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Abstract

Compressive sensing (CS) can effectively recover a signal when it is sparse in some discrete atoms. However, in
some applications, signals are sparse in a continuous parameter space, e.g., frequency space, rather than discrete
atoms. Usually, we divide the continuous parameter into finite discrete grid points and build a dictionary from
these grid points. However, the actual targets may not exactly lie on the grid points no matter how densely the
parameter is grided, which introduces mismatch between the predefined dictionary and the actual one. In this
article, a novel method, namely adaptive matching pursuit with constrained total least squares (AMP-CTLS), is
proposed to find actual atoms even if they are not included in the initial dictionary. In AMP-CTLS, the grid and the
dictionary are adaptively updated to better agree with measurements. The convergence of the algorithm is
discussed, and numerical experiments demonstrate the advantages of AMP-CTLS.

1 Introduction
A new class of techniques called compressed sampling or
compressive sensing (CS) has been widely used recently,
due to the fact that CS techniques have shown good per-
formance in different areas such as signal processing,
communication and statistics; see, e.g., [1]. Generally, CS
finds the sparsest vector x from measurements y = Fx,
where F is often referred to as dictionary with more col-
umns than rows, and each column of the dictionary is
called an atom or a basis.
Matching pursuit (MP) is a set of popular greedy

approaches to compressive sensing. The basic idea is to
sequentially find the support set of x and then project on
the selected atoms. The atoms selected in the support set
are mainly determined by correlations between atoms
and the regularized measurements [2]. MP methods
include standard MP [3], and several other examples,
such as orthogonal matching pursuit (OMP) [4], regular-
ized OMP (ROMP) [5], stage-wise OMP (StOMP) [6],
compressive sampling matching pursuit (CoSaMP) [7]
and subspace pursuit (SP) [2].
These MP methods [2-7] do not consider the off-grid

problem in grid-based CS approaches. In some applica-
tions of CS, such as harmonic retrieval and radar signal
processing (e.g., range profiling [8,9], direction of arrival

estimate [10-12]), we usually divide a continuous para-
meter space into discrete grid points to generate the
dictionary. For example, in harmonic retrieval, frequency
space is divided and dictionary is a discrete Fourier
transform (DFT) matrix. The off-grid problem emerges
when the actual frequencies are placed off the prede-
fined grid. The mismatch between the predefined and
actual atom can lead to performance degradation in
sparse recovery (e.g., [13-15]).
The grid misalignment problem in CS has recently

received growing interest. The sensitivity of CS to the
mismatch between the predefined and actual atoms is
studied in [13]; however, the focus of that article is
mainly on mismatch analysis rather than development
of an algorithm. Cabrera et al. [16] and Zhu et al. [14],
respectively, provided an iterative re-weighted (IRW)-
based and a Lasso-based method to recover an unknown
vector considering the atom misalignment, whereas we
focus on MP methods in this article. Compared with
IRW or Lasso, MP methods greedily find the support
set and greatly reduce the dimension of the CS problem;
thus, they have an advantage in computability. Gabriel
[17] proposed best basis compressive sensing in a tree-
structured dictionary, but some dictionaries (e.g., DFT
matrix) do not possess a tree structure.
To alleviate the off-grid problem in matching pursuit,

we developed adaptive matching pursuit with constrained
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model the grid as an unknown parameter, and adaptively
search for the best one. We choose harmonic retrieval to
demonstrate the performance of AMP-CTLS. The algo-
rithm can also be applied to jointly estimate range and
velocity in randomized step frequency (RSF) radar. Note
that in the RSF scenario range-velocity estimation is hard
to be directly solved by subspace-based methods, e.g.,
Capon’s method, MUSIC and ESPRIT [18]. Since only
one snapshot data is available in RSF radar, to obtain the
covariance matrix these subspace-based methods need to
apply smoothing method, which requires uniform and
linear condition [18]. However, this condition is not
satisfied in the case of random frequency model.
This article is structured as follows. Section 2 intro-

duces grid-based CS and outlines the procedures of
AMP-CTLS. In Sections 3 and 4, we discuss the imple-
mentation of AMP-CTLS in harmonic retrieval and RSF
radar, respectively. In Section 5, numerical examples are
presented to illustrate merits of AMP-CTLS. Section 6
is dedicated to a brief conclusion. Notations: (·)H

denotes conjugate transpose matrix; (·)T transpose
matrix; (·)* conjugate matrix; (·)† pseudo-inverse matrix;
IL/0L the L × L identity/zero matrix; || · ||2 the ℓ2 norm;
{·} denotes a set; | · | the absolute value of a complex
number or the cardinality of a set; (·)Λ denotes ele-
ments/columns indexed in the set Λ of a vector/matrix;
supp(·) is the support set of a vector, that is, the indices
of the nonzero elements in the vector; Re(·) the real part
of a complex number; ⊗ denotes the right Kronecker
product [19]; and E[·] denotes the expectation of a ran-
dom variable.

2 Grid-based CS and the AMP-CTLS algorithm
The signal model of grid-based CS is introduced in
Section 2.1. We combine the greedy idea of MP meth-
ods and the constrained total least squares (CTLS) tech-
nique [20], and thus produce AMP-CTLS to alleviate
the off-grid problem. In AMP-CTLS, the grid is cast as
an unknown parameter, and is jointly estimated together
with x. In Section 2.2, the framework of AMP-CTLS is
given. Section 2.3 is dedicated to the iterative joint esti-
mator (IJE) algorithm, which is implemented in AMP-
CTLS. In the IJE algorithm, the CTLS technique is used,
which is presented in Section 2.4. Section 2.5 sum-
marizes the entire procedure of AMP-CTLS. In Section
2.6, the convergence of IJE is analyzed.

2.1 Grid-based CS
CS promises efficient recovery of sparse signals. In many
applications, signals are sparse in a continuous para-
meter space rather than finite discrete atoms. Usually,
we divide the continuous parameter into discrete grid
points and cast the problem as a grid-based CS model:

y = �(g)x +w, (1)

where y Î ℂM × 1 and w Î ℂM × 1 are measurement
vector and white Gaussian noise (WGN) vector, respec-
tively. x Î ℂN × 1 is to be learned. g Î ℂN × 1 are dis-
crete grid points g = [g1, g2, . . . , gN]. F(g) Î ℂM × N is
built from g, F(g) = [j(g1), j(g2), . . . , j(gN)], and the
mapping g ® F is known. For example, to recover a
frequency sparse signal, we grid the frequency space

into discrete frequency points g = [0, 1
N ,

2
N , . . . , N−1

N ]T.

F is a DFT matrix, of which the mth-row, nth-column
element is exp (j2π n

Nm) . However, the signal is only
sparse in the DFT atoms if all of the sinusoids are
exactly at the pre-defined grid points [13]. In some
cases, no matter how densely we grid the frequency
space, the sinusoids could be off-grid, which saps the
performance of CS methods [13].

2.2 Main idea of AMP-CTLS
The off-grid problem usually emerges because we do
not often have enough priori knowledge to generate a
perfect grid to guarantee that all of the signals exactly
lie on grid points. Thus, we cast the grid as an unknown
parameter, and search for the best grid g as well as the
sparsest x by solving the optimum problem:

x̂, ĝ = argmin
x,g

||x||0, s.t. ||y − �(g)x||22 ≤ η, (2)

where h is the noise power. Equation (2) is similar to
that used in traditional MP methods [2-7], except that
we recover x and simultaneously estimate the grid. In
most cases, solving (2) is a complex non-linear optimum
problem. In this article, an iterative method is
introduced.
AMP-CTLS inherits the greedy idea from MP meth-

ods, which use correlations to iteratively find the sup-
port set. In each iteration, one or more atoms are added
into the support set. Suppose the support set is obtained
as Λ(k) after the kth iteration, and denote the corre-

sponding grid points as ĝ(k)�
. In traditional MP methods

[2-7], xΛ is estimated by solving a least squares problem.
In AMP-CTLS, considering the off-grid problem, we
jointly search for xΛ and the best grid points in the

neighboring continuous region of ĝ(k)�
via (3), in which

we minimize norm of the residual error, which is
defined as r = y - F (gΛ) xΛ.

x̂(k+1)� ,ĝ(k+1)� = argmin
x� ,g�

||y − �(g�)x�||22 (3)

We develop the iterative joint estimator (IJE) algo-
rithm to solve (3), which is detailed in ensuing section.
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2.3 IJE algorithm
It is difficult to find an analytical solution to (3). The
IJE algorithm is devised to seek a numerical solution.
Given initial grid points ĝ�(0) , IJE searches for
the best grid points gΛ in the neighborhood of
ĝ�(0) . The mismatch of the grid is denoted as

�g� = g� − ĝ�(0) = [�g1, ...,�g|�|]T . IJE includes
three steps: calculate the estimation of the mismatch,

�̂g�
; update the grid with �̂g�

; and estimate xΛ with

projection onto the new grid points. These three steps
are executed iteratively to pursue more accurate
results. To distinguish from iterations in search for the
support set in (3), we denote l as the counter of loops
in IJE; thus, IJE is expressed as follows:

�̂g�(l), xCTLS = argmin
�g�,x�

CCTLS, (4)

ĝ�(l + 1) = ĝ�(l) + �̂g�(l), (5)

x̂�(l + 1) = argmin
x�

∥∥y − �
(
ĝ�(l + 1))x�

)∥∥2
2 . (6)

In (4), CTLS technique is applied to simultaneously
search for the mismatch ΔgΛ and xΛ, and �̂g�(l) and

xCTLS are the results. CCTLS denotes the penalty function
of CTLS, which is detailed in Section 2.4. Since (6) is a
linear least squares problem, the closed-form solution is

x̂�(l + 1) =
(
�

(̂
g�(l + 1)

))†y = (�H�)−1�Hy. (7)

The loops are terminated when the norm of residual
error is scarcely reduced.

2.4 CTLS technique
Traditional MP methods [2-7] apply least squares to cal-
culate amplitudes of xΛ after finding the support set.
When there are off-grid signals, mismatches occur in
the dictionary; thus, we replace the least squares model
with total least squares (TLS) criterion, which is appro-
priate to deal with the fitting problem when perturba-
tions exist in both the measurement vector and in the
dictionary [21]. Since the dictionary mismatches are
constrained by errors of grid points, we introduce the
constrained total least squares (CTLS) technique [20] in
AMP-CTLS to jointly estimate the grid point errors and
xΛ, i.e., solving (4). It has been proved that CTLS is a
constrained space state maximum likelihood estimator
[20].
Suppose that we obtain the estimate of grid points as

ĝ�(l) after lth IJE iteration. Assume that the mismatch
ΔgΛ is significantly small; thus we can approximate the

perfect dictionary F(gΛ) as a linear combination of the
mismatch Δg with Taylor expansion:

�(g�) = �
(
ĝ�(l)

)
+

|�|∑
i=1

Ri
(
ĝ�(l)

)
�gi +

|�|∑
i=1

o(�g2i ), (8)

where Ri Î ℂM ×|Λ| is

Ri
(
ĝ�(l)

)
=

∂�(g�)
∂gi

∣∣∣∣
g�=ĝ�(l)

(9)

and o(·) denotes higher order terms. For simplicity, in
this section we ignore the iteration counter in the nota-

tions, and Ri
(
ĝ� (l)

)
, �

(
ĝ� (l)

)
are, respectively, sim-

plified as Ri, FΛ. Neglect o
(
�g2i

)
and the signal model

in (1) is replaced by:

y =

(
�� +

|�|∑
i=1

Ri�gi

)
x� +w. (10)

CTLS models ΔgΛ as an unknown random perturba-
tion vector. The grid misalignment and the noise vector
are combined into a (M +|Λ|)-dimensional vector

v =
[
(�g�)

T,wT
]T
, and CTLS aims at minimizing ||v||22.

It has been proved that CTLS is a constrained space
state maximum likelihood estimator if v is a WGN vec-
tor [20]. Thus, we first whiten v. Assume that ΔgΛ is
independent of w. The covariance matrix of ΔgΛ is

Cg = E
[
�g�(�g�)

H
]

∈ C|�|×|�| . D Î ℂ|Λ|×|Λ| obeys

C−1
g = DHD . The variance of white noise w is σ 2

w . We

denote an unknown normalized vector u Î ℂ(M+|Λ|) × 1

as (11); thus, u is a WGN vector.

u =
[
D�g�

1
σw
w

]
(11)

Minimize the penalty function CCTLS = ||u||22 and (4)
is detailed as follows:

û, xCTLS = argmin
u,x�

||u||22, (12)

s.t. − y +

(
�� +

|�|∑
i

Ri�gi

)
x� +w = 0. (13)

The constraint condition (13) can be rewritten as:

s.t. − y + ��x� +Wxu = 0, (14)

where Wx = [H swIM] Î ℂM × (|Λ|+M). H Î ℂM ×|Λ| is
defined as
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H = G(D−1 ⊗ I|�|)(I|�| ⊗ x�), (15)

where G = [R1, . . . , R|�|] ∈ C
M×|�|2 . The equivalence

between (13) and (14) is proved as follows:( |�|∑
i=1

Ri�gi

)
x� = G(�g� ⊗ I|�|)x�

= G(D−1 ⊗ I|�|)(D�g� ⊗ I|�|)x�

= G(D−1 ⊗ I|�|)(I|�| ⊗ x�)D�g�

= HD�g�.

(16)

When Wx is of full-row rank, the optimum problem
(12, 14) are equivalent to (17)-(19), which has been
proved in [20].

xCTLS = min
x�

||W†
x(y − ��x�)||22 (17)

û = W†
x(y − ��x�)|x=xCTLS (18)

W†
x = WH

x (WxWH
x )

−1 (19)

It is quite difficult to obtain analytical solution to (17). A
complex version of Newton method is developed in [20],
which is presented in Appendix 1. Initial value of xΛ
required in Newton’s method for (17) can be given as:

xini = �
†
�y = (�H

���)−1�H
�y. (20)

�̂g�
is extracted from û via �̂g� = [D−1 0N]û , thus

(4) is solved. The sketch of CTLS is given in Algorithm 1.
As the authors’ best knowledge, the convergence guaran-
tees for this Newton method are still open question.

2.5 Sketch of AMP-CTLS
Similarly to traditional MP methods [2-7], AMP-CTLS
first greedily finds the support set. Then AMP-CTLS
adaptively optimizes the grid points indexed in the sup-
port set. In this article, we imitate the greedy approach
of OMP, in which only one atom is added to the sup-
port set in each iteration. If the number of atoms is
known, terminate the iterations when the cardinality of
the support set reaches the pre-specified number. If it is
not known, we can apply some other successfully used
stopping criterions, e.g., norm of residual being below a
threshold [22]. A sketch of AMP-CTLS is presented in
Algorithm 2.

2.6 Convergence of the IJE algorithm
Here, we analyze convergence of the IJE algorithm.
Assume that the mapping gΛ ® F (gΛ) is linear, which
means

�(g� + �g�) = �(g�) +G(�g� ⊗ I|�|), (21)

and G should be a constant matrix.
Proposition. If the measurement y is perturbed by

WGN and (21) is obeyed, IJE monotonically reduces
values of the penalty function in (3). The estimates of
xΛ and gΛ satisfy:

||y − �(ĝ�(l))x̂�(l)||22 ≥ ||y − �(ĝ�(l + 1))x̂�(l + 1)||22. (22)

Proof. Define a penalty function as follows:

fp(�g�, x�) = σ 2
w||u||22 = σ 2

w(�g�)
HC−1

g �g�+||y−�(ĝ�(l))x�−G(�g�⊗I|�|)x�||22; (23)

thus, �̂g�(l) and xCTLS are obtained by solving

�̂g�(l), xCTLS = argmin
�g� ,x�

fp(�g�, x�), (24)

which is the same as (4), for σ 2
w is a constant. Thus, it

is satisfied that

fp
(
�̂g�(l), xCTLS

) ≤ fp(0, x̂�(l)) = ||y − �(ĝ�(l))x̂�(l)||22. (25)

Substitute (5), (21) into fp(�̂g�(l), xCTLS), and note

that C−1
g is a positive definite matrix; thus,

fp
(
�̂g�(l), xCTLS

)
= ||y − �(ĝ�(l + 1))xCTLS||22 + σ 2

w

(
�̂g�(l)

)H
C−1
g �̂g�(l)

≥ ||y − �(ĝ�(l + 1))xCTLS||22
≥ ||y − �(ĝ�(l + 1))x̂�(l + 1)||22,

(26)

where the last inequality is taken from (6). The
inequalities in (25) and (26) are transformed to equal-
ities if and only if �̂g�(l) = 0 . □
For simplicity, we assume that the transform F(gΛ) is

linear. In some practical applications like harmonic
retrieval, linearity is not strictly guaranteed. However,
when atom mismatch �g is significantly small, the
higher order errors due to Taylor expansion (8) are
ignorable, and (21) is approximately satisfied. Numerical
examples are performed in Section 5, which demon-
strate the convergence of the proposed algorithm in the
case of harmonic retrieval.

3 Application in the harmonic retrieval
In this section, we apply AMP-CTLS in harmonic retrie-
val. In Section 3.1, the signal model of harmonic retrieval
is presented and adverse effects of MP approaches [2-7] in
harmonic retrieval is discussed. In Section 3.2, we detail
the implementation of AMP-CTLS in harmonic retrieval.

3.1 Signal model of harmonic retrieval
Consider a complex sinusoidal signal

ym =
K∑
k=1

αk exp(j2π fkm) + wm, (27)
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where ym is the mth measurement, and wm is the mth
noise, m = 0, 1, . . . , M - 1. There are K sinusoids, and
amplitude ak, frequency fk of the kth sinusoid are
unknown parameters. When the sinusoids are sparse, i.e.,
K <<M, harmonic retrieval problem can be solved by grid-
based CS approaches. Divide the digital frequency f Î
[0 1) into N grid points g = [g1, g2, . . . , gN ]T. When all fre-
quencies are exactly at grid points, rewrite (27) as

ym =
N∑
n=1

xn · exp(j2πgnm) + wm, (28)

where gn is the frequency of the nth grid point and

xn =
{

αk, the kth sinusoid is present at nth grid point,
0, no sinusoid is present at nth grid point.

(29)

Rewrite (28) in matrix form as

y = �x +w, (30)

where the mth-row, nth-column element of F is of
the form j(m, n) = exp(j2πgnm). Apply CS methods to
seek the sparsest solution of (30). Then, estimates of the
frequencies and amplitudes are obtained with the
indices and magnitudes of nonzero coefficients in x,
respectively. The sparsest solution can be obtained with
computational MP methods, which greedily minimize
the ℓ0 norm. It can also be obtained by minimizing the
ℓ1 norm [23], the quasi-norm [24,25] or the ℓp ≤ 1

p-norm-like diversity [26].
We focus on MP methods in this article for the high

computation efficiency. However, conventional MP
methods [2-7] suffer from performance degradation if
the frequency space is not perfectly grided. When the
frequency is sparsely divided, sinusoids may lie off the
grid points, and accuracy of frequency estimates is lim-
ited by the gap between neighboring grid points. MP
methods iteratively search for the sinusoids. If an off-
grid sinusoid emerges, the energy of this sinusoid can
not be totally canceled and performs as an interference
in the next iterations. The leakage of the energy may
mask the weak sinusoids. On the other hand, if the fre-
quency space is densely divided, correlations between
atoms are enhanced [27], which also reduces the perfor-
mance of MP methods. Especially in those MP methods
that select multiple atoms into the support set in a sin-
gle iteration, e.g., CoSaMP, SP, ROMP, and StOMP,
highly correlated atoms could be chosen in a same itera-
tion, which impairs the numerical stability of projection
onto the adopted atoms.

3.2 Harmonic retrieval with AMP-CTLS
The AMP-CTLS algorithm can be applied for harmonic
retrieval. AMP-CTLS adaptively finds the atoms and

recovers the sinusoids. In those MP approaches with
constant predefined atoms, frequency estimates are dis-
crete values, depending on grid points. In AMP-CTLS
frequency estimates are continuous, since estimates of
the grid misalignments are continuous. In this section, we
adjust two steps of AMP-CTLS presented in Section 2 to
better fit the harmonic retrieval problem.
Calculate the R matrix in (9). According to (9), the

mth-row, ith-column element of the Ri is expressed as
follows:

Ri(m, i) = exp(j2πgim) · j2πm. (31)

Elements in other columns are all zeros.
Adjust the grid-updating formula in (5). In CTLS as

presented in Section 2.4, the grid misalignment ΔgΛ is
assumed to be a complex vector; therefore, the estimate

�̂g�
is complex. However, frequency grid points are

restrained to be real, so regularization ΔgΛ = (ΔgΛ)*
should be added to (12) in the case of harmonic retrie-
val. Unfortunately, the solver becomes complex, which
is derived in Appendix 2. For simplicity, (5) is replaced
with (32) to approximatively update the grid points:

ĝ�(l + 1) = ĝ�(l) + Re
(
�̂g�(l)

)
. (32)

4 Application in RSF radar
AMP-CTLS can also be applied in randomized step fre-
quency (RSF) radar. RSF radar can improve the range-
velocity resolution and avoid range-velocity coupling
problems [28,29]. However, RSF radar suffers from the
sidelobe pedestal problem, which results in small targets
being masked by noise-like components due to domi-
nant targets [29]. Our problem of interest is to recover
small targets. When the observed scene is sparse, i.e.,
only few targets exists, we can use sparse recovery to
exploit the sparseness [9]. AMP-CTLS relieves the side-
lobe pedestal problem in RSF radar and recovers small
targets well.
Correlation-matrix-based spectral analysis methods, e.

g., MUSIC, ESPRIT [18], are hard to be directly utilized
in range-Doppler estimation in RSF scheme. Since only
one snapshot of radar data is available and radar echoes
from different scatterers are coherent, smoothing techni-
que is invoked to obtain a full rank correlation matrix
[30]. Smoothing method requires that the array is uni-
form and linear [18]. However, in RSF radar, the echoes
are determined by a random permutation of integers,
see (34); thus, the uniform and linear condition is not
satisfied, which restricts application of correlation-
matrix-based methods.
We discuss a specific example of RSF radar, in which

the waveform is a monotone pulse signal and the
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frequency of the mth pulse is f0 + Cmδf, m = 0, 1, . . . ,
M - 1, where f0 is carrier frequency and δf is frequency
step size. Cm is a random permutation of integers from
0 to M - 1. The mth echo of radar can be expressed as
(see [8,28,29]):

ym =
K∑
k=1

αksm(pk, qk) + wm, (33)

sm(p, q) = exp
(−j2πCmp − j2πm(1 + Cmδf /f0)q

)
, (34)

where wm is noise in the mth echo. K denotes the
number of targets and k denotes kth target. ak, pk, and
qk are to be learned. ak presents the scattering intensity.
pk Î [0 1) and qk Î [0 1) are determined by range and
radial velocity of the kth target, respectively. Note that
in (34) the echo is simultaneously related to the
sequence m and the random integer Cm.
Divide p space into C grid points pc = c/C, c = 0, 1, . . . ,

C - 1. Divide q space into D grid points pd = d/D, d = 0, 1,
. . . , D - 1. Rewrite (33) as:

y = �(p, q)x +w, (35)

where the mth-row, (c + dC)th-column element of F
(p, q) Î ℂM × CD is sm (pc, qd).
AMP-CTLS is implemented to solve (35). First, we find

the support set Λ and then use IJE and CTLS to adjust the
grid points, though CTLS described in Section 2.4 requires
modification. The grid misalignment vector consists of
two parts: p mismatch ΔpΛ Î ℝ|Λ|×1 and q mismatch ΔqΛ

Î ℝ|Λ|×1, �g� =
[
(�p�)

T, (�q�)
T
]T

∈ R2|�|×1 . The R Î

ℂM × CD matrix

Rpi =
∂�(p�,q�)

∂pi
,Rqi =

∂�(p�,q�)
∂qi

. (36)

Assume that ΔpΛ and ΔqΛ are independent of each
other and of the noise. The covariance matrix of ΔgΛ is

Cg =
[
Cp 0|�|
0|�| Cq

]
∈ C

2|�|×2|�|, (37)

where Cp = E
[
�p�(�p�)

H
]

∈ C|�|×|�| , Cq = E
[
�q�(�q�)

H
]

∈ C|�|×|�| ,

C−1
p = DH

pDp and C−1
q = DH

qDq . In the case of RSF radar

u =
[
(Dp�p�)

T, (Dq�q�)
T,

(
1
σw
w

)T
]T

∈ C(2|�|+M)×1 , and

Wx = [Hp, Hq, swIN] Î ℂM × (2|Λ|+M), where

Hq = Gq(D−1
q ⊗ I|�|)(I|�| ⊗ x�) ∈ CM×|�|, Hq = Gq(D−1

q ⊗ I|�|)(I|�| ⊗ x�) ∈ CM×|�|,

Gq =
[
Rq1 , ..,Rq|�|

] ∈ CM×|�|2 and Hq = Gq(D−1
q ⊗ I|�|)(I|�| ⊗ x�) ∈ CM×|�|.

Since p and q are both real, formula (32) s used to update

grid points, in which the imaginary parts of Δp and Δq

estimates are abandoned.

5 Simulations
Numerical results are provided to illustrate the perfor-
mance of the new algorithm. In all examples, the noise
is additive Gaussian white noise.

5.1 Accuracy of AMP-CTLS
We compare the accuracy of AMP-CTLS with standard
OMP. We assume that there is a single sinusoid in the
measurements of form (27), where a = 1 and the signal
to noise ratio SNR = a2/s2 = 5 dB, where s2 is the var-
iance of noise. The number of measurements M is 32.
The frequency of sinusoid is varied between two adjoin-
ing frequency grid points. The mean square errors
(MSEs) of frequency estimates are calculated. The MSEs
are compared with the corresponding Cramer-Rao lower
bound (CRB) [31]. The frequency is uniformly divided
into m grid points in xMPm (OMPM , OMP10M ,
CoSaMPM , etc.) and into M points in AMP-CTLS.
AMP-CTLS is configured as follows: IJE loops no more
than 14 times; the normalization factors in (11) are D =
I/(sΔf), sΔf = 0.005, and sw = 1. As shown in Figure 1,
MSEs of AMP-CTLS are close to the CRB and lower
than those of OMP, except when the sinusoid is in the
vicinity of the grid point.

5.2 Convergence of AMP-CTLS
We first discuss the convergence speed of the proposed
IJE algorithm in noise-free case. Suppose that the sinu-
soid is located at f = 9.5/M, M = 32. Other conditions
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Figure 1 MSEs of the frequency estimates obtained from 1,000
independent Monte-Carlo trials via OMP and AMP-CTLS. The
distance to the nearest grid point is normalized by 1/M. CRB
denotes Cramer-Rao bound.
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are the same as described in Section 5.1. In the lth itera-
tion of IJE, we can obtain a grid point ĝ(l) with (5) and

residual error r(l) = y − �(ĝ)x̂(l) after (6). we calculate
the norm of residual ||r(l)||2 and the grid error
|ĝ(l) − f |, and normalize the results with ||r(0)||2 and

|ĝ(0) − f | , respectively. As shown in Figure 2, both the
residual error and the grid error converge fast (about
five steps) to 0 in noiseless case.
The purpose of what follows is to discuss the feasible

zone of the initial grid points in noisy circumstance. In
Section 2.6, the convergence analysis of IJE is based on
the assumption that the transform F is linear. This is
only approximately satisfied in harmonic retrieval when
the higher order terms of Taylor expansion (8) are
ignorable, which means that the grid points indexed in
the support set are required to be close to the actual
frequencies. We assign SNR = 5 dB and the initial fre-
quency grid point as g(0) = 9/M. The true frequency of
the sinusoid varies from 9/M to 11/M.
As shown in Figure 3, when the distance (normalized

by 1/M) between the true frequency and the initial grid
point is less than 0.7, the initial grid is adjusted to be
close to the actual value, and MSEs of the frequency
estimates converge to CRB. When the distance is greater
than 1, the AMP-CTLS curve is close to the initial dis-
tance, which means that AMP-CTLS fails to improve
the initial grid, because errors of Taylor expansion can-
not be ignored and affect convergence of the algorithm.

5.3 Input of sparsity
In Sections 5.1 and 5.2, we assume that the sparsity K,
i.e., the number of modes, is known and we use K to
terminate AMP-CTLS, while a priori sparsity is not obli-
gatory. When K is unknown, we can use norm of resi-
dual error r = y - F (gΛ) xΛ as termination criterion.
Furthermore, AMP-CTLS does not seriously rely on

the given sparsity K’, and the performance is slightly
affected when K’ > K. Suppose there are three sinusoids
denoted as Si1, Si2, and Si3, where a1 = 20, a2 = 15,
a3 = 1, f1 = 3.15/M, f2 = 4.2/M, f3 = 7.25/M, M = 32.
SNR3 = α2

3/σ
2 = 10 dB. In AMP-CTLS, frequency is

uniformly grided to 2M points, and other configurations
are the same as described in Section 5.1.
We calculate means of the final residual norm ||r(K’)||2

versus K’ and present the results in Figure 4. When all
of the sinusoids have been chosen into the support set
and K’ ≥ K, energy of the sinusoids are canceled thor-
oughly and only noise exist in the residual. The norm of
residual error becomes small and is slowly reduced
along with K’. The results illustrate that we can use
threshold of values or decrease rate of the norm of resi-
dual to end AMP-CTLS loops.
Spurious sinusoids emerge when K’ > K. Denote the

amplitude estimates by α̂1, α̂2, . . . , α̂K ′ in descend order of
magnitudes and their counterparts of frequency estimates

by f̂1, f̂2, . . . , f̂K ′ . MSEs of f3 estimates versus K’ are pre-

sented in Figure 5, which indicates that accuracy of fre-
quency estimates of Si3 is slightly affected (<2 dB) by K’.
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We also calculate |α̂K+1/αK | as measurement of the
level of spurious sinusoids. Figure 6 presents the results
and shows that the ratios |α̂K+1/αK | stay at low level
(<0.2) and are not sensitive to K’.
Figure 7 presents MSEs of f3 estimates versus SNR at

different K’. Noise variance s2 is altered such that SNR3

varies. The MSEs converges to CRB at high SNR (SNR3

>2 dB) when K’ = K = 3. The results of K’ = 6 are close
to those of K’ = 3.

5.4 Recovering small sinusoids
We compare the performance on recovering weak sinu-
soids of AMP-CTLS with CS methods, e.g., OMP and

CoSaMP, and conventional spectral analysis methods, e.
g., ESPRIT and root MUSIC [18]. Suppose there are
three sinusoids denoted as Si1, Si2, and Si3, where a1 =
20, a2 = 15, a3 = 1, f1 = 3.15/M, f2 = 5.2/M, f3 = 3.95/
M, M = 32.SNR3 = α2

3/σ
2 = 5 dB . The number of sinu-

soids K = 3 is assumed to be known. CoSaMP iterates
50 times. In both ESPRIT and root MUSIC, the model
orders are set as K, and the covariance matrix orders
are M/2 according to [32]. ESPRIT and root MUSIC
output frequency estimates, and the corresponding mag-
nitudes are obtained by projection on these frequencies.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

N
or

m
 o

f R
es

id
ua

l E
rr

or
s

Given Sparsity K′

Figure 4 Means of residual norm ||r(K’)||2 versus given sparsity
K’ obtained from 10,000 independent Monte-Carlo trials.
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AMP-CTLS is configured the same as mentioned in
Section 5.3.
Some intuitive results are presented in Figure 8. The

Si3 is recovered by the AMP-CTLS algorithm and is
masked via other tested algorithms. CoSaMP100M is also
tested, but the results are not displayed because the
amplitude estimates are too large (>1,000), which is
caused by projection onto the ill-conditioned matrix
consisting of highly correlated atoms. In OMP2M , the
sinusoids are not exactly at the grid points, so the ener-
gies of Si1 and Si2 cannot be totally canceled in the
beginning two iterations, and the leakage of the energies
masks the smallest signal Si3. In OMP100M , all sinusoids
are placed at the grid points, and Si1 and Si2 are better
recovered than in OMP2M , but energy leakage of domi-
nant sinusoids still exists. In AMP-CTLS, the grid points
are adaptively adjusted to match the sinusoids, so the
algorithm is less sensitive to grid mismatch and can
achieve better performance than OMP and CoSaMP
even if the frequency space is sparsely divided. ESPRIT
and root MUSIC do not correctly recover Si3 as AMP-
CTLS does. Since there is only one snapshot data,
smoothing method [30] is used in these two methods to
estimate the covariance matrix, which results in aperture
loss [18].

5.5 Range-velocity joint estimate in RSF radar
In this section, we discuss merits of AMP-CTLS in
recovering small targets with RSF radar. Suppose there
are three targets: two large targets T1 and T2 and a
small target T3. The number of measurements M is 32.

The scattering intensities are a1 = a2 = 10, a3 = 1, and
the ranges and the velocities are set such that the p, q
parameters are p1 = 10.1/M, p2 = 10.7/M, p3 = 20/M,
q1 = 19.4/M, q2 = 10.2/M and q3 = 15.2/M. AMP-CTLS
is configured as follows: the p, q spaces are both uni-
formly divided into M grid points; the normalization
factors are Dp = Dq = I/sΔ, sΔ = 0.025, sw = 1; and
the IJE algorithm iterates fewer than 14 times. In
OMPm, both the p and q spaces are uniformly divided
into m grid points. Note that all of the targets lie on
the grid points in OMP10M. We focus on the results of
recovering the weakest target T3. Change the noise cov-
ariance s2; thus, the signal to noise ratio
SNR3 = α2

3/σ
2 varies. Calculate MSEs of p3, q3 para-

meters. As shown in Figure 9, the MSEs with AMP-
CTLS are lower than those with OMP and converge to
the CRB when the SNR3 is no less than 2 dB. The dif-
ference between these MSEs of AMP-CTLS at high
SNR and CRB is less than 0.5 dB.

5.6 DoA estimation
In this section, AMP-CTLS is compared with the Lasso-
based TLS method WSS-TLS [14] on direction of arrival
(DoA) estimation. The goal is estimating DoA of plane
waves from far-field, narrowband sources with uniform
linear array of antennas [14]. We focus on the single-
snapshot case. Suppose the antenna array contains M =
8 elements and the interval between neighboring ele-
ments d = 1/2 wavelength. There are two sources (K =
2) from angles θ1 = -29° and θ2 = 13°. The amplitudes
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Figure 8 Amplitude and frequency estimates of the sinusoids obtained with OMP, CoSaMP, ESPRIT, root MUSIC and AMP-CTLS from
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a1 = a2 = 1 and SNR1 = SNR2 = α2
1/σ

2 , where s2 is the
noise variance. The angle space from -90° to 90° are uni-
formly divided to N = 90 grid points; thus both sources
are 1° off the nearest grid points. The WSS-TLS algo-
rithm is set according to [14]. Since WSS-TLS returns
multiple nonzero DoA estimates, we choose two peaks
with largest magnitudes as the estimates of θ1 and θ2.
AMP-CTLS models DoA estimation as an harmonic
retrieval problem and outputs frequency estimates

f̂ ∈ [0 1) . Denote f̃ = f̂ − 0.5
(
sgn (f̂ − 0.5) + 1

)
,

where sgn(·) represents signum function; thus the DoA
estimate with AMP-CTLS is obtained by

θ̂ = arcsin−1(f̃ /d) . In AMP-CTLS, IJE loops no more

than 50 times; the normalization factors in (11) are D =
I/(sΔf), sΔf = 0.005, sw = 1. MSEs of θ1 and θ2 esti-
mates versus SNR are shown in Figure 10a, b,

respectively. The results indicate that MSEs of AMP-
CTLS are closer to CRB than those of WSS-TLS.

6 Conclusion
To alleviate the off-grid problem in grid-based MP meth-
ods, we implement CTLS into the OMP framework and
propose a new algorithm, namely AMP-CTLS. Unlike
traditional MP methods, AMP-CTLS adaptively adjusts
the grid and dictionary. The convergence of AMP-CTLS
is analyzed, and the initial conditions of the algorithm
are discussed. Numerical examples indicate that the
advantages of AMP-CTLS over OMP and CoSaMP are
twofold: (1) it is still efficient even when the continuous
parameter space is sparsely divided, but OMP or
CoSaMP suffers from performance degradation when the
space is not divided reasonably; (2) it can achieve higher
accuracy, and the MSEs converge to CRB.
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Figure 9 MSEs of p3 and q3 estimates of OMP and AMP-CTLS versus SNR3 obtained from 1,000 independent Monto-Carlo trials. The
results are compared with CRB.

10 12 14 16 18 20
−55

−50

−45

−40

−35

−30

SNR1 (dB)

M
S

E
 (d

B
)

AMP−CTLS
WSS−TLS
CRB

(a) MSEs of θ1 = −29◦ estimates

10 12 14 16 18 20
−55

−50

−45

−40

−35

−30

SNR2 (dB)

M
S

E
 (d

B
)

AMP−CTLS
WSS−TLS
CRB

(b) MSEs of θ2 = 13◦ estimates

Figure 10 MSEs of θ1 and θ2 estimates of WSS-TLS and AMP-CTLS obtained from 1,000 independent Monto-Carlo trials.
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Appendix 1
We recall the complex version of Newton’s method in
[20]. Minor changes are made because of differences in
notation. The recursion formula of the complex Newton
method for (17) is:

x(t+1)CTLS = x(t)CTLS + (A∗B−1A − B∗)−1(a∗ − A∗B−1a), (38)

where

h = (WxWH
x )

−1
(
��x

(t)
CTLS − y

)
, (39)

û = −WH
x h, (40)

B̃ = �� +G(D−1 ⊗ I|�|)(û ⊗ I|�|), (41)

Qj =
[[
(R1){j}, . . . , (R|�|){j}

]
D−1,0N

]
, j ≤ |�|, (42)

Q̃ = [QH
1 h,Q

H
2 h, . . . ,Q

H
|�|h], (43)

a =
(
hHB̃

)T
, (44)

A = −Q̃
H
W†

xB̃ −
(
Q̃

H
W†

xB̃
)T
, (45)

B = Q̃
H (

W†
xWx − I

)
Q̃ +

(
B̃
H(

WxWH
x

)−1
B̃
)T

(46)

Appendix 2
When the frequencies are constrained to be real, the
CTLS solver becomes more complex. Some notations
are introduced for simplicity as follows: W1 = H, W2 =
swIN , u = [uT

1,u
T
2]

T , z = y - FΛxΛ. Notice that the

matrix H is relative to xΛ. Replace the optimum pro-
blem in (12), (14) with:

û, xCTLS = argmin
ul,u2,x�

uT
1u1 + uH

2 u2, (47)

s.t.

⎧⎨⎩z − [W1, W2]
[
u1

u2

]
u∗
1 = u1

= 0. (48)

First, suppose xΛ is known, and seek the solution of u.
If both W1 and W2 are of full-row rank, we have

u1 = 2Re(WH
1 v), (49)

u2 = 2WH
2 v, (50)

where

v = −(C−1
2 C1 − (C−1

1 C2)∗)−1(C−1
2 z − (C−1

1 z)∗), (51)

C1 = W1WH
1 + 2W2WH

2 , (52)

C2 = W1WT
1. (53)

The solution u1, u2 depends on xΛ. Then, calculate xΛ
as

xCTLS = argmin
x�

uT
1u1 + uH

2 u2. (54)

However, it is difficult to solve (54), because the Jacobi
matrix and Hessian matrix of uT

1u1 + uH
2 u2 versus xΛ

are complex. In this article, we simply consider the fre-
quencies to be complex and ignore the imaginary parts.
Proof: We prove that when xΛ is known, the solution

of u is given as (49) to (53). The Lagrangian

L(u, v) =
1
2
uT
1u1 − vH(z +W1u1 +W2u2) +

1
2
uH
2 u2 − vT(z∗ +W∗

1u1 +W∗
2u

∗
2) (55)

can be expressed as follows:

L(u, v) =
1
2
(u1 − 2Re(WH

1 v))
T(u1 − 2Re(WH

1 v)) − 2(Re(WH
1 v))

TRe(WH
1 v)

−2vHW2WH
2 v +

1
2
(u2 − 2WH

2 v)
H(u2 − 2WH

2 v) − 2Re[vHz].
(56)

When u1 − 2Re (WH
1 v) and u2 = 2WH

2 v , the Lagran-
gian reaches the infimum; thus, the Lagrange dual func-
tion is obtained as

γ (v) = inf
u
L(u, v) = −4vTW∗

2W
T
2v

∗ − 4Re(vHz) − (vHW1 + vTW∗
1)(W

H
1 v +WT

1v
∗). (57)

Calculate the Jacobi and Hessian matrix of g(v):

∂γ

∂v∗ = −1
2
W1WH

1 v − 1
2
W1WT

1v
∗ − W2WH

2 v − 1
2
z, (58)

∂2γ

∂vT∂v∗ = −1
2
W1WH

1 − W2WH
2 . (59)

Because W1, W2 are of full-row rank, ∂2γ

∂vT∂v∗ is a nega-

tive definite matrix. We solve v with the optimum con-

dition ∂θ
∂v∗ = 0 , and obtain (51) to (53). The proof is

complete.

Algorithm 1. The CTLS technique
1) Input the dictionary FΛ and all the coefficient
matrices Ri.
2) Compose Wx and solve (17) with the initial value

given in (20).
3) Calculate û via (18) and (19).
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4) Extract �̂g�
from û .

Algorithm 2. The AMP-CTLS algorithm
1) Divide the continuous parameter f into grid point

ĝ(0); input the sparsity level K or residual threshold δ.

Set the support set Λ(0) = ∅, and the residual error
r(0) = y.

2) Calculate the correlations pi =
〈
r(k),�

(
ĝ(k)i

)〉
.

3) Find the index n = arg max |pi|.
4) Merge the support set Λ(k+1) = Λ(k) ∪ {n}.
5) Solve (3) with the IJE algorithm. Then we get

ĝ(k+1)�
and x̂(k+1)�

.

6) Update the residual error

r(k+1) = y − �
(
ĝ(k+1)�

)
x̂(k+1)� .

7) Increase k. Return to Step 2 until stop criterion, e.
g., k < K, ||r(k)||2 < δ or ||r(k)||2 < δ||r(k-1)||2, is satisfied.

8) Simultaneously output x̂(k)�
and ĝ(k)�

, and set the

elements of x not indexed in Λ to 0.
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