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Abstract

This article studies the transmission of a single cell-edge user’s signal using statistical channel state information at
cooperative base stations (BSs) with a general jointly correlated multiple-input multiple-output (MIMO) channel
model. We first present an optimal scheme to maximize the ergodic sum capacity with per-BS power constraints,
revealing that the transmitted signals of all BSs are mutually independent and the optimum transmit directions for
each BS align with the eigenvectors of the BS’s own transmit correlation matrix of the channel. Then, we employ
matrix permanents to derive a closed-form tight upper bound for the ergodic sum capacity. Based on these results,
we develop a low-complexity power allocation solution using convex optimization techniques and a simple
iterative water-filling algorithm (IWFA) for power allocation. Finally, we derive a necessary and sufficient condition
for which a beamforming approach achieves capacity for all BSs. Simulation results demonstrate that the upper
bound of ergodic sum capacity is tight and the proposed cooperative transmission scheme increases the downlink
system sum capacity considerably.
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1 Introduction
Multi-antenna systems, widely known as multiple-input
multiple-output (MIMO), have shown considerable gain
in spectral efficiency and attracted much attention in
recent years, e.g., [1]. There have also been strong inter-
ests in utilizing MIMO to cope with multiuser scenarios.
However, achieving the theoretical capacity gains in
practical cellular environments is problematic because
of interferences. More recently, base station (BS) coop-
eration [2-10] was proposed as a means to improve the
performance of cell-edge user and mitigate the problem
of inter-cell interference. This is greatly motivated by
the fact that BSs may be connected via a wired back-
bone and the channel state information (CSI) can be
shared among the BSs for coordinated transmission.
Such BS cooperation in the downlink in particular leads
to enormous throughput gains as compared to the con-
ventional single-BS (or single-cell) signal processing
where the co-channel interference (often from other
cells) is treated as noise.

Coordinated BS transmission in the downlink is often
analyzed using a large MIMO Gaussian broadcast chan-
nel (BC) model, with the challenge of incorporating per-
antenna or per-BS power constraints. MIMO BC capa-
city region with a sum-power constraint has been well
established in [11-14] using the uplink-downlink duality.
The achievable rate region of MIMO BC under per-
antenna power constraints has also been studied in [15].
Recently, this result has been extended to cope with
general linear transmit power constraints in [16,17]. If
the dirty-paper-coding based optimal nonlinear precoder
or the minimum-mean-squared-error based optimal lin-
ear pre-coder is used, the result in [15-17] can be
directly applied to BS cooperation with per-BS power
constraints. However, the gain offered by BS coopera-
tion depends greatly on the level of CSI that can be
exploited in the optimization. To investigate the full
diversity and multiplexing benefits, most previous stu-
dies [15-17] assumed to possess perfect CSI at the trans-
mitter, but such results may be severely offset by
expensive overheads for acquiring the CSI [18-20]. User
mobility also will increase fading rate and make accurate
CSI difficult to maintain. For this reason, exploiting sta-
tistical CSI at the transmitter side is often more
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appealing due to much lower overhead. The uplink and
downlink statistical CSI are also usually reciprocal in
both frequency-division-duplex and time-division-duplex
systems [21,22].
Capacity analysis and transceiver designs using statisti-

cal CSI at the transmitter are highly dependent on the
assumption of the channel model. The conventional
modeling approach has been the Kronecker model
[23-25] which separates spatial correlation at the trans-
mitter and receiver ends. Recent measurement cam-
paigns, however, demonstrated that mutual correlation
between the transmitter and receiver may be important,
which makes the Kronecker model inadequate [26,27].
The jointly-correlated channel model in contrast not
only accounts for the correlation at both ends, but also
characterizes their mutual dependence. Recently, [28]
derived a closed-form upper bound for the ergodic capa-
city of the jointly-correlated MIMO channel. Beamform-
ing is a simple linear precoding strategy, in which the
transmit covariance matrix is of unit-rank. The optimal-
ity of beamforming for some single-user MIMO channels
have been studied for the Kronecker model [29,30], the
double-scattering model [31], and the virtual representa-
tion model [32], when the transmitter has partial knowl-
edge of the channel. These results have also been
extended to the MIMO multiple access channel (MAC)
in [32-36].
In this article, we aim to investigate coordinated down-

link transmission with cooperative BSs assuming that the
mobile user has perfect CSI but the BSs know only statis-
tical CSI. Our main contribution is that the jointly corre-
lated MIMO channel model in [26] is adopted to account
for the spatial correlations of the antennas at the BSs and
the user and between them. We first present an optimal
transmission scheme to maximize the ergodic sum capa-
city of this channel with per-BS power constraints, from
which two important results are revealed: (i) the transmit
signals of all BSs are mutually independent; and (ii) the
optimal transmit directions for each BS align with the
eigen-directions of the BS’s own transmit-side correlation
matrix. We then employ matrix permanents to derive a
closed-form tight upper bound for the ergodic sum capa-
city of the jointly correlated MIMO channel. Based on
this bound, we propose an iterative power allocation
algorithm using convex optimization techniques, which
converges within only a few iterations. Also, we establish
the beamforming optimality conditions for all the BSs.
Our study for BS cooperation in the jointly-correlated
MIMO downlink channel generalizes the result in [33].
The rest of this article is organized as follows. We

present the system model in Section 2. In Section 3, we
propose the capacity-achieving optimal transmit scheme
and derive the ergodic sum capacity upper bound. Uti-
lizing the bound, we then develop the optimal power

allocation policies. Finally, we establish the beamforming
optimality conditions for all BSs. Simulation results are
presented in Section 4, and we conclude the article in
Section 5.

Notations
We use uppercase and lowercase boldface letters to denote
matrices and vectors, respectively. IN is an N × N identity
matrix and 0 denotes an all-zero matrix, while and 1 is an
all-one matrix. The matrix inequality ≽ shows the positive
semi-definiteness. The superscripts (·)H, (·)T, and (·)* repre-
sent the conjugate-transpose, transpose, and conjugate
operations, respectively. We use E{·} to denote expecta-
tion with respect to all random variables within the brack-
ets, and use A ʘ B to denote the Hadamard product of A
and B. We use [A]kl or the lower-case representation akl
to denote the (k,l)th entry of A, and ak denotes the kth
entry of the column vector a. The operators tr(·), det(·),
and Per(·) represent the matrix trace, determinant, and
permanent, respectively, and diag(x) denotes a diagonal
matrix with x along its main diagonal.

2 System model
We consider a downlink cellular network consisting of
m BSs, labeled as BS1, ..., BSm, which are equipped with{
N(1)

t ,N(2)
t , ...,N(m)

t

}
antennas, respectively, and a sin-

gle cell-edge user with Nr antennas. To improve the per-
formance of the cell-edge user, the BSs are connected by
a wired backbone that allows information to be reliably
exchanged among them. At the mobile user in the base-
band, the received signal can be written in vector form
as

y = Hx + n, (1)

where x �
[
xT1, x

T
2, ..., x

T
m

]T with xi being the N(i)
t × 1

transmitted signal vector of BSi; n is the Nr × 1 zero-
mean additive complex Gaussian noise vector with

E
{
nnH
}
= N0INr ;H �

[√
�1H1,

√
�2H2, ...,

√
�mHm

]
with Hi being the Nr × N(i)

t MIMO channel matrix

between BSi and the user; and Γi denotes the large-scale
fading between BSi and the user. It is assumed that xi
and Hi satisfy the following power constraints

E
{
tr
(
xixHi
)}

= Pi, (2)

and

E
{
tr
(
HiHH

i

)}
= N(i)

t Nr , for i = 1, 2, ...,m. (3)

We find it useful to define the total transmitted power

as P �
∑m

i=1
Pi , the total number of transmit antennas
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as Nt �
∑m

i=1 N
(i)
t , and the transmit signal-to-noise ratio

(SNR) as ρ � P
N0

.

In this article, we consider the jointly-correlated
MIMO channel model [28], given by

Hi = UrH̃iUH
t,i, for i = 1, 2, ...,m, (4)

where

H̃i = Di +Mi � Hiid,i, (5)

Ut,i and Ur are N(i)
t × N(i)

t and Nr × Nr deterministic

unitary matrices, Di is an Nr × N(i)
t deterministic

matrix, Mi is an Nr × N(i)
t deterministic matrix with

nonnegative elements, and Hiid,i for i = 1, 2, ..., m are

statistically independent Nr × N(i)
t random matrices of

independent and identically distributed (i.i.d.) zero-mean
unit-variance entries. Note that Hiid,i is not necessarily
Gaussian. The matrices Di and Mi reflect the line-of-
sight (LOS) and scattering components of the channel,
respectively. Also, we define

D �
[√

�1D1,
√

�2D2, ...,
√

�mDm
]
, which has at most

one nonzero element in each row and each column.
Without loss of generality, we assume that the nonzero
elements of D are real, with indices (l, l) for 1 ≤ l ≤ min
(Nt, Nr).
From (4), the transmit correlation matrices of the BSs

and the receive correlation matrix of the user can be
expressed, respectively, as

Rt,i = E
{
HH

i Hi
}
= Ut,i�t,iUH

t,i for i = 1, 2, ...,m, (6)

and

Rr = E
{
HHH} = Ur�rUH

r , (7)

where Ft,i and Fr are diagonal matrices, Ut,i and Ur

are the eigenvector matrices of the transmit and receive
correlation matrices, respectively.
For ease of exposition, the channel coupling matrix is

usually defined as [26]

�i = E

{
H̃i � H̃

∗
i

}
, for i = 1, 2, ...,m. (8)

Substituting (5) into (8) yields

�i = Di � Di +Mi � Mi, for i = 1, 2, ...,m, (9)

and the power constraint (3) can be rewritten as

Nr∑
k=1

N(i)
t∑

l=1

ω
(i)
kl = N(i)

t Nr , for i = 1, 2, ...,m. (10)

In the above, the (k,l)th element of Ωi, i.e., ω
(i)
kl
, corre-

sponds to the average power of the (k,l)th element of

H̃i , i.e., h̃(i)kl , which captures the average coupling

between the kth receive eigenmode and the lth transmit
eigenmode of BSi.

3 Statistical CSI-aided coordinated BS
transmission
Here, we first devise the optimal transmit scheme for
each BS, and then derive a closed-form upper bound for
the ergodic sum capacity using the matrix permanents.
Based on the capacity bound, we develop low-complex-
ity power allocation solutions using convex optimization
techniques, followed by discussion of the beamforming
optimality conditions for the BSs.

3.1 Optimal transmit scheme
We here assume that the mobile receiver has perfect
instantaneous CSI, whereas the BSs only have the statis-
tical CSI including Ut,i, Ur, Di and Mi (and thus Ωi) (i =
1, 2, ..., m), and this information can be exchanged
among the BSs via the wired backbone. Under these
assumptions, the ergodic sum capacity of the downlink
system is achieved by selecting the transmitted signal
vector x to follow a zero-mean proper Gaussian distri-

bution [1]. Let E
{
xxH
}
= P

Nt
Q , where

Q =

⎛
⎜⎜⎜⎝
Q11 Q12 · · · Q1m
Q21 Q22 · · · Q2m
...

...
. . .

...
Qm1 Qm2 · · · Qmm

⎞
⎟⎟⎟⎠ , (11)

with Qij =
Nt
P E

{
xixHj
}
. The power constraint (2) can

be rewritten as tr (Qii) =
PtNt
P = P′

i , for i = 1, 2, ..., m,

and the ergodic sum capacity is given by

C = max
tr{Qii}=P′

i∀i
Qii�0∀i

E
{
log det

(
INr + γHQHH)} ,

(12)

where γ = ρ

Nt
. Let Qii = Ui�iUH

i , for i = 1, ..., m, with

Ui being the eigenvector matrix, and

�i = diag
(
λ
(i)
1 ,λ(i)

2 , ...,λ(i)

N(i)
t

)
the diagonal matrix of the

corresponding eigenvalues. The following theorem
addresses the optimal transmit direction of each BS.
Theorem 1 The ergodic sum capacity is achieved if the

BS transmit signals are all mutually independent (i.e.,

Qopt
ij = 0 , for i ≠ j), and the eigenvector matrix of Qopt

ii for

the jointly-correlated channel (4) is given by Ui = Ut,i. The
ergodic sum capacity is then expressed as
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C = max
tr{�i}=P′

i∀i
�i�0∀i

E

{
log det

(
INr + γ

m∑
i=1

�iH̃i�iH̃
H
i

)}
.(13)

Proof: Form (4) and (5), the channel matrix H can be
expressed as

H = UrH̃U
H
t , (14)

H̃ = D +M � Hiid, (15)

where

H̃ =
[√

�1H̃1,
√

�2H̃2, ...,
√

�mH̃m

]
,Ut = diag

{
Ut,1,Ut,2, ...,Ut,m

}
,

M =
[√

�1M1,
√

�2M2, ...,
√

�mMm

]
,Hiid =

[
Hiid,1,Hiid,2, ...,Hiid,m

]
.

Defining Q̃ � UH
t QUt and substituting (14) into (12)

yields

C = max
tr{Q̃ii}=P′

i∀i
Q̃ii�0∀i

I(Q̃),
(16)

where

I
(
Q̃
)
= E

{
log det

(
INr + γ H̃Q̃H̃

H
)}

. (17)

Note that the optimization condition is met since

tr
{
Q̃ii

}
= tr {Qii}. Now, define Πl for 1 ≤ l ≤ Nt as diag-

onal matrices all of which have their diagonal entries
being all 1s except for the (l,l)th entry as -1. As Πl is a
unitary matrix, (17) can be written as

I
(
Q̃
)
= E

{
log det

(
INr + γ

∏
l
H̃
∏

l

∏H

l
Q̃
∏

l

∏H

l
H̃

H∏H

l

)}
for any

∏
l
. (18)

Note that H̃ is given by (15) and
∏

lH̃
∏

l has the

same distribution as H̃ , since D is a diagonal matrix
plus the fact that the entries of M ʘ Hiid are indepen-
dent and their distributions being symmetric, reversing
the sign of some columns does not alter the distribu-
tion. Thus, we have

I
(
Q̃
)
= E

{
log det

(
INr + γ H̃�H

l Q̃�lH̃
H
)}

= I
(
�H

l Q̃�l

)
. (19)

From Jensen’s inequality, it follows that [37-39]

I
(
1
2

(
Q̃ + �lQ̃�H

l

))
≥

I
(
Q̃
)
+ I
(
�lQ̃�H

l

)
2

= I
(
Q̃
)
,

(20)

where the matrix 1
2

(
Q̃ + �lQ̃�H

l

)
has entries equal to

those of Q̃ except for the off-diagonals in the lth row

and lth column, which are zero. In particular, its trace is
identical to that of Q̃ . As a result, nulling the off-diago-

nal entries of any column and the corresponding row of

Q̃ can only increase I
(
Q̃
)
. Using the same process Nt

times, (17) is maximized with a diagonal Q̃ , i.e., Q̃ = �.

As a result, we have Qopt = Ut�UH
t , or

Qopt
ij =

{
Ut,i�iUH

t,i if i = j,
0 if i �= j,

(21)

where Λ = diag {Λ1, Λ2, ..., Λm}. As such, (16) can be
rewritten as (13).
Theorem 1 reveals that the transmitted signals of all

BSs should be mutually independent and the optimal
signaling directions of the i-th BS align with the eigen-
vectors of the transmit-side correlation matrix of the
MIMO channel of the i-th BS. This results extend the
prior results in [29,37,40,41] to the more general chan-
nel model given by (4).

3.2 Ergodic sum capacity upper bound
After knowing the optimal transmit directions of the BSs,
the remaining challenge is to determine the eigenvalues
of the capacity-achieving input covariance matrix Qii for
i = 1, ..., m. This is equivalent to optimally allocating the
available transmit power over the optimized transmit
eigen-directions that are determined by Theorem 1.
In the most general case, it is difficult to derive exact

closed-form solutions for the power allocation problem.
The main obstacle lies in the complexity in evaluating
the expectation in (13) which is usually done by stochas-
tic averaging over a large number of random samples. In
this section, our approach is to derive a tight upper
bound for the expectation in (13) which can serve as an
approximation to the ergodic capacity. Based on this, we
develop closed-form power allocation solutions which
will be presented in Section 3.3.
Due to the concavity of the log(·) function, C is upper

bounded by

C ≤ Cu = max
tr{�i}=P′

i∀i
�i�0∀i

Cu (λ) ,
(22)

where

Cu(λ) = logE

{
det

(
INr + γ

m∑
i=1

�iH̃i�iH̃
H
i

)}
, (23)

with λ =
[
λT
1,λ

T
2, ...,λ

T
m

]T, in which li denotes an

N(i)
t × 1 vector containing the eigenvalues λ

(i)
j for

j = 1, ...,N(i)
t

and i = 1, ..., m. The upper bound (22) can

be rewritten as
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C ≤ Cu = max
1Tλi=P′

i∀i
λi≥0∀i

Cu(λ). (24)

The expectation derivation in (23) is based heavily on
exploiting linear-algebraic concepts and the properties
of matrix permanents. The permanent of a matrix is
defined in a similar fashion to the determinant. The pri-
mary difference is that when taking the expansion over
minors, all signs are positive. The permanents of M × N
matrices have been investigated in [28,42]. We introduce
the definitions and properties of matrix permanents in
Appendix 1.
From these definitions, we extend the results of [28]

to the case of multiple BSs. We can derive a closed-
form expression for the upper bound on the ergodic
sum capacity.
Theorem 2 The ergodic sum capacity in (13) is upper

bounded by

C ≤ Cu = max
1Tλi=P′

i∀i
λi≥0∀i

C̃u(λ), (25)

where C̃u (λ) = log Per (γ [�1�1�1, ...,�m�m�m]) ..
Proof: We start by letting

E(λ) � E

{
det

(
INr + γ

m∑
i=1

�iH̃i�iH̃
H
i

)}
= E

{
det
(
INr + γ H̃diag(λ)H̃

H
)}

, (26)

where H̃ =
[√

�1H̃1,
√

�2H̃2, ...,
√

�mH̃m

]
. The upper

bound of mutual information (23) can be rewritten as

Cu (λ) = log E(λ). (27)

By using the known result [28, Theorem 2], E(l) can
be expressed as

E(λ) = Per
(
γ [�1�1, ...,�m�m]diag(λ)

)
= Per (γ [�1�1�1, ...,�m�m�m]) . (28)

Substituting (28) into (27) and using (24) completes
the proof.
From Theorem 2, we can see that the upper bound of

ergodic sum capacity depends on the average SNR and
the eigenmode channel coupling matrices Ωi, for i = 1,
2, ..., m. Low-complexity algorithms about the computa-
tion of the matrix permanent were developed in [28].

3.3 Optimizing the power allocation policies
We now consider the transmitter power allocation opti-
mization problem. Based on the upper bound in Theorem
2, we develop low-complexity power allocation solutions
using convex optimization techniques and then propose
a simple iterative water-filling algorithm (IWFA) for
approaching the optimal power allocation policy.
From (25), the power allocation optimization problem

can be formulated as

max
λi≥0∀i

C̃u(λ) (29)

s.t. 1Tλi = P′
i∀i. (30)

The above problem is a concave optimization problem
[28] and the solution can be evaluated by employing
standard convex optimization algorithms. In the follow-
ing, we derive necessary and sufficient conditions for
the optimal solution using the Karush-Kuhn-Tucker
(KKT) conditions.
Theorem 3 The expected mutual information upper

bound C̃u(λ)is concave with respect to l, and the neces-
sary and sufficient conditions for the optimal power allo-
cation are given by

λ
(i)
j =

(
ν̃i −

p
(
λi(j)
)

q
(
λi(j)
)
)+

, (31)

1Tλi = P′
i, for j = 1, ...,N(i)

t , and i = 1, ...,m, (32)

where

p
(
λi(j)
)
= Per

(
γBi(j)

)
, (33)

q
(
λi(j)
)
= Per

(
γBi[j]

)− Per
(
γBi(j)

)
, (34)

B = [Γ1Ω1Λ1, ..., ΓmΩmΛm], Bi(j) denotes the block
matrix obtained by replacing the ith sub-matrix (i.e.,
ΩiΛi) of B by Ωi(j)diag(li(j)), Bi[j] denotes the block
matrix obtained by replacing the ith submatrix of B by
Ωidiag(li[j]), Ωi(j) denotes the sub-matrix of Ωi obtained
by deleting the jth column, li(j) denotes the(
N(i)

t − 1
)

× 1vector obtained by deleting the jth ele-

ment of li, and li[j] denotes the N(i)
t × 1vector obtained

by replacing the jth element of li by unity. In addition,
(a)+ = max{0, a} and ν̃i is chosen to satisfy the power
constraints in (32).
Proof: See Appendix 2.

Since the right-hand-side of (31) is independent of λ
(i)
j ,

we propose a simple IWFA to evaluate the optimal
power allocation policy which satisfies (31). Simulation
results, to be given in Section 4, will demonstrate that
this proposed approach works very well and is highly
efficient; typically converging after only a few iterations,
with the first iteration achieving near-optimal perfor-
mance. The proposed algorithm includes the following
steps:

Step 1 Initialize λ0 = 1, C̃u

(
λk
)
= log Per

(
γBk
)
, and

k = 0.
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Step 2 Calculate p
(
λk
i(j)

)
= Per

(
γBk

i(j)

)
and

q
(
λi(j)
)
= Per

(
γBk

i[j]

)
− Per

(
γBk

i(j)

)
, for j = 1, 2, ...,N(i)

t ,

and i = 1, ..., m.

Step 3 Calculate λ
(i)k+1

j =

⎛
⎝ν̃i −

p
(
λk
i(j)

)
q
(
λk
i(j)

)
⎞
⎠

+

, for

j = 1, ...,N(i)
t , and i = 1, ..., m, with the power con-

straints
∑N(i)

t

j=1
λ
(i)k+1

j = P′
i
for i = 1, ..., m.

Step 4 Calculate C̃u
(
λk+1
)
= log Per

(
γBk+1

)
.

Step 5 If C̃u
(
λk+1
) ≤ C̃u

(
λk
)

set

λk+1 := 1
Nt

λk+1 + Nt−1
Nt

λk, and recalculate C̃u
(
λk+1
)
.

Step 6 Set k := k + 1 and return to Step 2 until the
algorithm converges or the iteration number is equal to
a predefined value.
In the above, the superscript k specifies the corre-

sponding variable in the kth iteration so that lk stands
for the value of l in the kth iteration. In Step 1 of the
first iteration, l is initialized to 1, i.e., equal-power allo-
cation. Note, however, that l could also be initialized in
a different way. For example, it is expected that the
channel statistics change smoothly frame by frame,
where a more appropriate initialization would be the
optimal value of l from the previous frame. In Step 3,
the conventional water-filling algorithm is performed
with the required variables p(li(j)) and q(li(j)) calculated
in Step 2. Following the calculation of C̃u(λ) in Step 4,
Step 5 is performed to guarantee convergence [28]. In
Step 6, the convergence of the algorithm can be deter-
mined by checking whether∣∣∣C̃u

(
λk+1
)

− C̃u

(
λk
)∣∣∣ (or ∥∥∥λk+1 − λk

∥∥∥) is less than

some predefined value for a given precision.

3.4 Optimality of beamforming
Here, we investigate the optimality of beamforming (i.e.,
rank-one transmission) [29-34] in the context of the
multi-BS cooperation systems. We derive a necessary
and sufficient condition for the optimality of beamform-
ing in the multi-BS cooperation systems. For BSi, we
assume that the transmit eigenmodes satisfy the follow-
ing conditions

τ
(i)
1 ≥ τ

(i)
2 ≥ · · · ≥ τ

(i)

N(i)
t

, (35)

where τ
(i)
j =

∑Nr
k=1 ω

(i)
kj and ω

(i)
kj = [�i]kj, for

j = 1, ...,N(i)
t and i = 1, ..., m.

Theorem 4 For multi-BS cooperation systems, the
transmit covariance matrices of all the BSs that achieve
the sum capacity are of unit-rank (i.e., beamforming is

optimal for all the BSs) if and only if the following
inequality is fulfilled:

1 − E

{
1

1+ρi�ih̃
H
i1A

−1
i h̃i1

}

tr
[
E
(
A−1
i �ij

)]− ρi�iE

{ (
h̃
H
ij A

−1
i h̃i1

)2
1+ρi�ih̃

H
i1A

−1
i h̃i1

} > ρi�i, for j = 2, ...,N(i)
t and i = 1, ...,m. (36)

where

h̃ijand h̃ijare the first and jth columns of H̃i , respec-

tively, with H̃idefined as in (15), and dij and mij are the
jth columns of Di and Mi, respectively.
Proof: See Appendix 3.
Note that the proof is nontrivial generalization of the

techniques in [33] to the jointly correlated MIMO
multi-BS cooperation systems. We can make the follow-
ing observations.

• If h̃ij for j = 1, ...,N(i)
t are i.i.d., the left-hand-side

of (36) remains unchanged when j varies from 2 to

N(i)
t , and the right-hand-side of (36) is maximized

for i = 2. It means that if the condition for i = 2
holds, then it is also held for all other i. Thus,
inserting j = 2 into (36) gives the following condi-
tion:

1 − E

{
1

1+ρi�ih̃
H
i1A

−1
i h̃i1

}

tr
[
E
(
A−1
i

)
�i2
]− ρi�iE

{ (
h̃
H
i2A

−1
i h̃i1

)2
1+ρi�ih̃

H
i1A

−1
i h̃i1

} > ρi�i, for j = 1, ...,m. (37)

• If the LOS D = 0 and mij =
[
a1bi,j, ..., aNr bi,j

]T ,
where al and bi,j are square-roots of the eigenvalues
of the receive correlation matrix Fr and transmit
correlation matrix Ft,i, respectively. In this case, the
channel degenerates to the Kronecker channel. It
can be proved that (37) reduces to the beamforming
optimality condition in [33, Theorem 2].

4 Numerical results
In this section, we present numerical results to evaluate
the tightness of the capacity bound, and demonstrate
the efficiency and performance of the proposed trans-
mitter optimization approach. We consider downlink
transmission for coordinated cellular networks with two
BSs and single user. Assumption that all cases have the
same total transmit power of BSs, i.e., P1 = P2. For the
jointly correlated channel, we set the LOS D = 0. The
spatial channel model (SCM) [43,44] is used to generate
channel matrices of two independent links, i.e., Ω1, Ω2.
The simulation environment is set to be urban micro-
cell, with the BS antenna spacing dBS = 0.5l, and the

Zhang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:81
http://asp.eurasipjournals.com/content/2012/1/81

Page 6 of 13



user antenna spacing dUE = 0.5l. The number of distin-
guishable paths is set to be 1, i.e., flat fading. For each
link, 1,000 time samples are generated for the calcula-
tion of the statistical CSI. The path loss model is 31.5 +
35 log 10(d) (d(m)) and site to site distance is set to
1,000 m. In all of the following figures, the horizontal
axis (SNR) indicates the received SNR.
Figure 1 illustrates the results of the ergodic sum

capacity of the joint IWFA and the individual IWFA
(where the BSs cannot cooperate) with

N(1)
t = 4,N(2)

t = 4,Nr = 4 . As we can see, the capacity

of joint IWFA is greater than that of individual IWFA.
For comparison, the results for the exact ergodic sum
capacity are also shown, which were obtained by
numerically evaluating (13) using a constrained optimi-
zation. In addition, Equal-power allocation and beam-
forming are optimal in the high and low SNR regimes,
respectively.
Figure 2 demonstrates the convergence of the pro-

posed IWFA for optimal power allocation. In this figure,

the SNR r is set to 20 dB, and the algorithm is initia-
lized using l0 = 1. From these results, we see that the
proposed IWFA converges after only a few iterations.
Figure 3 compares the ergodic sum capacity upper

bound in (25) with the Monte-Carlo simulation results
of the ergodic mutual information by averaging over a
large number of independent realizations of H with{
N(1)

t = 2,N(2)
t = 2,Nr = 2

}
,
{
N(1)

t = 2,N(2)
t = 2,Nr = 4

}
and

{
N(1)

t = 4,N(2)
t = 4,Nr = 8

}
. It shows that the ergo-

dic sum capacity upper bound is tight. Employing this
result of the ergodic sum capacity upper bound, the
proposed IWFA for optimal power allocation can be
achieved the true channel capacity.
To investigate the beamforming optimality condition,

the inequality (36) can be rewritten as
(
1 − E

{
1

1+ρi�iτ
(i)
1 τ

(i)−1
1 h̃

H
i1A

−1
i h̃i1

})
τ
(i)
j

tr
[
E
(
A−1
i �ij

)]− ρi�iτ
(i)
1 τ

(i)−1
1 E

{ (
h̃
H
ij A

−1
i h̃i1

)2
1+ρi�iτ

(i)
1 τ

(i)−1
1 h̃

H
i1A

−1
i h̃i1

} > ρi�iτ
(i)
j , for j = 2, ...,N(i)

t and ∀i. (38)
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Figure 1 The ergodic sum capacity results by numerically solving (13), the proposed joint IWFA, and the individual IWFA.
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We set the LOS D = 0 and Γ1 = Γ2 = 1, the number

of transmit antennas N(i)
t = 2 and the number of receive

antennas Nr = 4, with the same SCM as before. Figure 4
shows the beamforming optimality condition (38) for
different numbers of BSs. The condition is plotted as a

function of ρ1τ
(1)
1

and ρ1τ
(1)
2

. We see that the region

where beamforming is optimal gets larger with increas-
ing number of BSs. Note that these curves lie below the

τ
(1)
1 = τ

(1)
2 line because τ

(1)
1 is the largest transmit

eigenmode. It can be seen that as m increases, the

curves get closer to the τ
(1)
1 = τ

(1)
2 line.

Figure 5 illustrates the beamforming optimality condi-
tion (38) for different antenna spacing. We set the num-
ber of BSs m = 5. The condition is plotted as a function

of ρ1τ
(1)
1

ans ρ1τ
(1)
2

. We see that the region where

beamforming is optimal gets larger as the user antenna
spacing decreases and remains almost unchanged as the
BS spacing changes.

5 Conclusion
We optimized the transmission for jointly correlated
MIMO channels using statistical CSI over cooperative
cellular networks with multiple BSs and a single cell-
edge receiver user. We proposed an optimal transmit
scheme to maximize the ergodic capacity and showed
that the transmitted signals of all the BSs should be
mutually independent and the optimal transmitted
directions are the eigenvectors of the BS’s own transmit
correlation matrix. We also derived a closed-form tight
upper bound for the ergodic capacity, based on which
we developed low-complexity power allocation solutions
using convex optimization techniques and a simple
IWFA. Finally, we derived the beamforming optimality
conditions for all the BSs.

Appendix 1: The definitions and properties of
matrix permanents
Definition 1 For an M × N matrix A, the permanent is
defined as
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Figure 2 Convergence of the IWFA for the optimal power allocation for SNR = 20 dB.
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Per(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
α̂M∈SM

N

M∏
i=1

ai,αi , if M ≤ N,

∑
β̂N∈SN

M

N∏
i=1

aβi,i , if M > N,
(39)

where ai,j denotes the (i,j)th element of A; Sk
N denotes

the set of all size-k permutations of the numbers {1, 2, ...,
N}, for k ≤ N; α̂k = (α1,α2, ...,αk) , ai Î {1, 2, ..., N} for 1
≤ i ≤ k, and ai ≠ aj for 1 ≤ i, j ≤ k and i ≠ j.
Definition 2 The extended permanent of A is defined as

Per(A) = Per ([IMA]) = Per
([
INAT]) . (40)

According to the above definition, one can easily
establish a number of important properties of the matrix
permanent, as given in the following lemma [28].
Lemma 1 Let A be an M × N matrix, a an M × 1 vec-

tor, b an N × 1 vector, and μ a scale constant. Then, we
have

Per(A) = Per(AT) (41)

Per(a) =
M∑
i=1

ai (42)

Per
(
diag(a)

)
= det

(
diag(a)

)
(43)

Per(μA) = μmin(M,N)Per(A) (44)

Per
(
diag(a)A

)
= det

(
diag(a)

)
Per(A), for M ≤ N (45)

Lemma 2 Let A be an M × N matrix. Then,

Per(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
σ̂k∈S(k)

N

Per
(
Aα̂k

σ̂k

)
Per
(
A

α̂′
k

σ̂ ′
k

)
, if M ≤ N

∑
σ̂k∈S(k)

N

Per
(
Aσ̂k

β̂k

)
Per
(
A

σ̂ ′
k

β̂ ′
k

)
, if M > N,

(47)
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where S(k)
N

denotes the set of all ordered length-k sub-

sets of the numbers {1, 2, ..., N}; α̂k = (α1,α2, ...,αk) , ai

Î {1, 2, ..., N} for 1 ≤ i ≤ k, and a1 <a2 < ··· <ak;

β̂k ∈ S(k)
N

and β̂k ∈ S(k)
N

with 1 ≤ k ≤ min(M, N); Aα̂k

β̂k
is

the sub-matrix of A obtained by selecting the rows and

columns indexed by α̂k and β̂k respectively; α̂′
k and

β̂ ′
k denote the sequences complementary to α̂k and β̂k in

{1, 2, ..., M} and {1, 2, ..., N}, respectively; A
α̂′
k

β̂ ′
k
is the sub-

matrix of A obtained by deleting the rows and columns
indexed by α̂k and β̂k , respectively.

Appendix 2: Proof of Theorem 3
Let μ =

[
μT
1,μ

T
2, ...,μ

T
m

]T and ν = [ν1, ν2, ..., νm]
T be the

Lagrange multipliers for the inequality constraint l ≥ 0
and the equality constraint 1Tλi = P′

i, for i = 1, 2, ..., m,

respectively, where μT
i =
[
μ
(i)
1 ,μ(i)

2 , ...,μ(i)

N(i)
t

]T
, for i = 1,

2, ..., m. Then, the KKT conditions satisfied by the opti-
mal l can be found from solving

∂C̃u(λ)

∂λ
(i)
j

+ μ
(i)
j + νi = 0, (48)

λi ≥ 0, 1Tλi = P′
i,μi ≥ 0, μ

(i)
j λ

(i)
j = 0, (49)

where
∂C̃u(λ)

∂λ
(i)
j

denotes the partial derivative of C̃u(λ)

with respect to λ
(i)
j , for 1 ≤ j ≤ N(i)

t and 1 ≤ i ≤ m. By

using the derivative chain rule, we then have

∂C̃u(λ)

∂λ
(i)
j

=
1

E(λ)
∂E(λ)

∂λ
(i)
j

. (50)

Now, letting B = [Γ1Ω1Λ1, ..., ΓmΩmΛm], we can write
E(l) = Per (gB). To evaluate the remaining derivatives in
(50), we apply the Laplace expansion property of
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Figure 4 The optimality of beamforming for different numbers of BSs for systems with Nr = 4,N(i)
t = 2 for i = 1, ..., m.
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permanents, given by Lemma 2 in Appendix 1 when k =
1, to express E(l) as

E(λ) = p
(
λi(j)
)
+ λiq(λi(j)), (51)

where p(li(j)) and q(li(j)) are given by (33) and (34),
respectively. Thus, (50) becomes

∂C̃u(λ)

∂λ
(i)
j

=
q
(
λi(j)
)

p
(
λi(j)
)
+ λiq

(
λi(j)
) . (52)

Substituting (52) into (48) and eliminating the slack
variable μ, the KKT conditions become (31) and (32),

where (a)+ = max{0, a} and ν̃i = 1
νi
.

Appendix 3: Proof of Theorem 4
It is obvious that (13) is equivalent to the following con-
vex optimization problem:

min −E

⎧⎨
⎩log2

∣∣∣∣∣∣INr + γ

m∑
i=1

�i

N(i)
t∑

j=1

λ
(i)
j h̃ijh̃

H
ij

∣∣∣∣∣∣
⎫⎬
⎭ , (53)

s.t.
N(i)

t∑
j=1

λ
(i)
j = P′

i, for i = 1, ...,m, (54)

with h̃ij denoting the j-th column of H̃i . The Lagran-

gian of the problem is given by

L = −E

⎧⎨
⎩log2

∣∣∣∣∣∣INr + γ

m∑
i=1

�i

N(i)
t∑

j=1

λ
(i)
j h̃ijh̃

H
ij

∣∣∣∣∣∣
⎫⎬
⎭ +

m∑
i=1

μi

⎛
⎝N(i)

t∑
j=1

λ
(i)
j − P′

i

⎞
⎠ , (55)

with μi denoting the Lagrange multiplier correspond-
ing to the transmit power constraint of BSi. Since the
problem is convex, we can derive necessary and suffi-
cient conditions for the optimal solution using the KKT
conditions. The KKT conditions for BS i can be found
as

γ�iE

⎧⎪⎨
⎪⎩h̃

H
ij

⎛
⎝INr + γ

m∑
i=1

�i

N(i)
t∑

j=1

λ
(i)
j h̃ijh̃

H
ij

⎞
⎠

−1

h̃ij

⎫⎪⎬
⎪⎭ ≤ μi, for j = 1, ...,N(i)

t , (56)

where the conditions are met with equality only if, for

a given j, the corresponding eigenvalue λ
(i)
j of the input

covariance matrix is non-zero. Thus, from (35),
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Figure 5 The optimality of beamforming for different antenna spacing for systems with m = 5, Nr = 4, N(i)
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beamforming is optimal if (56) is satisfied as an equality
for j = 1, and as a strict inequality for all other j. This
means that beamforming of BSi along the strongest
transmit eigenmode is optimal. That is,

Ei1 = γ�iE

{
h̃
H
i1A

−1h̃i1

}
= μi, (57)

Eij = γ�iE

{
h̃
H
ij A

−1h̃ij

}
< μi, for j �= 1. (58)

where

A = INr + γ

m∑
i=1

�iP′
ih̃i1h̃

H
i1 (59)

Equivalently, the beamforming optimality conditions
for BSi can be written as

Ei1
Eij

> 1, for j = 2, ...,N(i)
t . (60)

We now use the matrix inversion formula [45] to give

A−1 = A−1
i − A−1

i h̃i1

(
1

ρi�i
+ h̃

H
i1A

−1
i h̃i1

)−1

h̃
H
i1A

−1
i (61)

and as a result, we get

h̃
H
i1A

−1h̃i1 = h̃
H
i1A

−1
i h̃i1 − h̃

H
i1A

−1
i h̃i1

(
1

ρi�i
+ h̃

H
i1A

−1
i h̃i1

)−1

h̃
H
i1A

−1
i h̃i1

=
1

ρi�i

(
1 − 1

1 + ρi�ih̃
H
i1A

−1
i h̃i1

)
,

(62)

where

Ai = A − �iP
′
ih̃i1h̃

H
i1, (63)

Therefore, (57) and (58) can be rewritten as

Ei1 =
1
P′
i
− 1

P′
i
E

{
1

1 + ρi�ih̃
H
i1A

−1
i h̃i1

}
(64)

and

Eij = γ�itr
[
E

(
A−1
i h̃ijh̃

H
ij

)]
−γ�iE

{(
h̃
H
ij A

−1
i h̃i1

)2( 1
ρi�i

+ h̃
H
i1A

−1
i h̃i1

)−1
}
, for j �= 1.(65)

Note that h̃ij for j ≠ 1 and Ai are independent, and

h̃ij = dij +mij � hiid,ij, where dij, mij and hiid,ij are the jth
column of Di, Mi and Hiid,i, respectively. Then,

E

{
h̃ijh̃

H
ij

}
= dijd

H
ij +mijmH

ij � INr , for j = 2, . . . ,N(i)
t (66)

and (65) can be simplified as

Eij = γ�itr[E(A−1
i )(dijd

H
ij +mijmH

ij �INr )]−γ ρi�
2
i E

⎧⎪⎨
⎪⎩
(
h̃
H
ij A

−1
i h̃i1

)2
1 + ρi�ih̃

H
i1A

−1
i h̃i1

⎫⎪⎬
⎪⎭ , for j �= 1. (67)

Combining (60), (64), and (67), we obtain the desired
condition in (36).
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