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Abstract
If a system for lossless compression of images applies a decorrelation step, this step must map integer input values
to integer output values. This can be achieved, for example, using the integer wavelet transform (IWT). The
non-linearity, introduced by the obligatory rounding steps, is the main drawback of the IWT, since it deteriorates the
desired filter characteristic.
This paper discusses different methods for reducing the influence of rounding in 5/3 and 9/7 filter banks. A novel

combination of two-dimensional implementations of the JPEG2000 9/7 filter bank with new filter coefficients is
proposed and the effects of the methods on lossless image compression are investigated. In addition, these filter
banks are compared to the 9/7 Deslauriers-Dubuc filter bank (97DD).
The analysed two-dimensional implementations generally perform better than their one-dimensional

counterparts in terms of compression ratio for natural images. On average, the 2D 97DD filter bank performs best. In
addition, it has been found that the compression results cannot be improved by simply reducing the number of
lifting steps via 2D implementations of the JPEG2000 9/7 filter bank. Only the 2D implementation with a minimum
number of lifting steps, in combination with modified lifting coefficients, leads to fewer bits per pixel than the
separable implementation on average for a selected set of images.
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1 Introduction
Efficient systems for the lossless compression of image data
require a decorrelation step which maps the integer input
samples to integer output values. In wavelet-based com-
pression systems (see [] for an overview), this is achieved
by using the lifting implementation of a discrete wavelet
transform (DWT) [] in combination with the rounding
of intermediate computation results, which is called in-
teger wavelet transform (IWT) []. Beginning with initial
investigations on the IWT, which were also motivated by
the standardization of the new image compression system
JPEG [], and its application in the JPEG frame-
work [], this topic has received growing attention. The
idea of integer transforms relates back to the so-called S
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transform [], the improved version called S + P transform
[], and the reversible TS transform []. Since then, several
integer wavelet transforms have been analysed in terms of
their performance in image compression systems [].
Wavelet filter banks are typically designed without tak-

ing the integer-to-integer mapping into account. The con-
version into an integer wavelet transform requires round-
ing steps which introduce non-linear effects, which dete-
riorate the desired filter properties. That is one of the ma-
jor reasons why JPEG (Part ) uses the simple / fil-
ter bank, which can be realised with a minimum of lifting
steps, i.e. a minimum of rounding operators. In addition,
this filter bank has favourable coefficients of –. in its first
lifting step, leading to rounding errors in only % of all
cases. The / filter bank, in contrast, requires irrational
filter coefficients, making it per se less suitable for integer-
to-integer mapping.
Besides the degradation of the decorrelation perfor-

mance, the non-linearity of rounding makes the two-
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dimensional application pseudo non-separable, because
the result of a D transform is dependent on the order of
row and column decomposition.
The effects of rounding have been investigated in []

with the assumption that rounding errors are similar to
quantization errors and can bemodelled by additive noise.
In [], the optimizations of filters for a lossy-to-lossless
framework and its implementation in hardware are dis-
cussed. Another issue of interest is tomake the IWT adap-
tive to the statistics of the image to be processed. This can
be achieved by either switching between filters of different
length [–] or by optimising the lifting steps [–].
Many papers are dedicated to the approximation of the
standard / filter coefficients by rational values for low-
complexity hardware or software implementations [–
]. More recent research has also addressed the problem
of reducing the adverse effect of rounding operations in
terms of designing new filters with more favourable lifting
coefficients [] or modifications of the signal flow, reduc-
ing the number of lifting steps [, ]. The construction of
three-channel filter banks based on the lifting scheme has
also been considered for lossless image compression [].
This paper investigates methods for reducing the influ-

ence of rounding in terms of reduced number of lifting
steps and new filter coefficients for the two-dimensional
JPEG / filter bank. The derived processing struc-
tures are evaluated with respect to compression efficiency
and complexity. In addition, the results are compared
to the one- and two-dimensional implementation of the
LeGall / filter bank [] and the / Deslauries-Dubuc
filter bank [, –], which both can be implemented
with only two lifting steps.
The paper is organised as follows: first, Section  reviews

the reversible / filter bank used in JPEG, discusses
the handling of signal boundaries, and explains how the
D implementation reduces the number of rounding steps.
Section  is dedicated to the JPEG / filter bank. It
explains the separable D signal flow and afterwards de-
scribes how the number of lifting steps can be decreased
by rearranging the processing steps. Section  discusses a
Deslauriers-Dubuc filter bank (DD), which can be im-
plemented with the same D structure as the / filter
bank, while having filter lengths of nine and seven. In Sec-
tion , the design of ‘rounding-friendly’ filters is addressed.
Section  investigates all processing structures by means
of sub-band entropy, compression performance, and com-
plexity. Section  concludes the paper.

2 The 5/3 filter bank
2.1 One-dimensional decomposition
The biorthogonal / two-channel filter bank is based on
following analysis filters []

(
h[n]

)
=

(
–/  –/

)
,

(
h[n]

)
=

(
–/ / / / –/

)
. ()

(h[n]) and (h[n]) are the impulse responses of the analysis
high-pass and analysis low-pass filters, respectively. This
filter bank can be easily implemented via the lifting scheme
[].
Both filters have two vanishing moments each, i.e. they

satisfy

 =
∑
n

h[n] · np,

 =
∑
n

h[n] · np · (–)n
for p ∈ {; }. ()

Let xn (n = , , , . . .) be the samples of an integer-valued
input signal. The filtering according to the lifting scheme
computes, in a primal lifting step, the high-pass filter out-
put dn (detail signal)

dn = xn+ +
⌊
α · (xn + xn+) + .

⌋
()

using the lifting coefficient α. A dual lifting step using the
coefficient β produces the low-pass filter output an (ap-
proximation signal)

an = xn +
⌊
β · (dn– + dn) + .

⌋
()

based on the detail signal dn and the original signal val-
ues xn. The property of integer-to-integer mapping, which
is essential for lossless compression, is imposed simply by
properly rounding the intermediate values to integer val-
ues [].
The application of the lifting steps in reverse order and

using subtraction instead of summation reconstructs the
original signal xn

xn = an –
⌊
β · (dn– + dn) + .

⌋
, ()

xn+ = dn –
⌊
α · (xn + xn+) + .

⌋
. ()

Setting the lifting coefficients equal to α = –. and β =
., the lifting scheme (without rounding) performs the
same operations as the filters in equation () of the conven-
tional filter bank.

2.2 Two-dimensional decomposition
The impulse responses of the two-dimensional filters are
the products of the one-dimensional filters

(
h[n]

)
=

(
h[n]

)T · (h[n]
)

=

⎛
⎝

/ –/ /
–/  –/
/ –/ /

⎞
⎠ , ()
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Figure 1 5/3-lifting decomposition in z-domain with separated
processing of horizontal and vertical direction.

(
h[n]

)
=

(
h[n]

)T · (h[n]
)

=



·
⎛
⎝

 – – – 
–    –
 – – – 

⎞
⎠ , ()

(
h[n]

)
=

(
h[n]

)T · (h[n]
)
=

(
h[n]

)T, ()
(
h[n]

)
=

(
h[n]

)T · (h[n]
)

=



·

⎛
⎜⎜⎜⎜⎝

 – – – 
–    –
–    –
–    –
 – – – 

⎞
⎟⎟⎟⎟⎠
. ()

Based on the polyphase description in Figure , the lift-
ing coefficients of the D implementation can be derived.
The variable z corresponds to the vertical and z to the
horizontal direction. The annotations DD, AD, DA, and
AA are related to the positions in Figure . The letters A
andD denote the D approximation signal (low-pass band)
and the detail signal (high-pass band), respectively. In D,

Figure 2 Position of resulting sub-band coefficients on a grid.

they appear in pairs. DA, for example, denotes the posi-
tions of D sub-band coefficients derived from horizontal
low-pass filtering and vertical high-pass filtering, i.e. us-
ing the two-dimensional filter (h[n]). The lifting filters
are L(z) = ( + z), L(z) = ( + z), K(z) = ( + z– ), and
K(z) = ( + z– ).
The actual number of rounding steps can be determined

based on Figure . Rounding is required at each lifting step
before the summation, i.e. eight times in total. The round-
ing steps are interdependent, however. The horizontal dual
steps, for instance, process values from DD and DA posi-
tions, which have already been affected by the rounding
in previous primal steps. This possible accumulation of
rounding errors continues in the second dimension of the
image signal.
Let X and Y be the polyphase input and output vectors

X =

⎛
⎜⎜⎝
DD′
AD′
DA′
AA′

⎞
⎟⎟⎠ , Y =

⎛
⎜⎜⎝
DD
AD
DA
AA

⎞
⎟⎟⎠ . ()

Then, the first two lifting steps can be denoted as

L =

⎛
⎜⎜⎝
 a  
   
   a
   

⎞
⎟⎟⎠ ,

L =

⎛
⎜⎜⎝

   
b   
   
  b 

⎞
⎟⎟⎠

()

with a = α · L(z) and b = β ·K(z). After exchanging the
orientation using the permutation matrix

P =

⎛
⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎠ , ()

another two lifting steps follow

L =

⎛
⎜⎜⎝
 a  
   
   a
   

⎞
⎟⎟⎠ ,

L =

⎛
⎜⎜⎝

   
b   
   
  b 

⎞
⎟⎟⎠

()
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Y =

⎛
⎜⎜⎝

 a a a · a
b a · b +  a · b a · (a · b + )
b a · b a · b +  a · (a · b + )
bb b · (a · b + ) b · (a · b + ) (a · b + ) · (a · b + )

⎞
⎟⎟⎠ ·X ()

Figure 3 Processing of 5/3-lifting decomposition. See text for details.

with a = α · L(z) and b = β ·K(z). The entire processing
is

Y = (P · L · L) · (P · L · L) ·X, ()

leading to equation () in Figure .
In Figure , the single lifting steps are annotated with ei-

ther α or β , expressing which of the two equations () or
() is used (in one dimension). The D-lifting computation
is derived from this signal flow as follows. If X(z, z) cor-
responds to xn,m, then we get the following equivalences:

AD′ •––◦xn,m–, DD′ •––◦xn,m,
DA′ •––◦xn–,m, AA′ •––◦xn–,m–.

With respect to Figure , the sub-band signals

DD(z, z) •––◦ddn,m, AD(z, z) •––◦adn,m–,

DA(z, z) •––◦dan–,m, AA(z, z) •––◦aan–,m–

are accordingly computed as follows. The two-dimensional
detail signal is computed with

ddn,m = xn,m + α · (xn,m– + xn,m+)

+ α · (xn–,m + xn+,m)

+ α · (xn–,m– + xn+,m–

+ xn–,m+ + xn+,m+
)
. ()

According to the processing structure of the lifting
scheme, the signal values xn,m are now overwritten by
ddn,m and are not available anymore. Therefore, the next
lifting step is

dan–,m = xn–,m + α · (xn–,m– + xn–,m+)

+ β · (ddn–,m + ddn,m). ()

Since we know that the filter (h[n]) is the transpose of
(h[n]), the computation of the AD pathmust analogously

be equal to

adn,m– = xn,m– + α · (xn–,m– + xn+,m–)

+ β · (ddn,m– + ddn,m). ()

Based on these three relations we get

aan–,m– = xn–,m–

+ β · (adn–,m– + adn,m–)

+ β · (dan–,m– + dan–,m)

– β · (ddn–,m– + ddn–,m

+ ddn,m– + ddn,m). ()

Consequently, the two-dimensional filters h · · ·h can
be implemented directly using a D lifting structure. Fig-
ure  illustrates the processing steps.
Based on equations ()-(), it becomes obvious that

only one single rounding step is required for each sub-band
value in the D implementation. And, in fact, the scheme
in Figure  can be modified accordingly, reducing the total
number of lifting steps from eight to four (Figure ). This
corresponds to a factorization of equation () in merely
three matrices, since signals AD and DA can be computed
concurrently

Y = Lβ · Lαβ · Lα ·X ()

with

Lα =

⎛
⎜⎜⎝
 a a aa
   
   
   

⎞
⎟⎟⎠ ,

Lαβ =

⎛
⎜⎜⎝

   
b   a
b   a
   

⎞
⎟⎟⎠

()
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Figure 4 General two-dimensional signal flow for 5/3 lifting:
(a)-(d) first, second, third, and fourth lifting step.

and

Lβ =

⎛
⎜⎜⎝

   
   
   

–bb b b 

⎞
⎟⎟⎠ . ()

Figure 5 Two-dimensional 5/3-lifting decomposition in
z-domain with reduced number of lifting steps.

Section  investigates the influence of the reduced num-
ber of rounding steps on the performance of an IWT-based
compression system.

3 JPEG2000 9/7 filter bank
3.1 One-dimensional decomposition
The standard / filter bank can be implemented based on
the lifting scheme in the samemanner as the / filter bank
shown in the previous section. The only difference is that,
in total, four lifting steps are needed in each direction ([],
Figure ).
In literature, the factorization of a scaling factor is also

discussed.Wewould like to remark that in the case of loss-
less compression, this scaling is not necessary and would
merely introducemore rounding operations degrading the
performance of the wavelet transform. In lossy compres-
sion, the scaling can be shifted into the quantization step,
thus, there is no reason to treat the scaling within the
transformation stage.
Further, it must be pointed out that for the practical im-

plementation and in order to avoid an exception handling
at the signal boundaries, it is sufficient to extend the origi-
nal or intermediate signals by a single value at both bound-
aries.
In application to image compression, the typical filter de-

sign aims to achieve maximal flat magnitude responses at
frequency f =  (high-pass filter) and at half of the sam-
pling frequency (low-pass filter), i.e. a maximum number
of vanishing moments is desired []. The / filters allow
for  vanishing moments each, thus the equations () hold
true for p ∈ {; ; ; }. These constraints lead to the follow-
ing lifting coefficients, either via factorisation of the two-
channel filter bank [] or via direct filter design based on
the lifting structure []

α ≈ –., γ ≈ .,

β ≈ –., δ ≈ .. ()
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Figure 6 Separable two-dimensional 9/7-lifting decomposition
in z-domain. The symbol ‘x·’ is a short-cut for x · P(z) (see text for
details).

3.2 Two-dimensional decomposition
The two-dimensional signal flow can be described in sim-
ilar manner as the D / filter bank. Figure  depicts
the separable transformation without rounding steps.
The annotation of primal and dual lifting steps with α, γ ,
β , and δ, relates to the subsequent lifting steps shown in
[], Figure . For the sake of visualisation, the annotation
with L(z), L(z), K(z), and K(z) is omitted. Its influence
should be clear by now. The coefficients α and γ are asso-
ciated with L(zk), β and δ with K(zk). The processing can
be denoted as

Y = (P · L · L · L · L) · (P · L · L · L · L) ·X. ()

The four additional lifting L · · ·L steps are identical to
L · · ·L in their structure, only the lifting coefficients are
exchanged from α to γ and β to δ.
The inner eight lifting steps encircled by the dotted line

have the same structure as the / decomposition in Fig-
ure 

Y = (PLLP) · (PLLPLL) · (LL) ·X. ()

In [], it is suggested to substitute them, using the lifting
structure of Figure , facilitating the reduction of round-
ing steps. Figure  shows the result. As can be seen, the
first two lifting steps in the horizontal direction, as well as
the last two steps in the vertical direction, remained un-
touched. The number of rounding operations has been re-
duced from four (Figure ) to only three per sub-band sam-
ple.
It is, however, possible to reduce the number of rounding

steps further by reordering the matrices

Y = (PLLPLL) · (PLLPLL) ·X. ()

Figure 7 Two-dimensional 9/7-lifting decomposition in
z-domain with reduced number of lifting steps.

The third and fourth lifting step of the horizontal de-
composition of Figure  can be moved to the end of the
processing pipeline (Figure ). Now, both parts encir-
cled by the dotted lines can be substituted using the lifting
structure of Figure . The corresponding processing is

Y = (LδLγ δLγ ) · (LβLαβLα) ·X ()

with

Lγ =

⎛
⎜⎜⎝
 g g gg
   
   
   

⎞
⎟⎟⎠ ,

Lγ δ =

⎛
⎜⎜⎝

   
d   g
d   g
   

⎞
⎟⎟⎠

()

Figure 8 Two-dimensional 9/7-lifting decomposition in
z-domain with resorted lifting steps.
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Figure 9 Two-dimensional 9/7-lifting decomposition in
z-domain with only eight rounding steps.

and

Lδ =

⎛
⎜⎜⎝

   
   
   

–dd d d 

⎞
⎟⎟⎠ , ()

with g = γ · L(z), g = γ · L(z), d = δ · K(z) and d =
δ ·K(z).
The new decomposition in Figure  requires even fewer

lifting steps and is still fully compatible with the conven-
tional / filter bank (Figure ), when the rounding steps
are left out. Now, only two steps per sub-band sample are
required. The number of consecutive processing steps is
even reduced from eight (Figure ) to six, since the AD and
DA channels can be computed at the same time. Iwahashi
and Kiya developed this structure independently with the
focus on the reduced latency of this D decomposition
[].

4 Deslauriers-Dubuc 9/7 filter bank
In addition to the filter banks defined in the JPEG
standard part I, the Deslauriers-Dubuc / filter bank
(DD) is of interest in this context [, , ]. Its high-
pass filter has four vanishing moments and the low-pass
filter two. As the name suggests, the filters have  and 
taps, respectively

(
h[n]

)
=

( 
  – 

  – 
  


)
,

(
h[n]

)
=

( 
  – 









 – 

  


)
. ()

The filter bank, however, can be implemented with only
two lifting steps, similar to the / filter bank. In integer

arithmetic, the lifting steps are

dn = xn+

+
([
xn– –  · (xn + xn+)

+ xn+ + 
] � 

)
, ()

an = xn +
(
[xn + xn+ + ] � 

)
. ()

This makes the structure in Figure  applicable for the
DD filter bank as well. The only difference concerns fol-
lowing lifting polynomials: L(z) = (z– –  –  · z + z )
and L(z) = (z– –  –  · z + z) both in combination with
α = /. The other lifting steps remain K(z) = ( + z– )
and K(z) = ( + z– ) with β = /.
The D lifting steps of the DD filter bank are imple-

mented as

ddn,m = xn,m

+
{[(

(xn,m– + xn,m+

+ xn–,m + xn+,m) � 
)

+ (xn–,m– + xn–,m+

+ xn+,m– + xn+,m+) · 
–

((
(xn–,m + xn+,m

+ xn,m– + xn,m+) � 
)

+ xn–,m– + xn–,m+

+ xn–,m– + xn–,m+

+ xn+,m– + xn+,m+

+ xn+,m– + xn+,m+
) · 

+ xn–,m– + xn–,m+

+ xn+,m– + xn+,m+

+ 
] � 

}
, ()

adn,m– = xn,m–

+
{[(

(ddn,m– + ddn,m) � 
)

+ xn–,m–

–  · (xn–,m– + xn+,m–)

+ xn+,m– + 
] � 

}
, ()

dan–,m = xn–,m

+
{[(

(ddn–,m + ddn,m) � 
)

+ xn–,m–

–  · (xn–,m– + xn–,m+)

+ xn–,m+ + 
] � 

}
, ()
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aan–,m– = xn–,m–

+
{[(

(adn–,m– + adn,m–

+ dan–,m– + dan–,m) � 
)

– (ddn–,m– + ddn–,m

+ ddn,m– + ddn,m) + 
] � 

}
. ()

5 ‘Rounding-friendly’ lifting coefficients
The superiority of the separable / filters over the separa-
ble standard / IWTfilter bank, documented in literature
[, , ], has its reason in the minimal accumulated influ-
ence of rounding at each lifting step, leading to a minimal
change in the filter characteristics. Not only is the number
of steps lower (only two instead of four in each direction),
but the rounding error in its first lifting step is also smaller,
since the factor of α = –/ only results in errors when the
sum of xm and xm+ is odd (see eq. ()). The degradation
of the magnitude response of the standard / filter is dis-
tinctly higher.
With this degradation in mind, we investigated whether

some of the filter-design constraints leading to amaximum
number of vanishing moments can be released, to obtain
lifting coefficients which introduce fewer rounding errors,
while keeping the essential characteristic of themagnitude
responses.
Introducing a maximal number of vanishing moments

as realized with equation () corresponds to a maximum
number of zeros at z = – for the analysis low-pass filter
H(z) and at z =  for the analysis high-pass filter H(z)
(Figure ). The corresponding lifting coefficients have al-
ready been shown in equation ().
In general, the relaxation of these filter constraints leads

to poorer decorrelation of the input image. If, however, the
adverse effects of rounding decrease due to the modifica-
tion of the lifting coefficients, then there might be an opti-
mal compromise. Reducing the number of vanishing mo-
ments from four to two increases the degree of freedom in
selecting lifting coefficients with suitable properties.
Inspecting the flow chart in Figure , it becomes obvi-

ous that the first lifting step has the greatest influence on
the non-linear filter characteristic. All rounding errors in-
troduced at this point are likely to propagate through the
entire lifting cascade. Consequently, it is desirable to find
a set of lifting coefficients leading to similar magnitude re-
sponses as the original coefficients in eq. (), but with α

equal to – avoiding any rounding error in the first lifting
step. A promising set of lifting coefficients was found in
[] with

α = –, β =
 –

√



,

γ =
√
 – 


, δ =


.

()

Figure 10 Location of zeros and poles of the standard 9/7
wavelet filter.

The approximation to

α = –, β = –



, γ =



, δ =



()

allows a division-free implementation in integer arith-
metic as follows

dd′
n,m

= xn,m

– (xn–,m + xn+,m + xn,m– + xn,m+)

+ (xn–,m– + xn–,m+

+ xn+,m– + xn+,m+) ()

ad′
n,m–

= xn,m–

– (xn–,m– + xn+,m–)

–
{[
 · (dd′

n,m– + dd′
n,m

)
+ 

] � 
}

()

da′
n–,m

= xn–,m

– (xn–,m– + xn–,m+)

–
{[
 · (dd′

n–,m + dd′
n,m

)
+ 

] � 
}

()
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aa′
n–,m–

= xn–,m–

–
{[
 · (ad′

n–,m– + ad′
n,m–

+ da′
n–,m– + da′

n–,m
)

+  · (dd′
n–,m– + dd′

n–,m

+ dd′
n,m– + dd′

n,m
)
+ ,

] � 
}
, ()

ddn,m = dd′
n,m

+
{[
, · (da′

n–,m + da′
n+,m

+ ad′
n,m– + ad′

n,m+
)

+ , · (aa′
n–,m– + aa′

n–,m+

+ aa′
n+,m– + aa′

n+,m+
)

+ ,
] � 

}
()

adn,m–

= ad′
n,m–

+
{[
 · (aa′

n–,m– + aa′
n+,m–

)

+
(
(ddn,m– + ddn,m) � 

)
+ 

] � 
}

()

dan–,m

= da′
n–,m

+
{[
 · (aa′

n–,m– + aa′
n–,m+

)

+
(
(ddn–,m + ddn,m) � 

)
+ 

] � 
}

()

aan–,m– = aa′
n–,m–

+
{[(

(adn–,m– + adn,m–

+ dan–,m– + dan–,m) � 
)

– (ddn–,m– + ddn–,m

+ ddn,m– + ddn,m) + 
] � 

}
. ()

The corresponding filters have no real vanishing mo-
ments. Figure  shows that in comparison to Figure ,
zeros have moved from their original location on the unit
circle to other places.

6 Investigations
6.1 Effects of rounding in 1D
The effects of rounding on the impulse responses of the
high and low-pass filters have been investigated in the fol-
lowing manner.
The convolution

y[n] = h[n] *
(
v · x[n])

Figure 11 Location of zeros and poles of the 9/7 wavelet filter
with relaxed constraints enabling division-free integer
arithmetic.

was computedwith (x[n]) equal to theKronecker delta δ[k]
as input signal. The convolution result is therefore equal to

v · h[n – k] = h[n] *
(
v · x[n]).

If, however, the rounding to integer values is additionally
performed, then the result is not v ·h[n–k], but v ·h′[n–k].
When using an impulse magnitude of v =  and setting k =
, for example, the designed impulse responses of the /
decomposition change from eq. () to

(
h′
[n]

)
=

(
–  –

)
/,

(
h′
[n]

)
=

(
–    –

)
/.

In case of the standard / filters, the impulse responses
change from

(
h[n]

)
= (. –. –.

. –. · · · ),
(
h[n]

)
= (. –. –.

. . . · · · )

to

(
h′
[n]

)
=

(
  –  –  

)
/,
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Figure 12 Change of magnitude response caused by rounding: (a) 5/3 filter bank; (b) 9/7 Deslauriers-Dubuc filter bank; (c) 9/7 filter bank;
(d) 9/7 filter bank with lifting coefficients from eq. (39) (solid: transfer function without rounding; dash, dash-dot, and dot indicate signal
values v of 31, 15, and 9 used for determination of the impulse responses with rounding).

(
h′
[n]

)
=

(
        

)
/.

Figure  shows the corresponding magnitude responses
depending on the value v of the single impulse functioning
as input signal.
The smaller the input value v, the higher the effect of

rounding.

6.2 Effects of rounding in 2D
In order to illustrate the rounding effects in two dimen-
sions, the same procedure as in the previous section was
performed, but with the distinction that D filters were
used.

.. Effects in the / filter bank
Figure (a) depicts the originalmagnitude response of the
/ filter (h[n]) from eq. (). The frequency axes are nor-
malised by the sampling frequency. If rounding is applied,
themagnitude response changes (Figure (b)). In this and
subsequent investigations, the impulse magnitude used as
input signal was always set equal to v = .
In general, the resulting impulse responses depend on

the processing structure. In the particular case of v = 
however, the h, h, and h filters are the same for both

(Figure  or from Figure ). The impulse responses from
eqs. ()-() change in both cases to

(
h′
[n]

)
=



·
⎛
⎝

 – 
–  –
 – 

⎞
⎠ ,

(
h′
[n]

)
=



·

⎛
⎜⎜⎜⎜⎝

 – 
–  –
–  –
–  –
 – 

⎞
⎟⎟⎟⎟⎠

=
(
h′
[n]

)T.

Figures (c) and (d) compare the original with the de-
formed magnitude responses for the filter h.
The different impact of rounding in the discussed signal-

flow structures becomes visible when inspecting the mag-
nitude responses of the / filter h from eq. (). While
in the separable implementation, i.e. the consecutive pro-
cessing of horizontal and vertical direction, the deforma-
tion is different in fx and fy, the changes are symmetric in
the modified implementation (Figure ).

http://asp.eurasipjournals.com/content/2012/1/75
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Figure 13 5/3 filter bank: distorted magnitude response caused by rounding to integer values; (a) original magnitude response H11(fx , fy);
(b) separable/2D implementation H′

11(fx , fy) (Figures 1 and 5); (c) original magnitude response H01(fx , fy); (b) separable/2D
implementation H′

01(fx , fy).

The two-dimensional impulse responses from () dete-
riorate to

(
h′
[n]

)
sep =




·

⎛
⎜⎜⎜⎜⎝

  –  
    
    
    
  –  

⎞
⎟⎟⎟⎟⎠
.

in case of the separable implementation and to

(
h′
[n]

)
D =




·

⎛
⎜⎜⎜⎜⎝

    
    
    
    
    

⎞
⎟⎟⎟⎟⎠
.

in case of the D implementation.

.. Effects in the / filter bank
For the case of the standard / filter bank, we have to
compare three different implementations, which are called
‘v’, ‘v’, and ‘v’ in the following, according to the
flow charts in Figures , , and , respectively.

The h impulse response changes from the matrix
shown in Figure  to following

(
h′
[n]

)
v =




·

⎛
⎜⎜⎜⎜⎜⎝

      
      
–   –   –
  –  –  
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠
,

(
h′
[n]

)
v =




·

⎛
⎜⎜⎜⎜⎜⎝

      
      
   –   
  –  –  
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠
,

(
h′
[n]

)
v =




·

⎛
⎜⎜⎜⎜⎜⎝

      
      
   –   
  –  –  
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎠
.

The magnitude of the input impulse was again equal to
v = . In order to comply with at least the basic require-
ments of a real high-pass filter, the sums in all rows and
columns of the impulse response should be zero. However,
this condition is no longer fulfilled, as can be concluded
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Figure 14 5/3 filter bank: distorted magnitude response of
H00(fx , fy) caused by rounding to integer values; (a) original
magnitude response; (b) separable implementation (Figure 1);
(c) 2D implementation (Figure 5).

from the matrices above. The graph of the correspond-
ing magnitude responses underlines this observation (Fig-
ure ).
Similar alterations of the filter coefficients can be ob-

served for the h, h, and h filters. Another effect of
non-linearity is that the h filters are no longer the trans-
poses of the h filters.
Comparing the similarities of the two-dimensional im-

pulse responses between the different implementations,
the deviation is higher for the h and h filters than for
the h filter. This continues for the h filter, which shows
the highest variation from one implementation to another.
Using the new lifting coefficients, the degradation of the

filters is generally reduced (Figure  in comparison with
Figure ).

Note that the degradation is dependent on the magni-
tude of the impulse functioning as input signal. The shown
magnitude responses merely give an impression of the ef-
fects, but do not allow a general conclusion or even a the-
oretical analysis.

6.3 Efficiency of decorrelation
The efficiency of the different filter bankswas first analysed
based on the zero-order entropies of single sub-bands.
Table -Table  contain the zero-order entropies of

the sub-bands DD, AD, DA and AA after one D de-
composition step is applied to different grey-scale im-
ages. Barbara-Zelda are taken from [], cats_g-educ from
[]. kodim-kodim are the green components of true
colour images found at []. The meaning of the column
titles is
– v: / filter bank, implementation of Figure ,
– v: / filter bank, implementation of Figure ,
– D: / Deslauriers-Dubuc, implementation of
Figure ,

– D: / Deslauriers-Dubuc, implementation of
Figure ,

– v: / filter bank, implementation of Figure ,
– v: / filter bank, implementation of Figure ,
– v: / filter bank, implementation of Figure ,
– va - va: same as before, but with lifting
coefficients from equation ().

The numbers in bold denote the best (smallest) value in
each entire row. In each category (/, Deslauriers-Dubuc,
/, / with modified coefficients), the best value is un-
derlined.
While the explanations in Section  were given with im-

plicit floating-point arithmetic plus rounding operation
(eqs. (), (), and ()–()), the practical implementation
of the / filter banks (v, v) is based on plain integer
arithmetic as follows

dn = xn+ –
(
(xn + xn+) � 

)
, (∗)

an = xn +
(
(xn + xn+ + )� 

)
, (∗)

ddn,m = xn,m

+
{[
xn–,m– + xn+,m–

+ xn–,m+ + xn+,m+

–
(
(xn,m– + xn,m+ + xn–,m

+ xn+,m)� 
)
+ 

] � 
}
, (∗)

dan–,m = xn–,m

+
{[
ddn–,m + ddn,m

–
(
(xn–,m– + xn–,m+) � 

)

+ 
] � 

}
, (∗)
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(
h[n]

) ≈ 


·

⎛
⎜⎜⎜⎜⎜⎝

. –. –. . –. –. .
–. . . –. . . –.
–. . . –. . . –.
. –. –. . –. –. .

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠

(
h′
[n]

) ≈ 


·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. –. –. . –. –. .
–. . . –. . . –.
–. . . –. . . –.
. –. –. . –. –. .
. –. –. . –. –. .

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
h[n]

)
=

(
h[n]

)T

(
h[n]

) ≈ 


·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. –. –. . . . –. –. .
–. . . –. –. –. . . –.
–. . . –. –. –. . . –.
. –. –. . . . –. –. .
. –. –. . . . –. –. .

...
...

...
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 15 Two-dimensional impulse responses of the original 9/7 filter bank. The matrices are symmetric in the horizontal and vertical
directions. The factor 1/9 is extracted for better comparison with numbers in the text.

Figure 16 9/7 filter bank: distorted magnitude response of H11(fx , fy) caused by rounding; (a) original magnitude response; (b) 97v1
implementation; (c) 97v2 implementation; (d) 97v3 implementation.
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Figure 17 9/7 filter bank with modified lifting coefficients (eq.
(39)): distorted magnitude response of H11(fx , fy) caused by
rounding; (a) original magnitude response; (b) 97v1a
implementation; (c) 97v2a implementation; (d) 97v3a
implementation.

adn,m– = xn,m–

+
{[
ddn,m– + ddn,m

–
(
(xn–,m– + xn+,m–) � 

)

+ 
] � 

}
, (∗)

Figure 18 9/7 filter bank with modified lifting coefficients (eq.
(39)): distorted magnitude response of H00(fx , fy) caused by
rounding; (a) original magnitude response; (b) 97v1a
implementation; (c) 97v2a implementation; (d) 97v3a
implementation.

aan–,m– = xn–,m–

+
{[(

(adn–,m– + adn,m–

+ dan–,m– + dan–,m) � 
)

– (ddn–,m– + ddn–,m

+ ddn,m– + ddn,m) + 
] � 

}
. (∗)
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Table 1 DD-band entropies in bit per pixel after first decomposition

Image 53v1 53v2 97D1 97D2 97v1 97v2 97v3 97v1a 97v2a 97v3a

barbara.y 4.503 4.494 4.427 4.415 4.218 4.202 4.206 4.235 4.230 4.223
barbara2.y 4.765 4.746 4.834 4.819 4.595 4.578 4.577 4.553 4.536 4.532
black.y 3.716 3.708 3.828 3.814 3.550 3.529 3.537 3.470 3.466 3.450
boats.y 3.795 3.791 3.873 3.865 3.611 3.598 3.605 3.548 3.548 3.536
goldhill.y 4.361 4.348 4.469 4.461 4.203 4.190 4.192 4.137 4.130 4.125
zelda.y 3.961 3.961 4.094 4.091 3.785 3.775 3.778 3.697 3.702 3.696
cats_g 3.098 3.083 3.100 3.086 2.967 2.952 2.970 2.958 2.942 2.937
bike 4.098 4.087 4.163 4.147 4.000 3.967 3.979 3.933 3.918 3.905
educ 3.717 3.707 3.610 3.588 3.537 3.525 3.531 3.529 3.523 3.507
kodim07 3.478 3.463 3.582 3.551 3.451 3.377 3.425 3.350 3.323 3.292
kodim08 4.933 4.930 5.009 5.008 4.794 4.792 4.792 4.743 4.742 4.740
kodim09 3.842 3.837 3.938 3.931 3.728 3.711 3.722 3.655 3.654 3.642

average 4.022 4.013 4.077 4.065 3.870 3.850 3.860 3.817 3.810 3.800

Table 2 AD-band entropies in bit per pixel after first decomposition

Image 53v1 53v2 97D1 97D2 97v1 97v2 97v3 97v1a 97v2a 97v3a

barbara.y 4.202 4.198 3.853 3.846 3.960 3.961 3.971 4.087 4.093 4.081
barbara2.y 4.231 4.239 4.108 4.113 4.169 4.172 4.178 4.190 4.197 4.188
black.y 3.438 3.423 3.280 3.273 3.472 3.471 3.487 3.468 3.468 3.451
boats.y 3.733 3.718 3.547 3.515 3.734 3.716 3.736 3.753 3.749 3.732
goldhill.y 4.492 4.528 4.443 4.470 4.553 4.581 4.582 4.554 4.587 4.580
zelda.y 3.147 3.120 3.024 3.001 3.132 3.117 3.132 3.114 3.103 3.084
cats_g 3.348 3.341 3.255 3.245 3.332 3.329 3.338 3.360 3.371 3.364
bike 4.613 4.598 4.611 4.596 4.737 4.730 4.740 4.710 4.705 4.698
educ 4.989 4.983 4.733 4.721 4.939 4.935 4.939 5.031 5.028 5.026
kodim07 4.031 4.045 3.801 3.823 3.982 4.018 4.031 4.044 4.071 4.057
kodim08 5.672 5.644 5.696 5.679 5.806 5.786 5.789 5.780 5.754 5.753
kodim09 4.169 4.150 4.146 4.124 4.255 4.237 4.250 4.234 4.220 4.212

average 4.172 4.166 4.041 4.034 4.173 4.171 4.181 4.194 4.196 4.186

The results for the DD band (high-pass filtering in both
directions) show a clear trend with decreasing entropy
from left to right (Table ), when excluding D and
D. There is only one exception: the implementation
v leads to lower entropy on average than v when
the standard lifting coefficients (eq. ()) are used. The
Deslauriers-Dubuc filter bank (D) performs worst de-
spite the four vanishing moments of its high-pass filter.
One reason lies in the gain of H(z)|z=– = , which is sig-
nificantly higher than the gain of the JPEG / high
pass. In comparison to the / filter banks (also having
H(–) = ), the filter characteristic seems to be more in-
fluenced by the rounding operations deteriorating the ad-
vantage of two additional vanishing moments.
The D implementations of the / filter bank (v) and

of theDeslauriers-Dubuc filter bank (D) are superior to
the separable implementations. All other / implementa-
tions yield better results, despite the higher number of lift-
ing steps. It also can be seen that the modified lifting coef-
ficients truly improve the decorrelation on average. How-
ever, the numbers in this table also reveal that the num-
ber of rounding steps is not a unique measure to estimate

the influence of rounding steps. The DD values depend on
three steps in v and only on two steps in v; never-
theless, the result is better for v.
Table  draws another picture. The implementations

v, D, v, and va are again the winner within
their categories. The filter banks based on only two lift-
ing steps, however, lead to the smaller entropies in the AD
band on average. Surprisingly, the results for the DA band
in Table  are not very similar to the values for the AD
band. Very interesting, although not in the primary scope
of this paper, is the fact that all images taken from [] have
a higher entropy in theDAband compared to theADband.
The vertical edges are obviously sharper than the horizon-
tal ones. Using rotated versions of the images reverses the
results. It might be that the point spread function of the
camera system used for taking these pictures was not sym-
metric. This can also cause the / filter bank to perform
better for the DA band than for the AD band. Short filters
are more suitable at pronounced edges.
The entropies in the AA band are in principle indepen-

dent of whether a special D implementation is used or not
(Table ). Within each category, the average values are al-
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Table 3 DA-band entropies in bit per pixel after first decomposition

Image 53v1 53v2 97D1 97D2 97v1 97v2 97v3 97v1a 97v2a 97v3a

barbara.y 5.431 5.449 5.383 5.389 5.460 5.473 5.480 5.475 5.485 5.490
barbara2.y 5.537 5.531 5.539 5.541 5.617 5.623 5.626 5.607 5.600 5.602
black.y 4.005 4.070 4.055 4.077 4.114 4.158 4.173 4.063 4.115 4.126
boats.y 4.471 4.490 4.492 4.492 4.574 4.593 4.603 4.552 4.559 4.564
goldhill.y 4.582 4.585 4.584 4.584 4.647 4.657 4.660 4.639 4.637 4.638
zelda.y 4.062 4.087 4.072 4.076 4.124 4.139 4.151 4.109 4.123 4.125
cats_g 3.445 3.423 3.350 3.339 3.428 3.460 3.432 3.444 3.456 3.454
bike 4.507 4.503 4.501 4.496 4.577 4.609 4.618 4.567 4.569 4.577
educ 4.734 4.708 4.450 4.445 4.609 4.633 4.648 4.724 4.725 4.730
kodim07 3.627 3.614 3.557 3.548 3.660 3.733 3.755 3.665 3.664 3.683
kodim08 5.814 5.812 5.837 5.831 5.960 5.955 5.957 5.936 5.926 5.928
kodim09 4.046 4.061 4.039 4.047 4.115 4.143 4.162 4.093 4.103 4.112

average 4.522 4.528 4.488 4.489 4.574 4.598 4.605 4.573 4.580 4.586

Table 4 AA-band entropies in bit per pixel after first decomposition

Image 53v1 53v2 97D1 97D2 97v1 97v2 97v3 97v1a 97v2a 97v3a

barbara.y 7.563 7.558 7.553 7.538 8.119 8.113 8.109 8.100 8.097 8.090
barbara2.y 7.504 7.495 7.490 7.483 8.047 8.055 8.045 8.031 8.025 8.027
black.y 6.759 6.744 6.773 6.744 7.372 7.342 7.360 7.330 7.327 7.316
boats.y 7.111 7.097 7.103 7.082 7.669 7.659 7.672 7.646 7.645 7.647
goldhill.y 7.556 7.548 7.551 7.537 8.127 8.134 8.127 8.103 8.099 8.099
zelda.y 7.332 7.334 7.330 7.319 7.912 7.916 7.915 7.884 7.897 7.888
cats_g 4.738 4.740 4.732 4.734 5.008 5.020 5.023 5.006 5.007 5.010
bike 7.429 7.430 7.396 7.396 7.918 7.925 7.929 7.919 7.920 7.920
educ 7.449 7.448 7.446 7.445 8.041 8.044 8.047 8.017 8.019 8.017
kodim07 7.139 7.147 7.114 7.121 7.672 7.677 7.680 7.662 7.669 7.667
kodim08 7.822 7.828 7.794 7.800 8.333 8.333 8.332 8.320 8.320 8.321
kodim09 7.237 7.246 7.223 7.232 7.793 7.801 7.802 7.776 7.782 7.784

average 7.137 7.135 7.125 7.119 7.668 7.668 7.670 7.650 7.651 7.649

most the same. The superior results for the / and DD
filter banks are also caused by the lower amplification of
the low-pass filter (see Figure ). While their low-pass fil-
ter transfer functionH(z) is equal to  at z = , the amplifi-
cation for the JPEG / low pass is about . affect-
ing also the D characteristics (compare Figures a and
a).
In addition, we would like to point out that the modified

lifting coefficients again have a positive influence on the
decorrelation.

6.4 Compression results
The overall performance of the different filter banks was
tested in combination with a compression system, which
applies the basic coding algorithm of JPEG without
using the header/marker structure. The number of decom-
position steps was dependent on the image size, for exam-
ple, five decompositions for images with ×  pixels
and seven decompositions for images with  × 
pixels. The focus was exclusively on lossless image com-
pression. A rate-distortion analysis exploiting the scalabil-
ity of the compression scheme is not considered in this pa-
per.

When comparing the lossless compression results in bits
per pixel (Table ), the superiority of the D implementa-
tion of the / Deslauriers-Dubuc filter bank becomes ap-
parent. There is also only a single case (goldhill.y) where
the separable / implementation is better than any D im-
plementation. Only in cases of special image texture (bar-
bara.y, cats_g, and educ) can a standard / implementa-
tion compete with the / filter banks.
The v(a) implementation does not result in any ad-

vantage over the separable v(a) implementation. The
new non-separable implementation va in combination
with the lifting coefficients according to eq. () performs
best within all / filter banks based on the JPEG /
filter-bank structure.

6.5 Complexity of implementations
The advantage of separable transformations results from
the reduction of the required number of operations com-
pared to their non-separable counterparts. The reduction
of the number of rounding steps, however, implies a trans-
fer from separable to non-separable filter banks. Table 
contains the number of operations needed for the compu-
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Table 5 Compression results in bits per pixel [bpp]

Image 53v1 53v2 97D1 97D2 97v1 97v2 97v3 97v1a 97v2a 97v3a

barbara.y 4.594 4.584 4.478 4.469 4.538 4.535 4.549 4.558 4.563 4.556
barbara2.y 4.778 4.776 4.737 4.744 4.777 4.793 4.802 4.769 4.772 4.772
black.y 3.765 3.750 3.774 3.750 3.854 3.844 3.864 3.796 3.796 3.786
boats.y 4.057 4.033 4.024 3.991 4.104 4.095 4.117 4.075 4.070 4.059
goldhill.y 4.593 4.595 4.594 4.596 4.633 4.650 4.656 4.618 4.620 4.616
zelda.y 3.870 3.850 3.853 3.834 3.912 3.901 3.920 3.876 3.872 3.864
cats_g 2.542 2.534 2.500 2.493 2.527 2.532 2.541 2.537 2.539 2.537
bike 4.364 4.342 4.343 4.324 4.412 4.409 4.431 4.387 4.383 4.373
educ 4.534 4.513 4.342 4.315 4.493 4.490 4.512 4.534 4.530 4.515
kodim07 3.777 3.741 3.715 3.687 3.846 3.850 3.888 3.814 3.809 3.794
kodim08 5.531 5.516 5.539 5.533 5.572 5.568 5.574 5.553 5.544 5.545
kodim09 4.027 4.013 4.027 4.012 4.092 4.090 4.116 4.054 4.053 4.046

average 4.203 4.187 4.161 4.146 4.230 4.230 4.248 4.214 4.213 4.205

Table 6 Complexity estimation for different filter-bank
implementations

Filter bank Adds Shifts Mults

53v1 20 8 0
53v2 28 8 0
97D1 32 8 4
97D2 48 9 4

97v1a 40 12 8
97v2a 47 11 10
97v3a 55 10 8

tation of four sub-band values for the investigated filter-
bank structures. The numbers have been determined as
follows. The implementation of v is based on equations
(∗) and (∗). There are five adds and two shifts. To com-
pute four sub-band values, both equations have to be ap-
plied two times horizontally and two times vertically, lead-
ing to a total number of twenty adds and eight shifts. Equa-
tions (∗)-(∗) compute four sub-band values according
to the D structure v. There are  +  +  +  =  adds
and  +  +  +  =  shift operations. Filter bank D is
based on equations () and (), requiring eight adds, two
shifts and one integer multiplication. Again, these num-
bersmust bemultiplied by four. Equations ()-() reflect
the complexity of filter bank D.There are +++ =
 adds, nine shift operations and four integer multiplica-
tions.
The numbers for filter banks va, va and va

have been derived from their implementations (see also
eqs. ()-()).
It can be noticed that the increase of complexity is rather

moderate when switching from a one-dimensional to a
two-dimensional implementation. This is largely due to
the properties of the lifting scheme and the utilisation of
the symmetry of filters. With respect to the memory ac-
cess, the D implementation is even somewhat advanta-
geous, as the algorithm runs only once through the data

and not twice, separately in horizontal and vertical di-
rections. Practical implementations, however, also have to
consider the efforts of signal extension at the signal bound-
aries, which are highest for the Dx filter banks.

7 Summary and conclusions
The paper has discussed and analysed different attempts to
decrease the effects of rounding in implementations of the
integer wavelet transform. The number of rounding steps
could be reduced practically by special two-dimensional
implementations of the / and / filter banks and vir-
tually by using a first lifting coefficient of α = – in the
JPEG / filter bank. Dependent on the implemen-
tation, the rounding of intermediate values to integers
has different effects on the impulse responses and, conse-
quently, on the decomposition of the signal.
The set of test images contained twelve natural images.

It can be shown that the various processing schemes af-
fect the single sub-bands differently in terms of entropy.
As soon as the low-pass filter comes into play, the / fil-
ter bank and the DD filter bank tend to decorrelate the
image data better than the standard / filter bank and its
derivatives. The gain of the low-pass filter at z =  has a
high impact on lossless compression performance.
The compression results of the / and DD filter bank

have been improved on average by substituting the sepa-
rable implementation with a special D processing, which
would be compatible in the absence of rounding. Themere
reduction of rounding steps by D implementations of
the JPEG / filter bank does not lead to increased
compression ratios. Only when the modified lifting coef-
ficients enabling division-free integer arithmetic are com-
bined with the new proposed D implementation does the
average bitrate of the compressed images decrease from
. bpp to . bpp. This is about the same bitrate
as for the standard / filter bank while having distinctly
higher complexity.
The results of the different implementations of the /

filter bank reveal that the influence of rounding is not
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solely determined by the number of lifting steps, which
means the rounding errors (strictly: their variances) do not
simply sumup. The degradation of the filter characteristics
under the presence of rounding also depends on the values
of the lifting coefficients and on the structure of process-
ing. The best compression result could be obtained with
the new D implementation of the / Deslauriers-Dubuc
filter bank (D). It requires only two sequential lifting
steps as the / filter bank, while having more suitable fil-
ter characteristics. The improvement is .% compared
to the standard / implementation (v) for the set of
images used.
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