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Abstract

This article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic
resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of
which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In
the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time
points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle.
Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this
end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results
are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find
their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are
selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from
the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and
reconstructing the images generate more accurate images compared to alternative methods. The proposed under-
sampling approach achieves an acceleration factor of 2 for cardiac cine MRI.

Keywords: cardiac cine MRI, fuzzy c-means, hidden Markov model, compressive sensing

Introduction

Some time-consuming applications of magnetic reso-
nance imaging (MRI), especially dynamic ones, such as
cardiac, functional magnetic resonance imaging (fMRI),
diffusion tensor imaging, and spectroscopic imaging are
developed in recent years. Consequently, it seems inevita-
ble to find some ways to increase MRI speed without los-
ing image quality. Reducing MRI data acquisition time
may increase patient’s comfort and economic efficiency
but decrease spatial or temporal resolution of images.
The hardware solution that reduces MRI data acquisition
time by using more powerful gradient amplifiers is lim-
ited by technical and biological considerations like nerve
stimulation. Therefore, noticeable effort has been put
into developing methods to use intrinsic redundancy and

* Correspondence: hszadeh@ut.ac.ir

!Control and Intelligent Processing Center of Excellence (CIPCE), School of
Electrical and Computer Engineering, University of Tehran, Tehran
1439957131, Iran

Full list of author information is available at the end of the article

@ Springer

correlation of MRI data in the k-t space to reconstruct
images without a complete sampling of the k-t space. We
can divide these approaches into the following three cate-
gories [1]:

1. Exploiting correlations in k-space, such as parallel
imaging [2,3];

2. Exploiting temporal correlations, such as fMRI
example of UNFOLD [4];

3. Exploiting correlations in both k-space and time
domain, such as k-t BLAST [1].

Although the above methods are widely used to speed
up MRI, they have limitations like decreasing SNR, being
exclusively applicable to dynamic MRI, and need for spe-
cial hardware or training data.

In recent years, compressive sensing (CS) theory [5,6]
has been used to recover sparse signals from under-
sampled data. Applying this general signal processing
principle to MRI requires that [7]: (a) the desired image
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has a sparse representation, i.e., it is compressible, in a
known transform domain, e.g., wavelets; (b) the aliasing
artifacts due to k-space undersampling are incoherent
(noise like) in that transform domain. Random sampling
in k-space has the best incoherency with the basis of
sparsifying transform but this can be challenging in MRI
undersampling. Random undersampling of k-space,
including random sampling in both of the phase encoding
(PE) and frequency encoding directions, can be as time-
consuming as full sampling of k-space because of MRI
principles. We will address this problem in the article; (c)
a nonlinear reconstruction is used to enforce both sparsity
of the image representation and consistency with the
acquired data. Fortunately, there are efficient algorithms
to solve underdetermined systems of linear equations with
respect to the sparsity constraint corresponding to condi-
tion (c) [8]. We will use an iterative thresholding method
to reconstruct undersampled sparse signals.

CS is robust to noise and does not require any special
hardware. Thus, using CS principles to speed up MRI
can decrease the above-mentioned drawbacks. Successful
results have been achieved to speed up MRI by applying
CS to MRI [7,9-15]. Some of them focused on the first
stage, i.e., determining undersampling pattern in the k-t
space and others dealt with reconstruction algorithms.

In this article, we will consider both topics for cardiac
cine MRI. First, we will present a solution to sample some
k-space trajectories. To this end, we fill the upper half of
k-space completely for odd time points in a cardiac cycle.
Then, we process them to determine trajectories to sample
using fuzzy c-means and hidden Markov model (HMM)
principles. Then, we undersample k-spaces corresponding
to the even time points in a cardiac cycle, according to the
above results. We use an iterative method to reconstruct
desired images from the undersampled data by sparsity
constraint in both of the above-mentioned steps.

The proposed technique is a practical method for
applying CS to MRI, benefiting from MRI specifications
such as Hermitian symmetry of k-space and using avail-
able data to determine how we can undersample them.

In the following section, we describe the concepts used
in this article such as CS [5,6], HMM, and the iterative
thresholding algorithm for sparse recovery [16,17]. Also,
we present details of the proposed method. Using fuzzy
clustering, we study k-space trajectories through HMM
and then select the ones that have largest variations. After-
wards, we reconstruct the desired images by going through
a sequence of thresholding iterations. In the results sec-
tion, we present experimental results for an application of
the proposed method to reconstruct undersampled cardiac
cine MRI data. Then, we present strengths and drawbacks
of the proposed method and some suggestions to improve
it. In the conclusions section, we list the main findings of
our research. Finally, we show that our method results in
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improved quality of reconstruction in comparison with
some other methods.

Main text

In this section, we introduce the theory of CS [5,6,18]
and then discuss training of the HMM [19] based on
some observations. Next, we explain the iterative thresh-
olding algorithm used for reconstruction from under-
sampled k-space data. At the end, we describe the
details of our proposed algorithm.

Compressive sensing
Let x € RN, and the matrix A = [1;, Ay, .., Ax] be a basis
for RN, We say that x is K-sparse if we have

K
x= Zi=1 Oihi (1)

and K < N. Consider also an M x N measurement
matrix ®, M << N, where the rows of ®@ are incoherent
with the columns of A. Incoherency between rows of
the measurement matrix and the basis vectors means
that we need all of the vectors in the second set to
expand each of the vectors in the first set and vice
versa. CS theory states that only m (m) is of O(K-log(N))
incoherent measurements y = ®x, are required to recon-
struct the signal, x, with a high probability.

To reconstruct the desired signal, x, we should solve
the following combinatorial optimization problem

{ min.. 6l

stox—y|’ <e @)

where is the number of nonzero coefficients of the
transformed version of x in the domain which is sparse.
Solving this non-convex problem is very computation-
ally expensive and sometimes infeasible. Thus, one can
equivalently solve the convex /; minimization:

{ min. 6]l

5.t.||<I>x—y||2 <e ®

The threshold parameter ¢ is usually set below the
expected noise level [7]. Necessary conditions for equiva-
lency between (2) and (3) are beyond the scope of this arti-
cle but in brief, we can state that it requires: (a) sparsity of
the desired signal, x; and (b) some conditions on the mea-
surement matrix, @. Details of these conditions are pre-
sented in [5,6]. There are some efficient algorithms to
solve it [8]. We will use an iterative thresholding method
for this purpose.

Incoherence is an essential condition for this theory to
be successful. For example, if the rows of the measure-
ment matrix are i.i.d. Gaussian random vectors, such a
matrix is incoherent with any other fixed matrix with a
high probability. The problem of using CS in MRI is
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exactly lying here, because random sampling of k-t-
space can be as time-consuming as complete sampling.

Hidden Markov models

To explain HMMs [19], we should describe Markov mod-
els first. A Markov process is a time-varying random phe-
nomenon for which the Markov property holds. We will
mathematically define the Markov property but in words,
a stochastic process with the Markov property, or mem-
orylessness, is one for which conditional on the present
state of the system, its future and past are independent.
The term Markov chain is used to mean a Markov process
which has a discrete (finite or countable) state-space. Sup-
pose that for a Markov model, we have

- Observable states: 1, 2, ..., N.

- Observed sequence: q1, 42, g - q1

First-order Markov property means:

P(qi=jlg1=1q—2=k,...) =P(g; =jlgi—1 =) (4

A Markov model can be recognized by its state transi-
tion matrix T:

(3] (5)

where
ti = P(q; =jlgi—1 =i) 1=<1ij<NN (6)
with the constraints
tj >0, Vij
Zjil ti=1, Vi @)

An HMM is a statistical Markov model in which the sys-
tem being modelled is assumed to be a Markov process
with unobserved (hidden) states. In a regular Markov
model, the state is directly visible to the observer and
therefore the state transition probabilities are the only
parameters. In an HMM, the state is not directly visible
but the output that depends on the state is visible. Each
state has a probability distribution over the possible output
tokens. Therefore, the sequence of tokens generated by an
HMM gives some information about the sequence of
states. Note that the adjective ‘hidden’ refers to the state
sequence through which the model passes, not to the
parameters of the model; even if the model parameters are
known exactly, the model is still ‘hidden’.

Suppose for an HMM, we have

- Set of states: 1, 2, ..., N.
- Set of outputs: 1, 2, ..., M.
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- state transition matrix 7:
(23] €
where
tij = P(qr =jlgi—1 =1) 1=<1i,j<NN €)

- Observation probability distribution:

Bj(k) =P(o, =klgi=j) 1<k<M,1<j<N (10)
- 11, the initial state distribution:
mi=P(g1=i) 1<i<N (11)

An HMM can be described by the last three para-
meters: A = (T, B, n).

In this article, we employ HMM to study temporal
behavior of k-space lines. To this end, we consider out-
puts of clustering step as the set of outputs of a HMM
(0). We want to estimate A such that P(O | 1) is maxi-
mized. Fortunately, there is Baum-Welch algorithm to
solve this problem. As explained later, we use the esti-
mated 7 to decide about including or not including a k-
space line in the sampling pattern.

Iterative thresholding reconstruction

We will use the iterative thresholding reconstruction
algorithm described in [16,17] for image reconstruction
from undersampled k-space data. The Landweber
thresholding algorithm was originally presented in [20].
For the sake of completeness, we present a brief descrip-
tion of the reconstruction algorithm here.

In a discrete setting, assume an N x N image, flx, ),
and its discrete Fourier transform, F(u, v) = F{f (x, )},
where f denotes the Fourier transform. Define a sam-
pling mask, S, acting on the Fourier transform of the
image, F(u, v),

1 F(u,v) sampled

0 F(u, v) not sampled (12)

S(u,v) = {

The relationship between the incomplete set of

observed samples, G, and the image, F, can be expressed
by the above sampling mask as follows:

G=S-F (13)

where - denotes the point-wise product of S and F.

Clearly, the objective is to reconstruct the image, f,
from the available Fourier domain observations, G,
while the sampling mask, S, is also known. The recon-
struction algorithm can be summarized as below:
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1. initialization (min. energy reconstruction): n = 0, F’ =
F=S5.G

2.1 = [F Y

3. n++

4. maintain the constraint: 1" = S/’ B

5. recovery of the original observations: F* = G + H" -
S-H"

6. convergence? Yes: exit; no: go to 2

Here, superscripts denote the iteration number. Sy
denotes soft thresholding operation defined as:

S, (8) = =Sy ((g vi) i (14)
where
X + )// X< - Y
) XS
S,(x)=140, x| < (15)
x— V/ x> YV
2 2

and {w;} is a set of orthonormal basis functions for the
sparse domain. Thresholding, S,, is essentially a sparsity-
promoting operation. In brief, this operation promotes
sparsity in each iteration.

Proposed algorithm

As mentioned, increasing MRI speed by undersampling
k-t-space may decrease SNR of the reconstructed
images. Similarly, the MRI acquisition time may be
decreased by acquiring undersampled k-space data. This,
however, may result in loss of resolution or aliasing
reconstruction artifact in the spatial domain. Neverthe-
less, MR images often have sparse or compressible
representations in appropriate transform domains such
as wavelets. In fact, one may be able to use this sparsity
as an a priori reconstruction constraint to interpolate
missing k-space data. Also, use of CS in MRI does not
need any specific hardware changes. Therefore, in this
research, we focus on increasing MRI speed by CS.

To this end, we address two problems involved in
applying CS to MRI: (1) how to choose the undersam-
pling pattern of k-space; and (2) how to reconstruct an
image from the undersampled data. We use the data,
itself, to learn the undersampling pattern and apply an
iterative thresholding method for reconstruction from
undersampled k-space data.

Our proposed method is expressed in the following
main stages and the flowchart in Figure 1 illustrates its
steps.

For the odd points in the cardiac cycle,

« Sample the upper half of k-space.
+» Reconstruct the images corresponding to each coil
channel.
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+ Process the available k-space trajectories to specify
the ones that should be sampled.

In the above steps, we gather and use k-space of odd
time points to reconstruct the corresponding images
and determine sampling pattern of even time points.

For the even time points in the cardiac cycle,

+ Sample specific k-space trajectories according to
the results of the proceeding step.

+ Reconstruct images corresponding to each coil
channel.

To clarify details of the mentioned stages, we should
note the following.

+ We sample the central lines in addition to the
upper half of k-space. The resulting mask covers
62.5% of all lines. According to the MRI techniques,
5/8 or 62.5% of all lines is a standard fraction for
half scan.

+ We reconstruct images using undersampled k-
space data by iterative thresholding, as described
before.

+ Images corresponding to the multi-channel coil are
computed using the images of each coil channel and
sum-of-squares rule [21,22].

+ K-space corresponding to each image is obtained
by 2D Fourier transform.

As stated previously, we study temporal behavior of k-
space patterns to decide about selecting or not selecting
them in the sampling pattern. To this end, we employ
fuzzy c-means clustering and HMM’s as intermediate
tools. We cluster features extracted from each k-space
lines and then consider these class labels as states of some
HMM'’s. Finally, we estimate state transition matrices of
these HMM’s and use them to decide about selecting or
not selecting specific k-space lines in the sampling pattern.

The processing stage is described below.

« Feature extraction of k-space patterns: Mean, stan-
dard deviation, maximum, and median of each tra-
jectory are extracted.

o Clustering the extracted features: Clustering
method is fuzzy c-means and the number of clusters
is about % of the available trajectories. Clustering is
done for the available trajectories of each coil chan-
nel. It is possible to accelerate dynamic MRI, 2 to 8
times dependent on the type of MRI [4]. Thus, we
assume that every 4 (between 2 and 8) k-space lines
in the time direction, can be clustered into one clus-
ter. We choose fuzziness factor equals to 1.125.
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Figure 1 Flowchart of the proposed algorithm. Different steps of the proposed algorithm and their connections.
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« Class label rearrangement: After clustering, the
resulting labels for each coil channel may be different.
Thus, we have to rearrange these labels such that the
clusters with similar centers have the same label.
Class label rearrangement is automatic. In the fuzzy
clustering section, we first apply fuzzy clustering to
the extracted features from k-space corresponding to
the entire coil. In this way, we obtain cluster centers
and class labels for each k-space line. After that, we
apply fuzzy clustering to k-space of each coil channel.
Clusters of the entire coil and clusters of each coil
channel should have same labels if they have the
nearest centers. We compare cluster centers of coil

channels with cluster centers of the entire coil and
change them according to the above rule, if necessary.
+ HMM training: The above clusters are assumed as
outputs (O) of Markov models. We estimate para-
meters of HMM, A = (T, B, n), such that a posteriori
probability of outputs, P(O | 4), is maximized. This
is done using Baum-Welch algorithm. We use the
resulting transition matrices to decide about select-
ing or not selecting each k-space line.

+ Selecting or not selecting a k-space trajectory (line)
to be sampled in the even points of the cardiac cycle:
A steady Markov chain has a transition matrix near
an identity matrix. Thus, we select the trajectories
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that have transition matrices different from an iden-
tity matrix. Such trajectories are expected to have
more changes than the others and are more useful for
improving the reconstruction quality.

Results

Pre-processing

True image of each coil channel and computed image of
the entire coil, resulting from 2D inverse Fourier trans-
form of fully sampled k-space of time point 1, are
shown in Figure 2. The corresponding images, generated
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by the proposed iterative reconstruction method, are
shown in Figure 3. The undersampling mask includes
the upper 62.5% of k-space lines along the PE direction
as shown in Figure 4a. It is clear that the quality of the
reconstructed images is lower than those of the true
images.

Clustering

As described in the previous sections, we extract fea-
tures of each k-space line and then apply clustering to
them. The clustering results are shown in Figure 5 for
four samples of k-space trajectories.

@) Ch. I

d) Ch. ¢

b)Ch. 2

¢) Ch. 3

§Ch 6

I
|

g Ch 7 h)Ch. &

P mage of coil

/ /
\
&

Figure 2 True images of coil channels and entire coil, time point 1. (a-h) True image of each coil channel corresponding to time point 1

and (i) true image of the coil for time point 1.
.
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Figure 3 Estimated images of coil channels and entire coil, time point 1. (a-h) Estimated image of each coil channel corresponding to time
point 1 by the proposed iterative method and (i) estimated image of the coil for time point 1.

c) Ch 3

HMM training

We expect that the trajectories that include a large
amount of information also have more changes in the
related class labels than the others. The results of training
HMM'’s are shown in Figure 6. We used Baum-Welch
algorithm to train HMM’s. The inputs of the training
stage are the cluster labels generated in the clustering
step and the outputs are the transition matrices related
to k-space trajectories. As described before, we hypothe-
size that the trajectories that have transition matrices far
from the identity matrix have more information than the
others and should be more useful for improving the
reconstruction quality. Thus, we sort k-space trajectories
based on their differences from the identity matrix. Then,
we compose the undersampling mask by selecting the
trajectories that are on the top of the list. We use this

mask, shown in Figure 4b, to undersample k-space in the
even time points of the cardiac cycle.

Reconstruction

In the proposed algorithm, we first extract a mask for
undersampling even time points of cardiac cycle. After
that, we reconstruct images of even time points using our
iterative method. Thus, to show the performance of the
proposed algorithm, we first reconstruct cardiac images
for even time points by the extracted mask and some
other sample masks, as shown in Figure 4c-f. The results
for a sample even time point, point 18, are shown in
Figure 7. Second, we use 62.5% of upper mask for odd
time points and the extracted mask for even ones and
apply our proposed iterative, Lustig’s nonlinear conjugate
gradient [7], and k-t FOCUSS method [14] to reconstruct
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(f) normal (conventional) mask, 50%, along PE direction.

Figure 4 Different undersampling patterns (Masks). (a) 67.5% mask used for odd time points, (b) extracted mask, 37.5%, used for even time
points, (c) a test mask, 37.5%, including center lines and 1/6 of the other lines selected regularly, (d) regular mask, 50%, (e) random mask, 50%,

images for all time points. The results for a sample even
time point, point 18, are shown in Figure 8.

In addition, we compute all cardiac images using
SENSE [3] and GRAPPA [23] and 50% regular mask,
which are the main methods in parallel MRI. We
employ conventional minimum energy and Hemodyne
filtering [22], a method based on Hermitian symmetry,
and 50% upper mask to reconstruct undersampled car-
diac images, too. The results for a sample even time
point, point 18, are shown in Figure 9.

Discussion

We have proposed a method to obtain 62.5% of k-space
data at odd time frames and estimate the sampling tra-
jectory at even time frames. In ECG-gated cardiac MRI,
k-space data for each cardiac phase (odd and even time
frames) are obtained by collecting k-space data across
several heart beats. Since even and odd time frames
from a prospective gating are synthesized ones, they are

not obtained in sequential order. Thus, the proposed
algorithm may seem infeasible. However, it should be
noted that when we do not fill k-space for even time
points, we use the time to acquire more k-space data of
the odd time points. Therefore, the number of heart bits
(acquisition time) required for sampling of k-spaces of
odd time points reduces. The acquisition time of even
time frames, which is done afterwards, is reduced in the
same way. Thus, the proposed method decreases the
total time required for data acquisition. Details are pre-
sented in Additional file 1.

The acceleration factor of 2 demonstrated in this study
may not look impressive for dynamic MRI as some exist-
ing methods of fast MRI, such as parallel imaging, may
reach the same acceleration factor. As such, why should
one use the proposed method to get the same accelera-
tion factor? The answer is that this article proposes a
novel approach to use the data, itself, and determine an
optimal sampling pattern. In addition, the reconstruction
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Figure 5 Sample results of clustering. (a, b) Clustering results for two sample k-space lines. These two lines were selected for sampling mask.
(¢, d) Clustering results for two sample k-space lines. These two lines were not selected for sampling mask. The vertical axis refers to eight coil
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error of the proposed method is lower than those of the
other methods. Moreover, the method is developed for
the Cartesian sampling pattern. Other sampling patterns
may lead to higher acceleration factors.

Increasing the percentage of the selected lines reduces
reconstruction error and acceleration factor. To this end,
the number of clusters must be selected according to the
possible acceleration rates in dynamic MRI. Finally, redu-
cing the error bound is expected to reduce the reconstruc-
tion error but will increase the reconstruction time.

Strengths

We divide the data acquisition process into two steps:
data gathering for odd and even time points of the car-
diac cycle. This allows our method to use available data

to optimize the undersampling pattern and enhance the
reconstruction results.

We use an intrinsic property of MRI, Hermitian
symmetry of k-space data, and employ Fuzzy c-means
and HMM'’s as intermediate tools to study time varia-
tions of k-space trajectories. Our reconstruction
method has less error than some others state-of-the-
art methods, is robust to noise, and runs relatively fast.
The proposed method does not require any hardware
changes and thus it can be applied using the present
scanners.

Drawbacks
Our method is only applicable to dynamic MRI meth-
ods. We have to study time variations of a part of k-
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Figure 6 Sample results of HMM training. (a, b) The resulting transition matrices by Baum-Welch algorithm for two sample k-space lines.
These two lines were selected for sampling mask. (¢, d) Resulting transition matrices by Baum-Welch algorithm for two sample k-space lines.
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space data to determine the sampling pattern for the
other part. We have to consume time for data proces-
sing between the two steps of the proposed method.
This will add to the overall imaging time and reduce
speed of data acquisition to some extent, depending on
the computer being used.

Suggestions

We may use MRI properties to enhance different parts
of our algorithm. For example, we do not use the corre-
lation between two adjacent k-space trajectories to
decide about their selections. Extensions of CS theory,
such as distributed CS [11], can be employed to do so.
Furthermore, we may adapt our reconstruction algo-
rithm to the characteristics of the MRI data. To this
end, we may add MRI-based constraints to the sparsity

constraint and reduce reconstruction error or increase
the speed and robustness of the reconstruction process.

We may extend our algorithm to non-Cartesian sam-
pling patterns such as spiral and radial sampling [24].
We may apply our proposed method to other types of
dynamic MRI such as functional, perfusion, and diffu-
sion imaging.

At present, the proposed iterative thresholding algo-
rithm does not process data gathered by multi-channel
coils simultaneously. However, we may extend the pro-
posed method to process such data in parallel. It also does
not use data acquired previously from the same subject or
other subjects. We may extend the method to use existing
data to remove the delay in the data acquisition between
the odd and even time frames. This however may degrade
quality of the results slightly.
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Figure 7 True and reconstructed images by different masks for time point 18. For time point 18, (a) desired image and image
reconstructed by presented iterative method and (b) extracted mask, 37.5%, used for even time points, (c) a test mask, 37.5%, including center
lines and 1/6 of the other lines selected regularly, (d) regular mask, 50%, (e) random (conventional) mask, 50%, (f) normal (conventional) mask,

50%, along PE direction.

Conclusions

CS principles can be employed to speed up cardiac cine
MRI. In this article, we present a two-step approach to
increase the acquisition speed of the cardiac cine MRI
by a factor of 2.

First, we sample the upper half of k-space lines for the
odd time points of the cardiac cycle. Then, we study the
time behavior of k-space trajectories by HMM and select
the ones that have larger temporal variations to be
sampled for the even time points. Fuzzy ¢c-means and
HMM'’s are successfully employed as intermediate tools to
study time variations of k-space trajectories. The sampling
pattern extracted from the data is adaptive with the obser-
vations (available data) and thus enhances efficiency of the
reconstruction.

Methods

In this article, we present a two-step approach to
increase the acquisition speed of the cardiac cine MRI
by a factor of 2. First, we sample the upper half of k-
space lines, along PE direction, for the odd time points
of the cardiac cycle and reconstruct the related images
by iterative thresholding. Based on the fact that MRI
data are redundant theoretically, we limit our undersam-
pling mask, in both steps of the proposed algorithm, to
the upper half of k-space. Next, we studied temporal
behavior of k-space trajectories by HMM and select the
ones that have largest variations to be sampled for the
even time points. Then, we use iterative thresholding to
reconstruct the desired images using the undersampled
k-t space data.
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Figure 8 True image and reconstructed images by different CS-based methods for time point 18. For time point 18, (a) desired image,
image obtained by (b) the proposed iterative method; (c) Lustig's nonlinear conjugate gradient method; and (d) k-t FOCUSS algorithm.

b) Fec. &y
presenged itevative method

d) Rec. by
k-t FOCTISS method

We have successfully applied our proposed method to
real ECG gated cardiac cine MRI data with 35 time
points. We have changed the matrix size to 128 x 128.
Main parameters of the dataset are given in Additional
file 2.

We have implemented all the algorithms and simula-
tions using MATLAB, R2009a, on a Windows XP based
PC with 1.86 GHz centrino processor and 2 GB RAM.
We have also used the codes available at [25] to imple-
ment Lustig’s nonlinear conjugate gradient methods and
[26] to implement k-t FOCUSS algorithm. We have also

used the codes available at [27] to implement SENSE
and GRAPPA methods.

We have compared the results of the proposed recon-
struction method with those of the other methods.
Details are described below.

Comparison

As described in the “Results” section, we have compared
performance of our extracted mask with those of four
other masks, based on the reconstruction errors of even
time points. The reconstruction errors are reported in
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Figure 9 True image and reconstructed images by some state-of-the-art methods for time point 18. For time point 18, (a) desired image,
image obtained by (b) the proposed iterative; (c) Min. energy; (d) Hemodyne filtering; (e) SENSE with acceleration factor of 2; and (f) GRAPPA

¢) Min. energy inuge

P Inage ree. by
GRAPPA method

Figure 10. The ranges of relative errors, corresponding
to different mask, differ a lot. Thus, we have presented
the relative errors in two separate graphs, Figure 10a,b.
It can be seen that the proposed mask has the least
error.

It must be noted that we have used the following for-
mula to compute relative errors:

| True image — Reconstructed image|”

Error = (16)

||True image || 2

The quality of the images reconstructed by the pro-
posed iterative thresholding method and two other CS-
based methods (Lustig’s nonlinear conjugate gradient
min. of L1 + TV norm and the k-t FOCUSS) are com-
pared in Figure 11a. In Figure 11b, our results are
compared with the results of cardiac image reconstruc-
tion by SENSE and GRAPPA, two main methods in

parallel MRI, with acceleration factor of 2. It should be
noted that the first mask, used for the odd points,
includes 62.5% of k-space lines and the second one,
used for the even points, includes 37.5% of k-space
lines whose corresponding transition matrices are far
from the identity matrix. Thus, the overall acquisition
time saving is about 50%. Theoretically, 50% (the
upper half) of k-space data is sufficient for reconstruct-
ing real MR images. Therefore, our method is com-
pared with the conventional minimum energy and
Hemodyne filtering [22], a method based on Hermitian
symmetry, and 50% upper mask along PE direction, in
Figure 11c. Our proposed method has the least error
in all cases.

Another important parameter that may be used for
comparison of the reconstruction methods is the recon-
struction time. We have reported the reconstruction
times in Table 1. Our method is the third in the list.
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Table 1 Reconstruction times of different reconstruction
methods

Method Reconstruction time for each time frame (s)
[terative 14.6

Conj. Grad. 604

k-t FOCUSS 4.8

SENSE 24

GRAPPA 397

Comparison of image reconstruction times of different methods to reconstruct
an image corresponding to a time frame.

Additional material

Additional file 1: Applicability of the proposed method. This file
contains scheme, explanations and formulas needed to show how the
proposed method can speed up cardiac cine MRI.

Additional file 2: Dataset parameters. This file contains IRB and
technical information of used dataset.
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CS: compressive sensing; DTI: diffusion tensor imaging; fMRI: functional
magnetic resonance imaging; HMM: hidden Markov model; MRI: magnetic
resonance imaging; PE: phase encoding; SNR: signal-to-noise ratio.
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