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Abstract

As a paradigm for reconstructing sparse signals using a set of under sampled measurements, compressed sensing
has received much attention in recent years. In identifying the sufficient condition under which the perfect
recovery of sparse signals is ensured, a property of the sensing matrix referred to as the restricted isometry
property (RIP) is popularly employed. In this article, we propose the RIP based bound of the orthogonal matching
pursuit (OMP) algorithm guaranteeing the exact reconstruction of sparse signals. Our proof is built on an
observation that the general step of the OMP process is in essence the same as the initial step in the sense that
the residual is considered as a new measurement preserving the sparsity level of an input vector. Our main
conclusion is that if the restricted isometry constant δK of the sensing matrix satisfies

δK <

√
K − 1√

K − 1 + K

then the OMP algorithm can perfectly recover K(> 1)-sparse signals from measurements. We show that our bound
is sharp and indeed close to the limit conjectured by Dai and Milenkovic.
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1 Introduction
As a paradigm to acquire sparse signals at a rate signifi-
cantly below Nyquist rate, compressive sensing has
received much attention in recent years [1-17]. The goal
of compressive sensing is to recover the sparse vector
using small number of linearly transformed measure-
ments. The process of acquiring compressed measure-
ments is referred to as sensing while that of recovering
the original sparse signals from compressed measure-
ments is called reconstruction.
In the sensing operation, K-sparse signal vector x, i.e.,

n-dimensional vector having at most K non-zero ele-
ments, is transformed into m-dimensional signal (mea-
surements) y via a matrix multiplication with F. This
process is expressed as

y = �x. (1)

Since n > m for most of the compressive sensing
scenarios, the system in (1) can be classified as an
underdetermined system having more unknowns than
observations, and hence, one cannot accurately solve
this inverse problem in general. However, due to the
prior knowledge of sparsity information, one can recon-
struct x perfectly via properly designed reconstruction
algorithms. Overall, commonly used reconstruction stra-
tegies in the literature can be classified into two cate-
gories. The first class is linear programming (LP)
techniques including ℓ1-minimization and its variants.
Donoho [10] and Candes [13] showed that accurate
recovery of the sparse vector x from measurements y is
possible using ℓ1-minimization technique if the sensing
matrix F satisfies restricted isometry property (RIP) with
a constant parameter called restricted isometry constant.
For each positive integer K, the restricted isometric con-
stant δK of a matrix F is defined as the smallest number
satisfying

(1 − δK) ‖x‖22 ≤ ‖�x‖22 ≤ (1 + δK) ‖x‖22 (2)* Correspondence: bshim@korea.ac.kr
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for all K-sparse vectors x. It has been shown that if

δ2K <
√
2 − 1 [13], the ℓ1-minimization is guaranteed

to recover K-sparse signals exactly.
The second class is greedy search algorithms identify-

ing the support (position of nonzero element) of the
sparse signal sequentially. In each iteration of these
algorithms, correlations between each column of F and
the modified measurement (residual) are compared and
the index (indices) of one or multiple columns that are
most strongly correlated with the residual is identified
as the support. In general, the computational complexity
of greedy algorithms is much smaller than the LP based
techniques, in particular for the highly sparse signals
(signals with small K). Algorithms contained in this
category include orthogonal matching pursuit (OMP)
[1], regularized OMP (ROMP) [18], stagewise OMP (DL
Donoho, I Drori, Y Tsaig, JL Starck: Sparse solution of
underdetermined linear equations by stagewise orthogo-
nal matching pursuit, submittd), and compressive sam-
pling matching pursuit (CoSaMP) [16].
As a canonical method in this family, the OMP algo-

rithm has received special attention due to its simplicity
and competitive reconstruction performance. As shown
in our Table, the OMP algorithm performs the support
identification followed by the residual update in each
iteration and these operations are repeated usually K
times. It has been shown that the OMP algorithm is
robust in recovering both sparse and near-sparse signals
[13] with O(nmK) complexity [1]. Over the years, many
efforts have been made to find out the condition (upper
bound of restricted isometric constant) guaranteeing the
exact recovery of sparse signals. For example, δ3K <
0.165 for the subspace pursuit [19], δ4K < 0.1 for the

CoSaMP [16], and δ4K < 0.01/
√
logK for the ROMP

[18]. The condition for the OMP is given by [20]

δK+1 <
1

3
√
K
. (3)

Recently, improved conditions of the OMP have
been reported including δK+1 < 1/

√
2K [21] and

δK+1 < 1/(
√
K + 1) (J Wang, B Shim: On recovery limit

of orthogonal matching pursuit using restricted iso-
metric property, submitted).
The primary goal of this article is to provide an

improved condition ensuring the exact recovery of K-
sparse signals of the OMP algorithm. While previously
proposed recovery conditions are expressed in terms of
δK+1 [20,21], our result, formally described in Theorem
1.1, is expressed in terms of the restricted isometric
constant δK of order K so that it is perhaps most natural
and simple to interpret. For instance, our result together

with the Johnson-Lindenstrauss lemma [22] can be used
to estimate the compression ratio (i.e., minimal number
of measurements m ensuring perfect recovery) when the
elements of F are chosen randomly [17]. Besides, we
show that our result is sharp in the sense that the con-
dition is close to the limit of the OMP algorithm conjec-
tured by Dai and Milenkovic [19], in particular when K
is large. Our result is formally described in the following
theorem.
Theorem 1.1 (Bound of restricted isometry constant).

Suppose x Î ℝn is a K-sparse signal (K > 1), then the
OMP algorithm recovers x from y = Fx Î ℝm if

δK <

√
K − 1√

K − 1 + K
. (4)

Loosely speaking, since K/
√
K − 1 ≈ √

K for K ≫ 1, the

proposed condition approximates to δK < 1/
(
1 +

√
K

)
for a large K. In order to get an idea how close the pro-
posed bound is from the limit conjectured by Dai and

Milenkovic
(
δK+1 = 1/

√
K

)
, we plot the bound as a func-

tion of the sparsity level K in Figure 1. Although the pro-
posed bound is expressed in terms of δK while (3) and the
limit of Dai and Milenkovic are expressed in terms of δK+1
so that the comparison is slightly unfavorable for the pro-
posed bound, we still see that the proposed bound is fairly
close to the limit for large K. a

As mentioned, another interesting result we can
deduce from Theorem 1.1 is that we can estimate the
maximal compression ratio when Gaussian random
matrix is employed in the sensing process. Note that the
direct investigation of the condition δK <� for a given
sensing matrix F is undesirable, especially when n is
large and K is nontrivial, since the extremal singular
values of

(
n
K

)
sub-matrices need to be tested.

In an alternative way, a condition derived from John-
son-Lindenstrauss lemma has been popularly consid-
ered. In fact, it is now well known that m × n random
matrices with i.i.d. entries from the Gaussian distribu-
tion N (0, 1/m) obey the RIP with δK ≤ � with over-
whelming probability if the dimension of the
measurements satisfies [17]

m ≥ C · K log n
K

ε2
(5)

where C is a constant. By applying the result in
Theorem 1.1, we can obtain the minimum dimension
of m ensuring exact reconstruction of K-sparse signal
using the OMP algorithm. Specifically, plugging
ε =

√
K − 1/

(√
K − 1 + K

)
into (5), we get
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m ≥ C ·
(

K3

K − 1
+

2K2

√
K − 1

+ K
)
log

n
K
. (6)

This result [m is expressed in the order of
O

(
K2 log n

K

)
is desirable, since the size of measure-

ments m grows moderately with the sparsity level K.

2 Proof of theorem 1.1
2.1 Notations
We now provide a brief summary of the notations used
throughout the article.
• T = supp(x) = { i | xi ≠ 0} is the set of non-zero

positions in x.
• |D| is the cardinality of D.
• T\D is the set of all elements contained in T but not

in D.
• FD Î ℝm×|D| is a submatrix of F that only contains

columns indexed by D.
• xD Î ℝ|D| is a restriction of the vector x to the ele-

ments with indices in D.
• span(FD) is the span (range) of columns in FD.
• �′D denotes the transpose of the matrix FD.

• �
†
D = (�′D�D)−1�′D is the pseudoinverse of FD.

• PD = �D�
†
D denotes the orthogonal projection onto

span(FD).
• P⊥

D = I − PD is the orthogonal projection onto the

orthogonal complement of span(FD).

2.2 Preliminaries–definitions and lemmas
In this subsection, we provide useful definition and lem-
mas used for the proof of Theorem 1.1.
Definition 1 (Restricted orthogonality constant [23]).

For two positive integers K and K’, if K + K’ ≤ n, then K,
K’-restricted orthogonality constant θK,K’, is the smallest
number that satisfies

|〈�x,�x′〉| ≤ θK,K′ ‖ x‖2 ‖ x′‖2 (7)

for all x and x’ such that x and x’ are K-sparse and
K’-sparse respectively, and have disjoint supports.
Lemma 2.1. In the OMP algorithm, the residual rk is

orthogonal to the columns selected in previous iterations.
That is,

〈
ϕi, rk

〉
= 0 (8)
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Figure 1 Bounds of restricted isometry constant. Note that the proposed bound is expressed in terms of δK while (3) and the limit of Dai
and Milenkovic are expressed in terms of δK+1.
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for i Î Tk.
Lemma 2.2 (Monotonicity of δK [19]). If the sensing

matrix satisfies the RIP of orders K1 and K2, respectively,
then

δK1 ≤ δK2

for any K1 ≤ K2. This property is referred to as the
monotonicity of the restricted isometric constant.
Lemma 2.3 (A direct consequence of RIP [19]). Let I ⊂

{1,2,... ,n} and FI be the sub-matrix of F that contains col-
umns of F indexed by I. If δ|I| < 1, then for any u Î ℝ|I|,

(
1 − δ|I|

) ‖ u‖2 ≤‖ �′I�Iu‖2 ≤ (
1 + δ|I|

) ‖ u‖2.
Lemma 2.4 (Square root lifting inequality [23]). For a

≥ 1 and positive integers K, K’ such that aK’ is also an
integer, we have

θK,αK′ ≤ √
αθK,K′. (9)

Lemma 2.5 (Lemma 2.1 in [13]). For all x, x’ Î ℝn

supported on disjoint subsets I1, I2 ⊂ {1, 2,..., n}, we have

|〈�x,�x′〉| ≤ δ|I1|+|I2| ‖ x‖2 ‖ x′‖2.
Lemma 2.6. For two disjoint sets I1, I2 ⊂ {1, 2,... ,n}, let

θ|I1|,|I2|be the |I1|, |I2|-restricted orthogonality constant of
F. If |I1| + |I2| ≤ n, then

‖ �′I1�I2xI2‖2 ≤ θ|I1|,|I2| ‖ x‖2. (10)

Proof. Let u ∈ R|I1| be a unit vector, then we have

max
u:‖u‖2=1

‖ u′ (�′I1�I2xI2
) ‖2 =‖ �′I1�I2xI2‖2. (11)

where the maximum of inner product is achieved
when u is in the same direction of �′I1�I2xI2 i.e.,(
u = �′I1�I2xI2 / ‖ �′I1�I2xI2‖2

)
. Moreover, from Defini-

tion 1, we have

‖ u′�′I1�I2xI2‖2 =
∣∣〈�I1u,�I2xI2

〉∣∣
≤ θ|I1|,|I2| ‖ u‖2 ‖ x‖2
= θ|I1|,|I2| ‖ x‖2

(12)

and thus

‖ �′I1�I2xI2‖2 ≤ θ|I1|,|I2| ‖ x‖2.
Lemma 2.7. For two disjoint sets I1,I2 with |I1| + |I2| ≤

n, we have

δ|I1|+|I2| ≥ θ|I1|,|I2|. (13)

Proof. From Lemma 2.5 we directly have
∣∣〈�I1xI1 ,�I2xI2

〉∣∣ ≤ δ|I1|+|I2|
∥∥xI1∥∥2

∥∥xI2∥∥2. (14)

By Definition 1, θ|I1|,|I2| is the minimal value satisfying
∣∣〈�I1xI1 ,�I2xI2

〉∣∣ ≤ θ|I1|,|I2| ‖ xI1‖2 ‖ xI2‖2, (15)

and this completes the proof of the lemma.

2.3 Proof of theorem 1.1
Now we turn to the proof of our main theorem. Our
proof is in essence based on the mathematical induction;
First, we show that the index t1 found at the first itera-
tion is correct (t1 Î T) under (4) and then we show that
tk+1 is also correct (more accurately Tk = {t1,t2, ...,tk} Î
T then tk+1 Î T\Tk) under (4).
Proof. Let tk be the index of the column maximally

correlated with the residual rk-1 in the k-th iteration of
the OMP algorithm. Since rk-1 = y for k = 1, t1 can be
expressed as

t1 = argmax
i

∣∣〈ϕi, y
〉∣∣ (16)

and also
∣∣〈ϕt1 , y

〉∣∣ = max
i

∣∣〈ϕi,y
〉∣∣ (17)

≥
√√√√ 1

|T|
∑
j∈T

∣∣〈ϕj, y
〉∣∣2 (18)

=
1√
K

‖ �′Ty‖2 (19)

where (19) uses the fact |T| = K (x is K-sparse sup-
ported on T). Now that y = FTxT, we have

∣∣〈ϕt1 , y
〉∣∣ ≥ 1√

K
‖ �′T�TxT‖2 (20)

≥ 1√
K
(1 − δK) ‖ xT‖2 (21)

where (21) follows from Lemma 2.3.
Now, suppose that t1 does not belong to the support

of x (i.e., t1 ∉ T), then
∣∣〈ϕt1 , y

〉∣∣ =‖ ϕ′t1�TxT‖2 (22)

≤ θ1,K ‖ xT‖2 (23)

where (23) is from Lemma 2.6. This case, however,
will never occur if

1√
K
(1 − δK) ‖ xT‖2 > θ1,K ‖ xT‖2 (24)
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or
√
Kθ1,K + δK < 1. (25)

Let a = K/(K - 1), then a(K - 1) = K is an integer and

θ1,K = θ1,α(K−1) (26)

≤ √
αθ1,K−1 (27)

≤
√

K
K − 1

δK (28)

where (27) and (28) follow from Lemma 2.4 and 3.1,
respectively. Thus, (25) holds true when

√
K

√
K

K − 1
δK + δK < 1,

which yields

δK <

√
K − 1√

K − 1 + K
. (29)

In summary, if δK <
√
K − 1/

(√
K − 1 + K

)
, then t1

Î T for the first iteration of the OMP algorithm. Now
we assume that former k iterations are successful (Tk =
{t1, t2,... ,tk} Î T) for 1 ≤ k ≤ K - 1. Then it suffices to
show that tk+1 is in T but not in Tk (i.e., tk+1 Î T\Tk).
Recall from Table 1 that the residual at the k-th itera-
tion of the OMP is expressed as

rk = y − �Tk x̂Tk . (30)

Since y = FTxT and �Tk is a submatrix of FT, r
k Î

span (FT) and hence rk can be expressed as a linear
combination of the |T| (= K) columns of FT. Accord-
ingly, we can express rk as rk = Fxk where the support

(set of indices for nonzero elements) of xk is contained
in the support of x. That is, rk is a measurement of K-
sparse signal xk using the sensing matrix F.
Therefore, it is clear that if Tk Î T, then tk+1 Î T under

(29). Recalling that the residual rk is orthogonal to the col-
umn already selected (〈�i, r

k〉 = 0 for i Î Tk) from Lemma
1, index of these columns is not selected again (see the
identify step in Table 1) and hence tk+1 ÎT\Tk. This indi-
cates that under the condition in (4) all the indices in the
support T will be identified within K iterations (i.e., TK =
T) and therefore

x̂TK = argmin
x

‖ y − �TK x‖2 (31)

= �
†
TKy (32)

= �
†
Ty (33)

=
(
�t

T�T
)−1

�′T�TxT (34)

= xT , (35)

which completes the proof.

3 Discussions
In [19], Dai and Milenkovic conjectured that the sufficient
condition of the OMP algorithm guaranteeing exact recov-
ery of K-sparse vector cannot be further relaxed to

δK+1 = 1/
√
K . This conjecture says that if the RIP condi-

tion is given by δK+1 <� then � should be strictly smaller
than 1/

√
K . In [20], this conjecture has been confirmed

via experiments for K = 2.
We now show that our result in Theorem 1.1 agrees

with the conjecture, leaving only marginal gap from the
limit. Note that since we cannot directly compare Dai and
Milenkovic’s conjecture (expressed in term of δK+1) with
our condition (expressed in term of δK), we need to modify
our result. Following proposition provides a bit loose
bound (sufficient condition) of our result expressed in the

form of δK+1 ≤ 1/
(√

K + θ
)
.

Proposition 3.1. If δK+1 < 1/
(√

K + 3 − √
2
)
then

δK <
√
K − 1/

(√
K − 1 + K

)
.

Proof. Since the inequality

1√
K + 3 − √

2
≤

√
K − 1√

K − 1 + K
(36)

holds true for any integer K > 1 (see Appendix), if

δK+1 < 1/
(√

K + 3 − √
2
)
then δK+1 <

√
K − 1/

(√
K − 1 + K

)
.

Table 1 OMP algorithm

Input: measurements y

sensing matrix F
sparsity K.

Initialize: iteration count k = 0

residual vector r0 = y

support set estimate T0 =� 0 .
While k < K

k = k + 1.

(Identify) tk = arg maxj |〈r
k-1,�j〉|.

(Augment) Tk = Tk-1 ∪ {tk}.

(Estimate) x̂Tk = argmin
x

‖ y − �Tkx‖2 .
(Update) rk = y − �Tk x̂Tk . .

End

Output: x̂ = arg min
x:supp(x)=TK

∥∥y − �x
∥∥
2.
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Also, from the monotonicity of the RIP constant (δK ≤ δK

+1), if δK+1 <
√
K − 1/

(√
K − 1 + K

)
then

δK <
√
K − 1/

(√
K − 1 + K

)
. Syllogism of above two

conditions yields the desired result.
One can clearly observe that

δK+1 < 1/
(√

K + 3 − √
2
)

≈ 1/
(√

K + 1.5858
)
is better

than the condition δK+1 < 1/
(
3
√
K

)
[20], similar to the

result of Wang and Shim, and also close to the achiev-

able limit
(
δk+1 < 1/

√
K

)
, in particular for large K.

Considering that the derived condition

δK+1 < 1/
(√

K + 3 − √
2
)

is slightly worse than our

original condition δK <
√
K − 1/

(√
K − 1 + K

)
, we may

conclude that our result is fairly close to the optimal.

4 Conclusion
In this article, we have investigated the sufficient condi-
tion ensuring exact reconstruction of sparse signal for
the OMP algorithm. We showed that if the restricted
isometry constant δK of the sensing matrix satisfies

δK <

√
K − 1√

K − 1 + K

then the OMP algorithm can perfectly recover K-
sparse signals from measurements. Our result directly
indicates that the set of sensing matrices for which
exact recovery of sparse signal is possible using the
OMP algorithm is wider than what has been proved
thus far. Another interesting point that we can draw
from our result is that the size of measurements (com-
pressed signal) required for the reconstruction of sparse
signal grows moderately with the sparsity level.

Appendix–proof of (36)
After some algebra, one can show that (36) can be
rewritten as

1 +
K√
K − 1

−
√
K ≤ 3 −

√
2. (37)

Let f (K) = 1 + K/
√
K − 1 − √

K then f (2) = 3 − √
2 .

Hence, it suffices to show that f(K) is a decreasing func-
tion in K ≥ 2 (i.e., f(2) is the maximum for K ≥ 2). In
fact, since

f ′(K) =
(K − 2)

√
K − (K − 1)

√
K − 1

2
√
K(K − 1)(K − 1)

, (38)

with
√
K(K − 1)(K − 1) > 0 (39)

and

(K − 2)
√
K − (K − 1)

√
K − 1 < 0 (40)

for K ≥ 2, f’(K) < 0 for K ≥ 2, which completes the
proof of (36).

Endnote
aIn Section 3, we provide more rigorous discussions on
this issue.
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