG-PGLRT-AML detector for model
order P (suppose KN >JP)

Step Task Flops Task Flops Task Flops

S1 R̂xx O(KJ2(N-P)) τ̂1:KNSCM O(KJ2P2(N-P)) τ̂1:KAML(1 : Nit) O(2J2 P 2K(N-P)) +O(NitKJ(N-P)
2)

S2 R̂yy O(KJ 2P2(N-P))



Rxx O(2KJ2(N-P)) R̄xx O(2NitKJ
2(N-P))

S3 R̂yx O(KJ 2P(N-P))



Ryy O(2KJ 2P2(N-P)) R̄yy O(2NitKJ
2P2(N-P))

S4 Â
H
SCM

O(J3(P3+P2))



Ryx O(2KJ 2P(N-P)) R̄yx O(2NitKJ
2P(N-P))

S5 Q̂SCM
O(J3P) Â

H
NSCM

O(J3(P3+P2) - Â
H
AML

O(NitJ
3(P3 + P 2))

S6 Q̂
−1
SCM

O(J3) Q̂NSCM O(J3P) Q̂AML O(NitJ
3P)

S7 ˆ̃S O(J 2P(N-P)) Q̂
−1
NSCM

O(J3) Q̂
−1
AML

O(NitJ
3)

S8 ˆ̃X0
O(J 2P(N-P))




S̃ O(J 2P(N-P)) ¯̃S O(J 2P(N-P))

S9 ω = Q̂
−1
SCM

ˆ̃S O(J 2(N-P))



X̃0
O(J 2P(N-P)) ¯̃X0

O(J 2P(N-P))

S10 ωH ˆ̃S O(J(N-P)2) ω = Q̂
−1
NSCM




S̃ o(j2(n-p)) ω = Q̂
−1
AML

¯̃S O(J 2(N-P))

S11 ωH ˆ̃X0
O(J(N-P)2) ωH




S̃ O(J(N-P)2) ωH ¯̃S O(J(N-P)2)

S12 ˆ̃X
H

0 Q̂
−1
SCM

ˆ̃X0
O(J(N - P)(J+N-P)) ωH




X̃0
O(J(N-P)2) ωH ¯̃X0

O(J(N-P)2)

S13 - -



X̃
H

0 Q̂
−1
NSCM




X̃0
O(J(N-P)(J+N - P)) ¯̃XH

0 Q̂
−1
AML

¯̃X0
O(J(N - P)(J+N-P))

Total O(KJ 2 P 2N) + O(JN2) O(2KJ 2 P 2N) + O(JN2) O(2NitKJ
2P2N) + O(NitKJN

2)

Table 2 Complexity of the GLRT-LQ detector with SCM, NSCM, and AML estimators (at least K ≥ JN)

Step Task Flops Task Flops Task Flops

S 1 R̂SCM O(KJ2 N 2) R̂NSCM O(2KJ2 N 2) R̂AML O(NitKJ
3 N 3)

S2 R̂
−1
SCM

O(J 3 N 3) R̂
−1
NSCM

O(J3 N 3) R̂
−1
AML

O(J 3N3)

S3 ωSCM = R̂
−1
SCMs O(J2N2) ωNSCM = R̂

−1
NSCMs O(J2 N 2) ωAML = R̂

−1
AMLs O(J2 N 2)

S4 ωH
SCMs O(JN) ωH

NSCMs O(JN) ωH
AMLs O(JN)

S5 ωH
SCMx0 O(JN) ωH

NSCMx0 O(JN) ωH
AMLx0 O(JN)

S6 xH0 R̂
−1
SCMx0 O(JN(JN+1)) xH0 R̂

−1
NSCMx0 O(JN(JN+1)) xH0 R̂

−1
AMLx0 O(JN(JN+1))

Total O(KJ2N2)≥O(J3N3) O(2KJ 2 N 2)≥O(2J 3 N 3) O(NitKJ
3 N 3)≥O(NitJ

4 N 4)
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= 2 and fixed Pfa = 10-3. Relevant test parameters are
taken from Table 3 and specified in the figures. Observe
that the CG-PGLRT, CG-PGLRT-NSCM, and CG-
PGLRT-AML thresholds are almost insensitive to
changes in shape parameters ν. This reflects their tex-
ture CFAR behavior. However, for ν < 1, the thresholds
of CG-PGLRT-SCM increases with decreasing ν
(increasing disturbance spikiness). Thus, a loss of CFAR

with respect to the texture PDF comes about for the
CG-PGLRT-SCM detector.
Figures 2, 3, 4, and 5 depict plots of Pfa versus thresh-

old corresponding to several shape parameter values (ν
= 0.1, 0.5, 1, 4.5), for the proposed CG-PGLRT, CG-
PGLRT-SCM, CG-PGLRT-NSCM, and CG-PGLRT-
AML, respectively. The curves for the CG-PGLRT-SCM
in Figure 3 show much higher variability compared to
the CG-PGLRT, CG-PGLRT-NSCM, and CG-PGLRT-
AML, which confirms its lack of CFAR with respect to
the texture variations. The Pfa plots for the CG-PGLRT,
CG-PGLRT-NSCM, and CG-PGLRT-AML also validate
their robust texture CFAR performance.
In Figure 6, the effects of the disturbance spikiness

upon the detection performance of the CG-PGLRT
detector are analyzed by varying the shape parameter ν.
Figure 6 displays Pd plots versus SINR for shape para-
meters ν = 0.1, 0.5, 1, 4.5, 10. The figure highlights that
the detection performance is enhanced as ν decreases at
the low SINR region. However, at the large SINR region
(about > 10 dB), the CG-PGLRT detector performs
worse with smaller ν. The lower the value of ν and the
spikier the disturbance, for a given average disturbance

Table 3 Relevant test parameters for the simulations

Parameters Value

PFA 10-3

P 2

J 4

N 16, 32

v 0.1, 0.5, 1, 4.5, 10

μ 1

ri 0.3

rs 0.99

fts 0

ftd 0.25

Nit 3

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Shape Parameter()

T
hr

es
ho

ld

J=4,N=16,K=2,
s
=0.99,

t
=0.3,P

fa
=0.001

 

 

CG−PGLRT−SCM
CG−PGLRT−NSCM
CG−PGLRT−AML
known_A&Q CG−PGLRT

Figure 1 Threshold versus shape parameter (ν) for fixed Pfa.
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Figure 2 Pfa versus threshold for the CG-PGLRT with J = 4, N = 16, rs = 0.99, rt = 0.3, and ν = 0.1, 0.5, 1, 4.5.
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=0.1 CG−PGLRT−SCM

=0.5 CG−PGLRT−SCM

=1  CG−PGLRT−SCM

=4.5 CG−PGLRT−SCM

Figure 3 Pfa versus threshold for the CG-PGLRT-SCM with J = 4, N = 16, K = 2, rs = 0.99, rt = 0.3, and ν = 0.1, 0.5, 1, 4.5.
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power μ, at low SINR (small value of a), the signal
energy that can be accumulated from the cells under
test increases, hence, the detection performance is
improved; at large SINR (large value of a), more spikes
in disturbance may have a negative effect on the signal
detection. In addition, the detector exhibits close perfor-
mance for ν = 4.5 and 10, since the K distribution col-
lapses into the Gaussian distribution when ν ≥ 4.5.
In Section 3.2, we combined the multichannel AR

parameter estimation algorithm with three covariance
matrix estimation strategies: SCM, NSCM, and AML
estimators, and then gave three adaptive CG-PGLRT
detectors, where the true multichannel AR parameters
Q and AH are substituted with the estimated ones. Now
various simulations are performed to evaluate the detec-
tion performance loss of the adaptive CG-PGLRT detec-
tors with respect to the CG-PGLRT detector which
possesses the perfect knowledge about the multichannel
AR parameters Q and AH.
In Figures 7, 8, and 9, the limited-training (K = 2) case

is considered for different numbers of pulses N (N = 16,
32) and shape parameters ν = 0.1, 0.5 and 4.5. In parti-
cular, Figure 7 refers to the shape parameter ν = 0.5
whereas Figures 8 and 9 to ν = 0.1 and ν = 4.5. All the

detection curves in Figures 7, 8, and 9 show that the
detection performance is improved as N increases. For
instance, at Pd = 0.9, the CG-PGLRT-AML is about 4
dB from the CG-PGLRT bound at N = 16; the gap
reduces to about 1.5 dB at N = 32 for any value of ν in
this case. This implies that we can remedy the perfor-
mance degradation with respect to CG-PGLRT detector
by increasing the temporal dimension N. In Figures 7
and 8, we find that the CG-PGLRT-NSCM bears almost
the same performance as the CG-PGLRT-AML at N =
32 and slightly poorer than the CG-PGLRT-AML at N
= 16. Figure 9 demonstrates that all the adaptive detec-
tors: CG-PGLRT-SCM, CG-PGLRT-NSCM, and CG-
PGLRT-AML perform almost the same in the homoge-
neous environment (ν ≥ 4.5), simply because the K dis-
tribution converges to the Gaussian distribution for
increasing ν. Thus, the loss of the CG-PGLRT detector
with the SCM estimator due to model mismatch
decreases as ν increases. We also observe that the CG-
PGLRT-AML detector outperforms the other two detec-
tors for the heavy tailed disturbance (ν ® 0). Thus, the
CG-PGLRT-AML detector is the most suitable detector
to implement the adaptive detection in the realistic
spiky disturbance environment.
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In Figures 10 and 11, we compare the performance of
the proposed adaptive CG-PGLRT detectors with that of
the GLRT-LQ with Rscm and with Rnscm. Figures 10 and
11 refers to the plots of Pd versus SINR of the adaptive
CG-PGLRT detectors with training size K = 2, 3 and
the GLRT-LQ with Rscm(Rnscm) with K = 128. The large
K chosen for the GLRT-LQ with estimated R is to
ensure a nonsingular estimate of R and obtain perfor-
mance within 3 dB from the optimum bound. It is
observed that, with the limited-training (K = 2), the per-
formance of the CG-PGLRT-SCM is close to that of the
GLRT-LQ with Rscm. And both CG-PGLRT-NSCM and
CG-PGLRT-AML detectors can produce better detec-
tion performance with dramatically less training than
the GLRT-LQ with Rscm. Though all the proposed adap-
tive CG-PGLRT detectors with K = 2 are inferior to the
GLRT-LQ with Rnscm with K = 128, the performance
degradation of the CG-PGLRT-NSCM and CG-PGLRT-
AML detectors can be easily remedied only by increas-
ing the training size to K = 3. Indeed, the parametric
detectors are significantly less dependent on training
than the covariance matrix based detector.

So far the model order P of the multichannel AR pro-
cess has been assumed to be known. In the following
simulation example, we evaluate the performance of the
proposed adaptive CG-PGLRT detectors when an model
order estimation error occurs. Figure 12 depicts the per-
formance of the proposed adaptive CG-PGLRT detec-
tors using an overestimated model order. The curves
indicate that some performance loss caused by mis-
matched model order P happens for N = 16 and K = 3.
Since P samples have been discarded in the derivation
of the proposed detectors as well as in calculating the
test statistics, the detection performance is degraded as
model order P is overestimated and the number of
pulses N is not large enough.

5 Conclusions
In this article, multichannel signal detection problem in
space-time colored compound-Gaussian environment is
discussed. By exploiting the structural information about
the disturbance space-time covariance matrix, we model
the disturbance signal as a multichannel AR process to
ease the training and computational burdens. Modeling
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0.3, and ν = 4.5.
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the texture as an unknown deterministic parameter, we
first derive the CG-PGLRT detector under the assump-
tion that the multichannel AR parameters Q and AH are
perfectly known. For the two-step GLRT design criter-
ion, we combine the multichannel AR parameter estima-
tion algorithm with three covariance matrix estimation
strategies, i.e., sample covariance matrix (SCM), normal-
ized sample covariance matrix (NSCM) and approximate
ML (AML) estimator, and then obtain the adaptive ver-
sions of the CG-PGLRT detector by substituting the
true multichannel AR parameters with their estimates.
Finally, we show the CFAR behavior and detection per-
formances of the proposed detectors: CG-PGLRT, CG-
PGLRT-SCM, CG-PGLRT-NSCM, and CG-PGLRT-
AML by Monte Carlo trials.
Conclusions of this article are summarized as follows:

- The CG-PGLRT-SCM detector has no texture
CFAR property, while the CG-PGLRT, CG-PGLRT-
NSCM, and CG-PGLRT-AML detectors ensure tex-
ture CFAR property.

- The detection probability of the CG-PGLRT detec-
tor increases with increasing disturbance spikes
(decreasing ν) at low SINR. However, at large SINR,
we observe a degradation in performance as ν
decreases.
- For the limited-training case, the detection perfor-
mance loss of the adaptive CG-PGLRT detectors
with respect to the CG-PGLRT detector can be
remedied by increasing temporal dimension N.
- The CG-PGLRT-AML detector has the best detec-
tion performance in the heavy tailed disturbance (ν
® 0). Thus, the CG-PGLRT-AML detector is the
most suitable detector to implement the adaptive
detection in the realistic spiky disturbance.
- Compared to the covariance matrix based detector,
the proposed model-based adaptive detectors have
significantly decreased the training requirements and
the computation complexity.
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