
Li et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:7
http://asp.eurasipjournals.com/content/2012/1/7

RESEARCH Open Access

An efficient implementation of iterative
adaptive approach for source localization
Gang Li1*, Hao Zhang1, Xiqin Wang1 and Xiang-Gen Xia2

Abstract
The iterative adaptive approach (IAA) can achieve accurate source localization with single snapshot, and therefore it
has attracted significant interest in various applications. In the original IAA, the optimal filter is performed for every
scanning angle grid in each iteration, which may cause the slow convergence and disturb the spatial estimates on
the impinging angles of sources. In this article, we propose an efficient implementation of IAA (EIAA) by modifying
the use of the optimal filtering, i.e., in each iteration of EIAA, the optimal filter is only utilized to estimate the spatial
components likely corresponding to the impinging angles of sources, and other spatial components corresponding
to the noise are updated by the simple correlation of the basis matrix with the residue. Simulation results show that,
in comparison with IAA, EIAA has significant higher computational efficiency and comparable accuracy of source
angle and power estimation.
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1 Introduction
Source localization is a fundamental problem in a wide
range of applications including communications, radar,
and acoustics, and many algorithms have been presented
in the literature during recent decades. The Fourier-based
algorithms suffer from the low resolution and the high
sidelobes. Some methods based on subspace processing,
e.g., Capon beamforming [], MUSIC [], ESPRIT [], and
other subspace-based algorithms [, ], provide super-
resolution for uncorrelated sources with sufficient num-
ber of snapshots. However, in the case of few snapshots,
the performances of these subspace-based methods will
degrade sharply.
Recently, the source localization problem has been con-

verted into a sparse recovery framework, because the
number of actual sources of interest is generally much
smaller than the number of potential source locations in
the region to be observed. A kind of algorithms of sparse
recovery is based on iterative weighted least squares, e.g.,
the FOCal Underdetermined System Solver (FOCUSS)
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[], the Sparse Learning via IterativeMinimization (SLIM)
[], the iterative adaptive approach (IAA) [], etc. Here,
we are interested in IAA, which is able to provide accu-
rate source localization with single snapshot and has at-
tracted significant interest in various applications [–].
IAA is non-parametric and it achieves accurate estimates
of angles and powers of the sources by iterative opera-
tions []. The spatial component on every potential angle
is estimated by optimal filtering, which passes the signal
from the current angle without distortion and fully sup-
presses the interferences from other angles. The iteration
is terminated when the norm of the difference between
two successive spatial estimates is smaller than a certain
threshold. However, it is time consuming to perform opti-
mal filtering on all potential angles, since in general we are
only interested in several angles where the actual sources
are located. Moreover, the excessive estimation of the spa-
tial components on the angles that are outside the actual
source position set may result in a slow convergence. In
this article, we propose an efficient implementation of IAA
(EIAA) bymodifying the use of the optimal filtering, i.e., in
each iteration, the optimal filter is only utilized to estimate
the spatial components likely corresponding to the actual
signal sources, and other spatial components correspond-
ing to the noise are updated by the simple correlation of
the basis matrix with the residue. It will be shown that
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EIAA has significant faster convergence speed and com-
parable accuracy of source angle and power estimation. In
[, ], two fast implementations of IAA have been pro-
posed by using the matrix computation technique such as
Gohberg-Semencul decomposition, etc. It is noted that the
way of the computational burden reduction in this article
is different from [, ]: herein, we focus on reducing the
number of running optimal filtering procedures, while [,
] focus on improving the computational efficiency of the
optimal filtering procedure. In addition, similar to the al-
gorithms mentioned above, we are only interested in the
unambiguous angle solution, which depends on the ratio
of interelement spacing of the array to the wavelength. In
the case that the angle ambiguity occurs, we refer to [–
] for resolving the ambiguity.
The remainder of this article is organized as follows. The

signal model and the original IAA are introduced in Sec-
tion . The EIAA algorithm is proposed in Section . The
proposed EIAA is evaluated by some simulations in Sec-
tion . Concluding remarks are presented in Section .

2 Signal model and IAA
Suppose that K potential far-field narrowband signals
are impinging on an M-element array from directions
{θ, θ, . . . , θK }. In single snapshot case, the output mea-
surement vector of the array can be expressed as

y =As + e,

where A is the M × K basis matrix and is defined by A =
[a(θ),a(θ), . . . ,a(θK )], s is the K ×  vector denoting the
complex amplitudes of the sources, e is the additive noise.
Considering an M-element linear array as shown in Fig-
ure , the kth column of A corresponding to the potential
source direction θk can be represented by

a(θk) =
[
e–jπx cos(θk )/λ, e–jπx cos(θk )/λ,

. . . , e–jπxM cos(θk )/λ
]T ,

where {x,x, . . . ,xM} are the positions of the M elements
of the array, respectively, λ is the wavelength, (·)T denotes
transpose. In sparse recovery framework, the potential

Figure 1 The geometry of sensors and sources.

source number K is rather considered to be the number
of discretized angle grids. Assume that s is sparse, i.e., the
number of actual sources ismuch smaller thanK . Consider
the line-spectrum model and let P = diag{p,p, . . . ,pK },
whose kth diagonal element pk contains the power at kth
scanning angle grid. The problem of interest is recovering
the spatial components {p,p, . . . ,pK }, and the positions
and the amplitudes of the peaks of {p,p, . . . ,pK } directly
provide the locations and the powers of the sources. IAA
[] achieves this goal as summarized in Table , where the
superscript (i) denotes the ith iteration.

3 Efficient implementation of IAA
It is noted that step (b) in Table  gives an optimal filter in
terms of θk , which reserves the signal from angle θk with-
out distortion and fully suppresses the interferences (sig-
nals from other angles). In each iteration the optimal filter-
ing is performed K times for all angles {θ, θ, . . . , θK }. This
is computationally extravagant, because in general we are
only interested in the angle set where the actual sources
are located. Moreover, for the index k corresponding to θk
outside the angle set of actual sources, pk most likely de-
pends on the noise power, and the iterative estimation of
pk may increase the actual number of iterations required
for the convergence. Based on the above observations, we
modify IAA as described in Table .
The main difference between the proposed EIAA and

the original IAA lies in the estimation of spatial com-
ponents that are outside the actual source location set.
As seen from step (b) in Table , {θk with index k ∈ �(i)}
are considered to be likely angle candidates where actual

Table 1 IAA algorithm.

Initialization: p̂(0)k = |aH (θk )y|2
[aH (θk )a(θk )]2

for k = 1, 2, . . . ,K .
Repeat:
(a) Calculate the correlation matrix by R̂(i) =AP̂(i)AH .

(b) Estimate the spatial components by p̂(i)k = | aH (θk )·(R̂(i) )–1 ·y
aH (θk )·(R̂(i) )–1·a(θk )

|2, for k = 1, 2, . . . ,K .

(c) If the norm of the difference between P̂(i–1) and P̂(i) is smaller than a threshold, i.e., δ(i)
�
=

√∑K
k=1[p̂

(i–1)
k – p̂(i)k ]

2 < ε, the iteration is stopped; otherwise
let i = i + 1 and go to a).
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Table 2 EIAA algorithm.

Initialization: let p̂(0)k = |aH (θk )y|2
[aH (θk )a(θk )]2

for k = 1, 2, . . . ,K ; let the residue r(0) = y;
Repeat:
(a) Calculate the correlation matrix by R̂(i) =AP̂(i)AH ;

Let the index support set �(i) =∅ and the principal spatial component set 	(i) =∅.

(b)While the relative residue is larger than a threshold, i.e.,
‖r(i)‖22
‖y‖22

> ξ

Find the index nl corresponding to the largest entry in the vector [p̂(i)1 , p̂
(i)
2 , . . . , p̂

(i)
K ];

Expand the index support set by �(i) = {�(i) ,nl};
Expand the principal spatial component set by 	(i) = {	(i) , | aH (θnl )·(R̂(i) )–1 ·y

aH (θnl )·(R̂(i) )–1 ·a(θnl )
|2};

Calculate the residue by r(i) = y – (AH
�(i)A�(i) )–1AH

�(i)y, where the matrixA�(i) consists of the columns ofA with indices k ∈ �(i) ;

Update the spatial estimate by p̂(i)k = |aH (θk )r(i)|2
[aH (θk )a(θk )]2

, for k = 1, 2, . . . ,K .
endWhile

(c) Restore the principal spatial components by p̂(i)k =	(i)(k), for k ∈ �(i) .

(d) If the norm of the difference between P̂(i–1) and P̂(i) is smaller than a threshold, i.e., δ(i)
�
=

√∑K
k=1[p̂

(i–1)
k – p̂(i)k ]

2 < ε, the iteration is stopped; otherwise
let i = i + 1 and go to a).

Figure 2 Spatial estimation results by 10 Monte-Carlo trials. (a) IAA estimates, (b) EIAA estimates.

Table 3 Performances of IAA and EIAA for various SNR.

SNR 0 dB 5 dB 10 dB 15 dB 20 dB

erangleEIAA – erangleIAA –0.297◦ –0.114◦ –0.107◦ –0.015◦ –0.004◦

erpowerEIAA – erpowerIAA –0.087 –0.393 –0.543 –0.489 –0.373
RTR of EIAA and IAA 0.131 0.118 0.081 0.072 0.070

sources are located. Then, the spatial components corre-
sponding to the actual source locations are updated by op-
timal filtering, and other spatial components correspond-
ing to the noise are updated by simple correlation of the
columns of basis matrix with the residue. This implies that
the excessive estimation of noise components is avoided.
Compared with the original IAA, EIAA can significantly

reduce the computational burden thanks to the follow-
ing facts: () In each iteration, the required times of opti-
mal filtering procedure is equal to the number of the se-
lected principle components in step (b) of Table . The
step (b) of Table  is finished by the residual energy thresh-
old, for example, in practice it is reasonable to let ξ = .,
which implies that the relative residue energy is smaller
than %. In high SNR case, it is believable that the num-
ber of the selected principle components in step (b) of
Table  is equal to the number of the actual sources; for
lower SNR, the number of the selected principle compo-
nents in step (b) of Table  may be slight larger than the
number of the actual sources because the signal-subspace
and the noise-subspace become undistinguishable. Any-
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Figure 3 Performance comparison of IAA and EIAA. (a-c) For SNR = 5 dB; (d-f) for SNR = 10 dB. (a, d) Angle error difference erangleEIAA – erangleIAA ;
(b, e) power error difference erpowerEIAA – erpowerIAA ; (c, f) RTR of EIAA and IAA.
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way, the number of the selected principle components, i.e.,
the required times of optimal filtering procedure, is usu-
ally much smaller than K , which is guaranteed by the prior
assumption of sparse signal property. () The relaxation
of the estimation of spatial components corresponding to
noise leads to stable and fast convergence.

4 Simulations
In this section, some examples are provided to evaluate
the performance of the proposed EIAA in single snapshot
case. Consider a uniform linear array of M =  sensors
with the interelement spacing λ/. The additional noise is
assumed Gaussian with zero mean and variance σ , and
the SNR is defined as  log(

∑L
n= pn/(Lσ )). The angle

scanning grid is uniform in the range from ◦ to ◦ with
◦ increment between adjacent angle candidates.
Assume that there are three sources at ◦, ◦, and ◦

with p =  dB, p =  dB, and p =  dB powers, respec-
tively. For SNR =  dB, Figure  shows the spatial esti-
mates of IAA and EIAA. The true source locations are in-
dicated by circles, and the results of tenMonte-Carlo trials
are plotted. One can see that both of IAA and EIAA can ac-
curately indicate the locations and powers of the sources,
while EIAA shows sharper peaks.
The performances of IAA and EIAA are compared via

histograms over  trials in Figure , where SNR =  dB
for (a-c) and SNR =  dB for (d-f ). The thresholds in Ta-
ble  are set by ε = . and ξ = .. The source lo-
calization error is defined by erangle �=

√∑
i=(θ̂i – θi)/

and the power estimation error is defined by erpower �=√∑
i=(p̂i – pi)/. Figure a,b,d,e represent histograms of

erangleEIAA – erangleIAA and erpowerEIAA – erpowerIAA , and the triangles in-
dicate the centroids of the histograms. It is obvious that
most values of erangleEIAA –er

angle
IAA and erpowerEIAA –erpowerIAA are close

to zero, which implies that EIAA is comparable with IAA
in terms of the accuracy of angle and power estimation.
Moreover, the negative centroids indicate that the estima-
tion accuracy of EIAA is slightly better than that of IAA.
Figure c,f represent the histograms of the running time
ratio (RTR) of EIAAand IAA, and the triangles indicate the
histogram centroids, and it can be seen EIAA is certainly
faster than IAA since all results of RTR are smaller than
one.Moreover, the centroids of RTR about . indicate that
the computational efficiency is significantly improved by
the proposed EIAA. For various SNR, the performances of
IAA and EIAA are compared in Table , where each re-
sult is obtained by finding the centroid position of the his-
togram over  trials (see triangle position in Figure  for
example). One can see that EIAA has slightly better angle
and power estimation accuracy than IAA. As for the com-
putational efficiency, the running time of EIAA is less than
% of that of IAA for various SNR.

5 Conclusion
In this article, EIAA algorithm is proposed for source lo-
calization. By selecting the principal components of spatial
estimate in each iteration, the optimal filter is only utilized
to estimate the spatial components likely corresponding
to the actual signal sources, and the other spatial compo-
nents corresponding to noise are updated by the simple
correlation of the basis matrix with the residue. Compared
with the original IAA that performs optimal filtering on
every scanning angle grid in each iteration, EIAA shows
higher computational efficiency and slightly better accu-
racy of angle and power estimation.
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