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Abstract

One of the most relevant parameters to characterize the severity of ocean waves is the significant wave height
(Hs). The estimate of Hs from remotely sensed data acquired by non-coherent X-band marine radars is a problem
not completely solved nowadays. A method commonly used in the literature (standard method) uses the square
root of the signal-to-noise ratio (SNR) to linearly estimate Hs. This method has been widely used during the last
decade, but it presents some limitations, especially when swell-dominated sea states are present. To overcome
these limitations, a new non-linear method incorporating additional sea state information is proposed in this
article. This method is based on artificial neural networks (ANNs), specifically on multilayer perceptrons (MLPs). The
information incorporated in the proposed MLP-based method is given by the wave monitoring system (WaMoS II)
and concerns not only to the square root of the SNR, as in the standard method, but also to the peak wave length
and mean wave period. Results for two different platforms (Ekofisk and FINO 1) placed in different locations of the
North Sea are presented to analyze whether the proposed method works regardless of the sea states observed in
each location or not. The obtained results empirically demonstrate how the proposed non-linear solution
outperforms the standard method regardless of the environmental conditions (platform), maintaining real-time
properties.
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1. Introduction
Ocean waves are oscillations of the free sea surface caused
by the wind. Under severe meteorological conditions,
ocean waves can be dangerous for human marine activ-
ities, such as navigation, on- and off-shore management,
etc. One of the most important parameters to define the
severity of a given ocean wave field is the so-called signifi-
cant wave height, Hs, which is usually defined as the aver-
age of the one-third largest wave heights of the ocean
wave field of study. Hs is usually estimated using in-situ
sensors, such as buoys, recording time series of wave ele-
vation information. A complementary technique to ana-
lyze ocean waves is to use remote sensing imaging
methods, such as coherent radars [1-3], or conventional
X-band marine radars [4-6], which are non-coherent
radars commonly installed in moving vessels, as well as in

on- and off-shore platforms, or marine traffic control
towers. These non-coherent radars image the sea surface
at grazing incidence with horizontal polarization. Radar
images are caused by the interaction of the electromag-
netic fields transmitted by the radar antenna with the sea
surface roughness and ripples due to the local wind
[4,7,8]. This interaction produces a backscatter of the elec-
tromagnetic fields, which is commonly known by sailors
as sea clutter, and it is an undesirable signal for navigation
purposes.
The measurement of ocean waves by non-coherent X-

band marine radars is based on the acquisition of temporal
sequences of consecutive radar images of the sea surface.
Using these data sets, the spatial and temporal variability
of the sea surface is analyzed to extract an estimation of
the so-called wave spectrum [4,7,9]. From this wave spec-
trum, typical sea state parameters, such us characteristic
wave periods, wavelengths and wave propagation direc-
tions, can be derived to describe each sea state [6]. One of
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the sea state parameters commonly estimated from the
wave spectrum is Hs. Since non-coherent marine radars
are not radiometrically calibrated, Hs cannot be directly
obtained from the un-scaled (often logarithmically ampli-
fied as a function of range) backscatter image values. Due
to the un-scaled backscatter values, the wave spectral esti-
mation is not properly scaled, and the total energy of the
wave field cannot be directly estimated [9]. It is also possi-
ble to estimate Hs for the case of non-coherent marine
radars by using an extension of the methodology proposed
for processing synthetic aperture radar (SAR) images of
the sea surface [10]. This methodology is based on the
estimation of the signal-to-noise ratio (SNR) [9], where
the signal is the spectral energy of the un-scaled wave
spectrum, and the noise is related to the spectral energy of
the speckle noise in the radar image. Nowadays, this
method is used in operational applications, being consid-
ered as a standard method for wave analysis using non-
coherent X-band marine radar-based sensors in the
literature.
The research study presented in this article discusses the

limitations of the standard operational method used to
estimate Hs from marine radar image sequences. From the
analysis of these limitations, the incorporation of the SNR
is not enough to make accurate Hs estimates in some
cases (sea states). Therefore, an improved method should
incorporate information from this and other sea state
parameters derived from the wave spectrum. Since the
wave spectrum is mainly a non-linear process relating dif-
ferent wave generation sources (gravity, wind, etc.), the
function implemented by the proposed method is
expected to be non-linear. Due to the inherent capabilities
of artificial neural networks (ANNs) to implement non-
linear functions [11], they are investigated in this article to
find a non-linear relationship of Hs with SNR and other
sea state parameters. In our case of study, the multilayer
perceptron (MLP), a kind of feedforward ANN, is consid-
ered. This kind of ANN is selected because it has been
successfully used in the literature for different purposes
when working with non-coherent marine radars. As an
example, the capabilities of the MLPs to implement non-
linear functions [11] have been exploited in [12,13] to cre-
ate non-linear filters able to reduce the sea clutter power.
Moreover, due to the reduced computational cost of the
MLP once designed, it can be operationally used to report
Hs estimates in real-time. The performances and opera-
tional properties of the proposed MLP-based method to
estimate Hs is studied in different sea areas, where differ-
ent sea states are observed. This study will give us infor-
mation about whether the MLP-based method can be
applied in different sea locations or not.
The article is structured in five additional sections.

Section 2 deals with the description of the radar-based
system used for measuring ocean waves. This section

also describes the characteristics of the in-situ measure-
ments used in this research. Section 3 introduces the
standard methodology for estimating Hs by using con-
ventional non-coherent marine radar systems, including
a discussion of its limitations in practical applications.
Section 4 describes the new methodology proposed in
the article. A description of the way an MLP is used to
estimate Hs, the way it is trained, its computational cost
and the way the available data is divided for its design
and test is given. Section 5 presents and compares the
results achieved by using the standard and proposed
MLP-based methodologies when estimating Hs. Finally,
Section 6 summarizes the main conclusions drawn from
this research.

2. Instrumentation and in-situ measurements
It is known that, under certain conditions, signatures of
the sea surface are visible in non-coherent X-band marine
radar images [8,14,15]. The radar images of the sea surface
incorporate the backscatter of the transmitted electromag-
netic waves from the short sea surface ripples in the range
of the electromagnetic wavelength (e.g., ≈ 3 cm) [16].
Thus, swell (e.g., wave fields caused by storms in other
geographical locations and propagated to the area of
study) and wind sea (e.g., wave fields caused by local
storms) become visible as they modulate the backscattered
radar signal. Since standard non-coherent X-band marine
radar systems allow to scan the sea surface with high tem-
poral and spatial resolutions, they are able to monitor the
sea surface in time and space [14]. The combination of the
temporal and spatial wave information permits to obtain
wave data, such as the wave spectrum, being related to sea
state parameters [4,6,9]. The use of non-coherent marine
radars allows the detection of wave field features from
moving ships, as well as from on- and off-shore platforms.
As an active microwave remote sensing device, non-coher-
ent X-band marine radars work at grazing incidence and
horizontal polarization [15]. Table 1 illustrates the config-
uration of the conventional X-band marine radar used in
our case of study for ocean wave analysis.

Table 1 Transmission and reception characteristics of the
marine radar used in the experiments

Radar system frequency (X-band) 9.5 GHz

Antenna polarization H and H

Antenna rotation speed 25 rpm

Pulse repetition frequency (PRF) 1000 Hz

Radar pulse width 50 ns

Azimuthal range (coverage) 0-360°

Azimuthal resolution 0.15°

Distance range (coverage) 200-4000 m

Range resolution 7.5 m
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In our research study, to measure and store the radar
data, an A/D converter, such as the WaMoS II [4,5], is
used. WaMoS II is an operational wave monitoring system
originally developed at the German GKSS Research Center
Geesthacht, and is now commercially available from
OceanWaveS, GmbH. The marine radar-based system
used in our experiments consists of a conventional marine
radar, a high speed video digitizer generating marine radar
images (WaMoS II hardware) and software incorporated
in a standard computer analyzing the images and extract-
ing sea state parameters in real-time (WaMoS II software).
A scheme of the used +WaMoS II installation is depicted
in Figure 1.
Two different sources of data are used in our experi-

ments. These data were acquired in two different geogra-
phical locations of the North Sea, having different
oceanographic conditions. The main properties of these
platforms and their environmental characteristics are:

• Ekofisk is an oil field complex, property of Conoco-
Phillips. Ekofisk is located in the Norwegian sector of
the North Sea, about 320 km southwest of Stavanger.
Typical sea state conditions in that area present severe
wave fields generated by local storms. This geographi-
cal location is a wind sea-dominated area. In addition
to these wind sea states, swell-dominated wave fields
can also be superimposed, having bimodal sea states.
These bimodal sea states are highly dangerous for the
stability of the marine structures because these struc-
tures are attacked by different wave fields propagating
with different directions and different wave periods
and lengths.
• FINO 1 is an oceanographic research platform, being
located in the German basin of the North Sea. This
platform is about 45 km north of the island of

Borkum. FINO 1 is operated by the Federal Maritime
and Hydrographic Agency of Germany (BSH) to
understand the meteorological conditions in the area
to support the deployment of off-shore wind farms.
Although the general sea state conditions are similar
to the Ekofisk area, the location of FINO 1 presents
more influence of swell cases with longer wave lengths
than the location of Ekofisk. In general, swell cases
present longer wave lengths and wave periods than
wind sea cases. In addition, swell wave fields can occur
in presence of weak local wind conditions, where the
roughness of the sea surface is low, and the backscat-
tering mechanisms are weak.

In both platforms, the radar antenna is located about
30 m over the mean sea level. In the geographic area of
each platform, additional oceanographic and meteorolo-
gical instrumentation has been deployed. For wave analy-
sis, a DataWell WaveRider buoy is moored in the vicinity
of each platform. The buoys and the WaMoS II systems
record wave elevation series and radar image sequences,
respectively, being synchronized. From these wave eleva-
tion records, the buoys provide standard sea state para-
meters, such as Hs, wave periods, etc., which complement
the sea state information derived from the WaMoS II
data. Figure 2 shows the temporal evolution of Hs derived
from each buoy at their respective locations (e.g., Ekofisk
and FINO 1). These temporal evolutions are taken as
reference in the experiments described in this article.

3. Standard method to estimate the significant
wave height from radar images of the sea surface
This section describes the basics of the method com-
monly used in the literature to estimate Hs from marine
radar images of the sea surface. This method is called

Figure 1 Scheme of the WaMoS II installation used in the experiments.
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“standard method” in our article. A brief description of
the theoretical background of the stochastic wave theory
needed to analyze ocean wave fields from marine radar
data sets is presented first. The way Hs is estimated by
the standard method is presented after. The limitations
of this method are finally discussed.

3.1. Spectral representation of ocean waves
Ocean waves are commonly described by the concept of
sea state. A sea state is defined by the area of the ocean
and the temporal duration where the wave elevation
over the mean sea level can be assumed as a stochastic
process with stationary statistical properties in space
and time. Under these conditions, the wave elevation
(h) for a given position of the sea surface r = (x, y), and
for a specific time t, is described by the following spec-
tral representation [17]:

η (r, t) =
∫

�k,ω

ei(k·r−ωt)dZ (k,ω) , (1)

where ω is the angular frequency, being related to the
wave period T as ω = 2π/T; k = (kx, ky) is the wave num-
ber vector, being defined by a modulus inversely propor-
tional to the wave length l = 2π/k, and the wave
propagation direction is given by θ = tan-1 (ky/kx). The
magnitudes dZ(k, ω) are the so-called spectral random
measures, which are complex amplitudes that determine
the energy of each wave component defined by the wave
number and frequency (k, ω). The integration domain Ω

k,ω = Ωk × Ωω is defined by the admissible range of wave
lengths and periods that define the ocean waves [18] in
opposition to other ocean oscillations, such as tides, pla-
netary waves, etc. In practice, the range of wave lengths

and periods that a marine radar can measure is limited
by the spatial resolution of the antenna and the antenna
rotation period [5]. Equation (1) indicates that the wave
elevation can be regarded as a linear superposition of dif-
ferent individual wave components (k, ω). It is important
to note that the time scale t, where both Equation (1) and
the temporal sequence of radar images are defined, is
shorter than the time scale of the temporal evolution of
sea states, which can be seen in the examples shown in
Figure 2. Hence, in opposition to t, the longer time scale
related to the temporal evolution of sea states is denoted
in the following as n.
The analysis of ocean waves by using non-coherent

marine radars is based on the well-known fact that
ocean waves are dispersive. Under the frame of the lin-
ear hydrodynamic wave theory, the dispersion relation is
given by [17]

ω = � (k) =
√
gk tanh (kd) + k · U, (2)

where d is the water depth and U = (Ux, Uy) is the so-
called current of encounter [4].
From Equation (1), the statistical and dynamical prop-

erties of the sea state are given by the 3D wave spec-
trum F(k , ω) [7,17], which is commonly defined in the
scientific literature as

F (k,ω) dkxdkydω = ε
[|dZ (k,ω)|2] , (3)

where ε denotes the expectation operator. The signifi-
cant wave height, Hs, can be derived from the wave
spectrum as [7]

Hs = 4 ·
√√√√

∫

�k.ω

F (k,ω) dkxdkydω. (4)

Figure 2 Temporal evolution of Hs measured by buoys deployed in the two different radar locations: Ekofisk in Norway, and FINO 1
in Germany. The temporal gaps in the information correspond to periods where the buoys were not operative due to different reasons, such
as hardware maintenance, damage of some sensors, etc.
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In practice, the estimation of F(k, ω) takes into
account a discretization of the spectral domain Ωk, ω

due to the spatial and temporal resolution of the sensor
and the size of the total spatial oceanic area of analysis,
as well as the temporal duration of the measurement
[4,7]. For standard ocean and coastal engineering appli-
cations, the 3D spectrum F(k, ω) is not used, and there
are more practical wave spectral representations defined
for lower spectral domain dimensions than Ωk, ω. In
this study, two different spectral representations are
used, being [7]:

• Wave number spectrum:

F̄ (k) =
∫

�ω

F (k,ω) dω. (5)

From the spectrum F̄ (k), an important parameter
derived for wave analysis is the wave number kp,
where F̄

(
kp

)
is maximum (e.g., the wave number

vector related to the dominant wave component).
This parameter is called peak wave number, and it
defines a more relevant parameter known as peak
wave length lp = 2π/kp.
• Frequency spectrum:

S (ω) =
∫

�k

F (k,ω) dkxdky. (6)

The spectrum S(ω) allows to derive characteristic
wave periods of the sea state. One relevant para-
meter is the mean period Tm. This parameter con-
siders not only one single wave component, like lp,
but also a weighted contribution of all the periods
related to the different wave components. In ocean
engineering, the most usual estimation of Tm is
known as Tm02, which is given by

Tm = Tm02 = 2π ·

√√√√√√
∫

�ω

S (ω) dω

∫
�ω

S (ω)ω2dω
. (7)

3.2. Estimation of Hs using temporal sequences of radar
images
As mentioned above, the procedure to analyze wave
fields is based on the acquisition of temporal sequences
of consecutive sea clutter images by using marine radars
(see Figure 3). The sampling time of this temporal
sequence of images corresponds to the antenna rotation
period. The spatial resolutions of each image depends
on the azimuthal and range resolutions of the radar.

Applying a 3D Fourier decomposition to the temporal
sequence of radar images, the so-called image spectrum
I(k, ω) is obtained [7]. This spectrum contains the (k,
ω)-components of the temporal sequences of radar
images. These components concern to the wave field, as
well as other additional contributions, as depicted in
Figure 4. These additional contributions are due to the
radar imagery mechanisms [7], such as the background
noise, BGN, caused by the sea surface roughness gener-
ated by the local wind [9,19,20], higher harmonics of the
dispersion relation (see Equation (2)) due to non-linear
radar imagery mechanisms at grazing incidence [19,21],
etc. Hence, an inversion modeling technique is applied
to the image spectrum I(k, ω) to estimate the wave
spectrum F(k, ω) [7]. The basics of the inversion model-
ing technique considers the dispersion relation given in
Equation (2). Therefore, the estimation of the wave
spectrum F̂ (k,ω) is obtained from the image spectrum I
(k, ω) by applying a 3D band-pass filter within the Ωk, ω

domain [4,7], which considers only those (k, ω)-compo-
nents that holds the dispersion relation ω = � (k) given
by Equation (2), i.e.,

F̂(k,ω) = kβ ·
∫

�k,ω

I(k,ω)δ[ω − � (k)]dkxdkydω, (8)

where δ[⋅] denotes the Dirac’s delta. Taking into
account Equation (2), the band pass filter is centered on
the shifted (k, ω) components due to the effect of the
current of encounter U. The factor kb is the so-called
modulation transfer function (MTF) [7,16]. The expo-
nent b was empirically obtained for the case of the mar-
ine radar (e.g., grazing incidence and horizontal
polarization) [7], achieving a value of b ≈ - 1.2. This
MTF was empirically obtained to make the 1D fre-
quency spectrum appear more like an in-situ buoy [7].
Mention that some recent results comparing marine
radar with measurements acquired by air-borne LIDAR
indicate that the MTF may not be needed [22]. The
results obtained in this study use the empirical MTF
with the exponent b indicated above. A detailed descrip-
tion of the inversion modeling technique can be con-
sulted in [4,7,8]. It is known that the sea clutter values
are related to the electromagnetic backscatter of the sea
surface rather than the wave elevation [7]. So, the wave
spectrum estimated from the analysis of marine radar
image sequences, F̂ (k,ω), is not properly scaled. It
involves that Equation (4) cannot be directly applied to
obtain Hs from F̂ (k,ω)[9]. The solution used for estimat-
ing Hs came form the existence of the BGN components
in the image spectrum I(k, ω) (see Figure 4). This phe-
nomenon also appears in other radar sensors used in
oceanography, such as space-borne SAR systems [10].
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As a conclusion, Hs is estimated using a 3D generaliza-
tion of the method proposed when processing SAR
images [9,19] for a given time instant, n, as

Hs [n] = c0 + c1
√
SNR [n] , (9)

where c0 and c1 are calibration constants that depend
on every marine radar installation [4]. Therefore, as a

part of the set up of a marine radar station to estimate
Hs, it is necessary to carry out a calibration campaign
using an in-situ sensor (e.g., a buoy) to determine these
calibration constants. The tuning of these constants is
made by least squares method. The term SNR in Equa-
tion (9) represents the ratio between the signal of the
spectral energy of the unscaled wave spectrum (F̂ (k,ω))

Figure 3 Sequence of marine radar images of the sea surface measured by the WaMoS II system. This sequence was acquired at the
FINO 1 research platform.

Figure 4 Example of a 2D image spectrum I(k, ω), and its different spectral components [7,9]. A detailed description of these components
can be found in [19,21].
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obtained by the inversion modeling technique and the
noise of the total spectral energy of the BGN compo-
nents [9].

3.3. Limitations of the standard method to estimate Hs

The Hs estimation from Equation (9) provides, in general,
good agreements with the results derived from in-situ sen-
sors. This is valid while there is a minimum amount of
local wind to induce enough sea surface roughness and,
therefore, enough radar backscatter intensity [4,9,23].
However, under weak local wind conditions, the BGN
energy is low, giving a high value of

√
SNR. Therefore,

there is an overestimation of Hs using Equation (9). It is
known that, at grazing incidence, as marine radars work,
shadowing is one of the most important modulation
mechanisms of the radar imagery [7,21]. In addition, the
wave slopes affect the backscatter mechanisms because
they change the local angle of incidence of the electromag-
netic field [16]. This mechanism is called tilt modulation.
Both shadowing and tilt modulation depend on the wave
heights and lengths [24]. Hence, additional parameters to
the

√
SNR should be considered in the Hs estimation. A

possible solution would be including the wind speed mea-
sured by an additional sensor, like an anemometer. Never-
theless, in some radar installations, there is no wind
measurements available that could give an idea about the
accuracy of the Hs estimation. However, as mentioned
above, there are some sea state parameters derived from
the wave spectra that depend indirectly on wind condi-
tions. So, when the wind is low, long waves with long peri-
ods are expected (e.g., swell-dominated sea states). In these

situations, nothing useful is observed. On the contrary,
when the wind speed is high, short wave lengths and peri-
ods are observed (e.g., wind sea-dominated sea states). In
these situations, both swell- and wind-dominated sea clut-
ter can also be observed.
Figure 5 shows two scatter plots (one for each

research platform) of the Hs measurements using a buoy
and the corresponding marine radar-based estimation
using Equation (9). These measurements are given for
the same time instants as in Figure 2. The dots in both
plots are colored depending on the values of the peak
wave length, lp, which are derived from the wave num-
ber spectrum (F̄(k)) estimated by each WamoS II sen-
sor. F̄ (k) was obtained by applying Equation (5) to the
un-scaled wave spectrum F̂ (k,ω) defined in Equation
(8). For the case of Ekofisk (see Figure 5a), it can be
observed that there is a structure of the scatter plot
depending on lp. Therefore, although the correlation
coefficient of the scatter plot is high (e.g., 0.95), there is
a spread of the dots, where in most of the cases, the
overestimation appears for cases where lp ≳ 200 m. In
the case of FINO 1 (see Figure 5b), the dependence with
lp is more evident, mainly for Hs ≲ 2 m, where the Hs

radar estimation using Equation (9) can be more than
twice the value provided by the buoy, especially for long
wave lengths (lp ≳ 200 m).

4. Estimate of the significant wave height by
multilayer perceptrons
Taking into account the results presented in Section 3 (see
Figure 5), the Hs estimation derived by Equation (9)

Figure 5 Scatter plots colored by lp of the Hs measured by the buoy and the corresponding estimation provided by the WaMoS II
systems mounted at Ekofisk and FINO1 platforms. The solid line represents the location where the values provided by the buoy are equal
to the radar estimation. In addition, the dashed lines indicates the locations where the difference between the buoy and the radar estimation is
±0.5 m.
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should be improved to obtain a more robust estimator.
This improved estimator should consider additional para-
meters of the wave field related to the wave length and
period, which depend on the wind conditions. The solu-
tion proposed here considers not only the

√
SNR, as done

in the standard method, but also two additional para-
meters related to the wave length and period, such as lp
and Tm. There is no indication that Hs presents a linear
dependence on

√
SNR, lp and Tm. Therefore, and since

ANNs are able to implement non-linear functions [11,25],
a non-linear solution of the problem based on ANNs is
investigated in this article. But, when proposing a solution
using ANNs, several questions arise. In our case study, we
need to know before selecting a type of ANN:

• What kind and how many sea state parameters we
should consider as input.
• What kind of ANN architecture we should select,
determining the type of ANN, the activation function
of the ANN neurons and the ANN size.
• Once the ANN architecture is selected, which learn-
ing algorithm we should use to train it.
• Finally, to design and test the proposed ANN-based
solution, how the database of Hs measurements should
be divided to correctly train the ANN and to get the
best results in a testing stage.

The following sections present the answers to these
questions.

4.1. MLP-based Hs estimator: architecture, data
processing, and computational cost
This section presents the proposed ANN-based Hs estima-
tor, discussing what kind and how many sea state para-
meters are considered, and what ANN architecture (type,
activation functions and size) is selected. The way the
ANN processes the data and the computational cost of the
proposed solution are presented at the end of the section.
The proposed ANN-based Hs estimator is presented in

Figure 6. For comparison purposes, the standard Hs esti-
mator is also presented in this figure. Each estimator
takes the corresponding sea state parameters given by
the WaMoS II software. This figure summarizes the
architecture (type, activation functions, and size) of the
ANN selected in our case of study, as well as the way
the data is processed.
The kind and number of sea state parameters to be

presented as input to the ANN were justified at the
beginning of Section 4. The values of these parameters
at a certain instant n are incorporated in the observation
vector presented at the ANN input as:

x [n] =
[√

SNR [n] ,λp [n] ,Tm [n]
]
. (10)

Note that n represents the time scale of the sea state
temporal evolution, as depicted in Figure 2, and not the
time scale (t) of the temporal sequence of the radar
images. In other words, the estimates made by the ANN

Figure 6 Scheme of the ANN-based Hs estimator proposed in this research.
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are given at the same time instants as the measurements
given by the buoy.
As indicated in Figure 6, the estimate of the Hs is

obtained directly from the output of the ANN as:

Hs [n] = y(o) [n] = fANN(x [n]), (11)

where fANN() denotes the input-output mapping func-
tion implemented by the ANN. The ANN is designed to
give outputs between 0 and 10. Note that the upper limit
set for the estimated Hs is greater than the maximum
value of Hs measured by the buoy for both platforms (see
Figure 2). In this way, we try to mitigate underestimates of
very high values of Hs.
Once knowing the kind and number of parameters to be

used in the ANN-based Hs estimator, the next step con-
sists on selecting its architecture. This selection deter-
mines how the ANN processes the observation vector,
and, in consequence, the way the function of Equation
(11) is implemented. As noted at the beginning of the cur-
rent section, a non-linear relationship between the selected
sea state parameters and Hs is investigated to make accu-
rate Hs estimates. ANNs can implement this non-linear
function. Exactly, they can be implemented by MLPs [25],
a kind of feedforward ANN. MLPs are able to learn from a
pre-classified database of measurements [11]. In this way,
they can implement a proper non-linear function between
the input space (sea state parameters space) and the out-
put space (Hs space). As an example, multilayer percep-
trons (MLPs) were satisfactorily used in [12,13] as sea
clutter reduction systems when working with non-coher-
ent marine radar image sequences. In this case, MLPs
were used as non-linear filters to adapt the filtering to the
non-linear properties of the sea clutter, i.e., they were able
to implement non-linear functions. For this reason, an
MLP is considered as the type of ANN used in our
experiments.
Once the ANN type is selected, its size is studied. An

MLP structure with two layers (input, not computed as a
layer, hidden and output layers) is selected because it is
demonstrated to be enough to solve a lot of kind of pro-
blems [25]. The number of MLP inputs in the input layer
corresponds to the number of sea state parameters
selected for this study, i.e., three inputs, being summarized
in Equation (10). The number of hidden neurons in the
hidden layer is selected according to the following criteria:
if a few hidden neurons are selected (4, as an example),
poor performance is obtained after training; but if a lot of
hidden neurons are selected (50, as an example), a high
risk of over-fitting the training data set exists. In this way,
an intermediate number of hidden neurons should be
selected. As an example, in [26], where MLPs were used
to create a ship detection system, the best number of hid-
den neurons, considering a trade-off between performance

and computational cost, was 10. Empirical studies made
during our research allow us to determine that no much
better performances are obtained from 15 hidden neurons
for both platforms, but a computational cost increase is
observed. Therefore, 15 hidden neurons are selected.
Finally, one output neuron is selected because only one
output is needed in the proposed system to give an esti-
mate of the Hs. As a conclusion, the selected MLP has a
structure 3/15/1.
Once set the ANN type and size, the signal processing

made by the MLP for a given observation vector is pre-
sented. This signal processing is summarized in Equa-
tion (11) and is computed in two steps.
In the first step, consider v(h)[n] is a vector of size [1 ×

15], which elements are the inputs of each hidden neuron.
Also, consider that y(h)[n] is a vector of size [1 × 15] that
stores the outputs of each hidden neuron. And finally,
consider W(h) is a matrix of size [3 × 15], which contains
the synaptic weights that connect the MLP inputs with the
MLP hidden neurons, and b(h) is a row vector of size [1 ×
15], which contains the hidden neuron biases. According
to them, Equation (12) and Equation (13) show how v(h)

and y(h) are computed. The hyperbolic tangent activation
function (tanh(⋅)) is used in this layer because it allows
accelerating the learning process with respect to linear
functions [11].

v(h) [n] = x [n]W(h) + b(h) (12)

y(h)[n] = tanh
(
v(h)[n]

)
=
sinh

(
v(h)[n]

)
cosh(v(h)[n])

=
ev

(h)[n] - e - v(h)[n]

ev(h)[n] + e - v(h)[n]

(13)

In the second step, consider υ(o) [n] is a variable that
contains the addition of the weighted signals present at
the input of the output neuron, as presented in Equa-
tion (14). Moreover, consider w(o) is a column vector of
size [15 × 1] that contains the synaptic weights between
the hidden neuron outputs and the output neuron
input, and b(o) denotes the bias of the output neuron.
The output of the output neuron (y(o)[n]) is computed
by Equation (15), where a linear activation function (lin
(⋅)) [11] is used.

υ(o)[n] = y(h)[n]w(o) + b(o) (14)

y(o)[n] = lin(υ(o)[n]) = υ(o)[n] (15)

Note that this layer uses a linear activation function
instead of a non-linear function, as the hyperbolic func-
tion used in the hidden neurons. It is due to during the
development of the research, saturation in the Hs esti-
mate was observed in the lower and upper limits of the
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hyperbolic function, which correspond to low and high
values of Hs. This saturation is avoided using a linear
activation function.
Finally, an analysis of the computational cost of the

proposed solution is given. The number of operations
needed to implement the MLP are given in [27] for a
general MLP structure of J/K/1. Therefore, for our parti-
cular case of study (structure 3/15/1), a total of 76 mem-
ory cells (accesses to memory), 60 two-element sums and
60 two-element products are needed to implement it.
Unfortunately, the computational cost of the solution is
greater than the one needed for implementing the solu-
tion given by the standard method (one product and one
sum). Nevertheless, the computational cost of the solu-
tion is still so low that real-time is not compromised
when implementing it in a standard personal computer.
Execution times will be reported in Section 5.

4.2. MLP-based Hs estimator: learning algorithm
Once the architecture of the ANN is set, the learning
algorithm used to train the MLP must be selected. In
the literature, it has been demonstrated that an MLP
trained by a supervised learning algorithm to minimize
the mean squared error works properly in a wide variety
of problems [11,25]. This error is computed in the kth-
iteration of the algorithm for a set of MTrain Hs mea-
surements as:

eMS[k] =
1

MTrain

MTrain∑
n=1

1
2
(yo[n] − HBuoy

s [n])
2
. (16)

Since supervised learning algorithms work properly,
one of them must be selected. In this case, the error
back-propagation learning algorithm is selected to train
the MLP [25]. But, to make the training faster, a modified
version of this algorithm is used, which incorporates an
adaptive learning rate and momentum [25]. This modi-
fied version of the learning algorithm was successfully
used in [12,13,26,27] for different purposes. This modi-
fied learning algorithm allows automatically updating the
weights (W(h) and w(o)) and biases (b(h) and b(o)) of the
MLP in each algorithm iteration in a fast and stable way.
An off-line actualization of the weights and biases is used
for training [25]. And, in order to avoid the over-fitting
of the designing data set during the MLP training, an
external validation [25] of the training process is also car-
ried out. This external validation is useful to stop the
training when the mean squared error evaluated for a
data set not used in the adaptation of the MLP weights
and biases (validation data set) is increasing for consecu-
tive algorithm iterations. In this way, the capability of
generalization of the MLP to work with data sets never
processed during the training stage is maintained.

4.3. Division of the databases for designing and testing
the MLP-based Hs estimator
Since a supervised learning process is used to design the
MLP of the proposed solution (train with external valida-
tion), we need the measurements of Hs from a reference
sensor. These measurements are taken from the buoys
moored in the vicinity of the two platforms under study
(Ekofisk and FINO 1). The measurements made by the
buoy in these platforms were presented in Figure 2. But,
according to the learning process presented in the section
4.2, the data of each platform must be divided in three
data sets. The first and second data sets are used in the
designing stage of the standard method (tuning of the
calibration constants of Equation (9)) and MLP-based Hs

estimators. The third data set is used in a testing stage.
These data sets have different purposes, being:

• Training data set (designing stage): It is used in
the training process of the, in which its synaptic
weights and biases are updated to minimize the
mean squared error of this data set.
• Validation data set (designing stage): It is used
during the external validation process done in the
MLP learning process. This data set allows estimat-
ing how the learning process is evolving and stop-
ping the learning process in a suitable stage where
the generalization capabilities of the MLP are main-
tained. So, we avoid the specialization of the MLP in
the training data set.
• Testing data set (testing stage): This data set is
used to estimate the performance of the proposed
MLP-based Hs estimator once designed and working
autonomously.

Next, the division of the available databases of Hs

measurements is discussed. Three main principles drive
this division:

• The first principle is based on the quantity of data
that will form each data set. In this way, an equitable
principle (one third) is used for the division of the
database in three data sets.
• The second principle establishes that the first part
of the database is dedicated to the designing stage
and the last part to the testing stage. It is done in
this way because we want to observe how the system
will work for future estimates, i.e., once it is working
autonomously.
• And the third principle is based on the information
contained in each data set of the designing stage. In
this way, and based on preliminary empirical studies
done during our research, to obtain high perfor-
mance MLPs once trained, it is needed that the data
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from the worst sea state (the highest Hs) are con-
tained in the training data set.

Applying these principles to the Ekofisk and FINO 1
databases, we obtain the divisions plotted in Figure 7.
Note that the estimates made by the standard method
are also plotted, which will be used for comparison pur-
poses in the results reported in Section 5. This figure
plots the beginning and ending dates of each data set, as
well as the number of measurements contained in them.
As observed, the equitable factor of one third set by the
first principle is modified by the other two principles,
but maintaining a ratio data selected-total data very
close to this factor. On the other hand, note that the
order of the training and validation data sets for both
database divisions is different. It is due to the maximum
Hs must be contained in the training data set, as set the
third principle.

5. Experimental results: comparison of the
standard method and MLP-based Hs estimators
This section presents the Hs estimations made by the pro-
posed MLP-based method for the two platforms (Ekofisk
and FINO 1) considered in the study. They are compared
with the measurements made by in-situ sensors (buoy).
To validate the proposed method, these results are com-
pared with the ones obtained by the standard method.
The comparisons are made in the designing and testing
stages. The aim of comparing the results obtained in both
stages is to realize whether the performances obtained
during the designing stage are maintained for a data set
never processed before (testing data set) or not. In other

words, we want to know, once the MLP-based estimator is
designed, how the proposed method works from a point
of view of performance and time of designing/execution.

5.1. Comparison of the standard method and MLP-based
Hs estimators for the Ekofisk platform
The Hs estimations made by the standard and MLP-based
methods considering the data of the Ekofisk platform are
presented first for the designing stage, and second for the
testing stage.
5.1.1. Designing stage of the MLP-based Hs estimator for
the Ekofisk platform
In this stage, the data of the training and validation data
sets of the Ekofisk platform (see Figure 7a) are considered.
Considering the data measured by the buoy for both data
sets and applying the learning algorithm described in Sec-
tion 4.2, a time plot of the estimates made by the proposed
MLP-based method is depicted in Figure 8. As can be sub-
jectively observed, these estimates approximate with high
accuracy the measurements made by the buoy.
From Figure 7a and Figure 8, some limitations are

observed in both methods. These limitations are clearer
observed in the scatter plots (estimates Vs measurements)
presented in Figure 9. Focusing on the results obtained by
the standard method (see Figure 9a), a general Hs underes-
timate (negative bias of the Hs estimate error) is observed
for the whole range of Hs. An opposite effect is particularly
observed for sea states mainly conditioned by swell (lp ≳
200 m). Focusing on the results obtained by the MLP-
based method (see Figure 9b), not only better performance
is observed in general (null bias of the Hs estimate error),
but also better performance is observed particularly for

Figure 7 Division of the data available in the databases from the Ekofisk and FINO 1 research platforms in three data sets: Training,
Validation, and Testing. The data available in each data set include the Hs measured by the buoy and the marine radar sequences from which
the Hs is estimated by the WaMoS II system.
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sea states mainly conditioned by swell (lp ≳ 200 m). Apart
from these general and particular improvements, its gen-
eral performance is also improved because more accurate
estimates are obtained, being it denoted by the reduction
of standard deviation (SD) of the Hs estimate error (from
0.44 m to 0.35 m) and the increase of the correlation coef-
ficient between estimates and measurements (from 0.93 to
0.96). But, there are still two limitations in the proposed
approach. First, there are still some outliers in the Hs esti-
mates. These outliers are observed for bimodal sea states
(swell and wind-generated waves are strong) with very
high lp values, being observed for Hs Î [4.5, 5.0] m. These
outliers concern only to a few data of the designing data
sets, being it the reason why the MLP is not properly
learning from the environmental conditions of these data.

In other words, the MLP is learning from the environmen-
tal conditions of the majority of the data. And second,
there are still some Hs underestimations, but they are
lower in number than for the standard method and not
predominant because the mean error of the Hs estimate is
close to 0 m.
5.1.2. Testing stage of the MLP-based Hs estimator for the
Ekofisk platform
Once the standard method and MLP-based Hs estimators
are designed, and they are autonomously working, we
analyze whether the performances and limitations dis-
cussed above continue being present or not using a new
data set, the testing data set. A time plot of the Hs mea-
sured by the buoy and estimated by the standard method
for the testing data set was presented in Figure 7a,

Figure 8 Temporal evolution of the Hs estimate made by the MLP-based method for the training and validation data sets of the
Ekofisk database.

Figure 9 Scatter plots of the Hs measured by the buoy and estimated by the standard method or proposed MLP-based estimators for
the training and validation data sets of the Ekofisk database.
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whereas for the Hs estimated by the MLP-based approach
is depicted in Figure 10.
As occurred in the designing stage, some limitations

are observed from Figure 7a and Figure 10, which can
be better observed in the scatter plots of Figure 11.
Focusing on the estimates obtained by the standard
method (see Figure 11a), the limitations of this method
previously observed for the training and validation data
sets are endorsed. In this way, an Hs overestimate is
observed for swell-dominated sea states (lp ≳ 200 m)
and an Hs underestimate is observed in general (negative
bias of the Hs estimate error). Focusing on the estimates
obtained by the MLP-based method (see Figure 11b),
most of the conclusions obtained in the designing stage
are endorsed in this stage, but with some differences. In
this case, a low overestimate of Hs (+0.14 m) is obtained
in general, what did not happen in the designing stage.
But, the problem of overestimating Hs for swell-domi-
nated sea states (lp ≳ 200 m) continues being solved,
being clearly observed in the region of Hs Î [0.5, 1.0] m.
The second difference concerns to the high reduction
rate of outliers. The third difference concerns to the
high concentration of Hs estimates close to the line of
null error and between the lines denoting an Hs error of
±0.5 m. This high concentration of estimates denotes
high accuracy in the estimates, improving the results
obtained by the standard method. This improvement
can be observed by the decrease of the SD of the Hs

estimate error (from 0.27 m for the standard method to
0.22 m for the MLP-based method) and the increase of
the correlation coefficient (from 0.95 for the standard
method to 0.97 for the MLP-based method). The last
difference concerns to the presence of Hs underestima-
tions, which presence is practically negligible in the test
case.

5.2. Comparison of the standard method and MLP-based
Hs estimators for the FINO 1 platform
As done for the case of study of the Ekofisk platform, a
study of the performances of the Hs estimators based on
the standard method and MLPs is made in the design-
ing and testing stages.
5.2.1. Designing stage of the MLP-based Hs estimator for
the FINO 1 platform
In this stage, the data of the training and validation data
sets of the FINO 1 platform are considered (see Figure 7b).
The Hs measured by the buoy for these data sets is used in
the MLP learning algorithm described in Section 4.2. A
time plot of the estimates made by the proposed MLP-
based method for both data sets is plotted in Figure 12.
Comparing both figures, we observe that the estimates
made by the proposed method approximate the measure-
ments made by the buoy with an accuracy higher than the
one obtained by the standard method.
The accuracy mentioned above can be clearer observed

in the scatter plots of Figure 13. Focusing on the esti-
mates obtained by the standard method, we observe that,
even when the bias of the Hs estimate error is close to
null, there are still some over and underestimates pre-
sent. So, comparing these results with the results
obtained for the Ekofisk platform (see Figure 9a and
Figure 13a), it is observed that poorer estimations are
made. It can be objectively observed by the decrease of
the correlation coefficient of the temporal series (0.93 for
Ekofisk and 0.89 for FINO 1), while the SD of the Hs esti-
mate error is maintained (0.44 m for both platforms). It is
important to note that, as occurred for the Ekofisk plat-
form, an overestimation of Hs is still made for swell-
dominated sea states (lp ≳ 200 m), as observed in Figure
13a. On the other hand, and focusing on the results
obtained by the MLP-based method (see Figure 13b), a

Figure 10 Temporal evolution of the Hs estimate made by the MLP-based method for the testing data set of the Ekofisk database.
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performance improvement, with respect to the results
achieved by the standard method, is observed in general,
with a negligible bias in the Hs error estimate. This per-
formance improvement is subjectively observed in Figure
13b because the estimates are more concentrated
between the curves of Hs error ±0.5 m. This performance
improvement can be objectively observed by the reduc-
tion of the SD of the Hs estimate error (from 0.44 m for
the standard method to 0.24 m for the MLP-based
method) and the increase of the correlation coefficient
(from 0.89 for the standard method to 0.97 for the MLP-
based method). Finally, it is also important to note that
the particular problem of overestimating Hs for swell-
dominated sea states is solved by the proposed method.
As an example, see how the overestimates made by the

standard method in the range Hs Î [1.0, 2.5] m are cor-
rected by the MLP-based method. But, there are still
some Hs underestimates present.
5.2.2. Testing stage of the MLP-based Hs estimator for the
FINO 1 platform
This section shows the results obtained when proces-
sing a new data set of the FINO 1 platform, the testing
data set. A time plot of the Hs estimates and measure-
ments made by the standard method and the buoy for
this data set, respectively, are plotted in Figure 7b,
whereas Figure 14 presents the estimates made by the
MLP-based method. As can be subjectively observed
from these figures, better performance is obtained by
the proposed method, achieving more accurate esti-
mates of Hs.

Figure 12 Temporal evolution of the Hs estimate made by the MLP-based method for the training and validation data sets of the
FINO 1 database.

Figure 11 Scatter plots of the Hs measured by the buoy and estimated by the standard method or proposed MLP-based estimators
for the testing data set of the Ekofisk database.
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The above mentioned accuracy can be better observed
by the scatter plots presented in Figure 15. Making an
analysis as the one presented for the designing stage,
similar conclusions can be obtained in the testing stage
for both methods. So, considering the estimates
achieved by the standard method, the statistical results
given in Figure 15a for the testing data set are main-
tained with respect to the ones given in Figure 13a for
the designing data sets. Moreover, the problem of over-
estimating Hs for swell-dominated sea states is still pre-
sent in the standard method. On the other hand, and
considering the results achieved for the MLP-based
method, a small decrease of the performance obtained
in the testing stage (see Figure 15b) with respect to the
one obtained in the designing stage (see Figure 13b) is
observed. Moreover, no problem is observed when Hs is

estimated for swell-dominated sea states (lp ≳ 200 m).
But, the problem of having a few underestimates is still
present in the proposed method. As a conclusion, the
advantages and limitations of both methods are
endorsed when processing a new data set in the testing
stage.

5.3. Comparison of the standard and MLP-based Hs
estimators for both platforms
This section presents a comparison of the performances
achieved by the standard method and MLP-based Hs

estimators when working with data from the Ekofisk or
FINO 1 platforms. Since the most important aspect of
the methods is to observe how they work once designed,
i.e., when they are autonomously working, this compari-
son is made using the performances obtained for the

Figure 13 Scatter plots of the Hs measured by the buoy and estimated by the standard method or proposed MLP-based estimators
for the training and validation data sets of the FINO 1 database.

Figure 14 Temporal evolution of the Hs estimate made by the MLP-based method for the testing data set of the FINO 1 database.
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testing data set. In this way, Table 2 summarizes the
statistical results of the Hs estimate error and the corre-
lation coefficients obtained by both methods in the test-
ing stage and for both platforms. Moreover, the
performance improvements achieved by the proposed
method with respect to the standard one are also given
for comparison purposes.
As can be observed in Table 2, the proposed method

always outperforms the standard one, regardless of the
platform. Moreover, it is observed that the achieved
improvement is even higher for the FINO 1 platform.
But, why does it happen? As described in Section 2, this
platform is located in an area of the North Sea where
swell-dominated sea states are commonly present. In
this way, it is observed that the proposed method works
better than the standard one in this kind of sea states.
Finally, it is important to note that, comparing the
results obtained by the proposed MLP-based method for
both platforms, the performances are similar. It denotes
that the proposed method presents a great robustness
against sea state changes and maintains its performance
regardless of the sea state conditions where the marine
radar images are obtained. It is important to note that
since each non-coherent X-band marine radar is cali-
brated in each site, obtaining different calibration

parameters in each one during their calibration cam-
paigns, different estimates of sea state parameters are
made, such as the SNR parameter. So, the MLP-based
estimator must be designed (tuned) for each radar site,
as done for tuning the constants c0 and c1 of Equation
(9) in the standard method.
Finally, the time needed for designing (training with

external validation) and testing an MLP is reported for
both platforms. The time values presented below are
obtained implementing the designing and testing stages
of the MLP-based approach in Matlab 2007a and using
a standard personal computer with a 2.4 GHz Intel
Core2 Duo CPU, 4 GB of DDR2 PC2-5300 RAM and
running Linux. The measured average time values are:

• Designing time of an MLP for the Ekofisk platform
using the training and validation data sets of Figure
7a: ≈ 30 s in average, considering a total of ≈ 30000
measurements.
• Designing time of an MLP for the FINO 1 plat-
form using the training and validation data sets of
Figure 7b: ≈ 55 s in average, considering a total of ≈
47500 measuremensurements.
• Time for processing a given measurement (vector
composed of:

√
SNR, lp and Tm) once the MLP is

Figure 15 Scatter plots of the Hs measured by the buoy and estimated by the standard method or proposed MLP-based estimators
for the testing data set of the FINO 1 database.

Table 2 Comparative of the statistics of the Hs estimates made by the standard method and proposed MLP-based
estimators once designed, i.e., when processing the testing data set

Ekofisk FINO 1

Error bias Error SD Corr. Coef. Error bias Error SD Corr. Coef.

Standard method -0.18 m 0.27 m 0.95 +0.02 m 0.44 m 0.89

MLP-based method +0.14 m 0.22 m 0.97 -0.03 m 0.27 m 0.96

Improvement - 18.5% 2.1% - 38.6% 7.8%
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designed: ≈ 100 μs in average, regardless of the
platform.

From an operational point of view, the design (train)
of the MLP is proposed to be performed during the cali-
bration campaign of the radar, when the data from the
buoy are available.

5.4. Influence of the dimensioning and composition of
the designing data sets
In the previous sections, we observed how the proposed
method based on MLPs outperform the standard
method when estimating Hs. For doing so, we consid-
ered large data sets for designing the MLP and high
values of Hs in them. But, what does it happen when
neither the designing data sets are so large nor it incor-
porates high values of Hs? For finding an answer to this
question, we reduce the number of measurements
(dimensioning) considered in the designing data sets of
the experiments made for each platform, and vary their
composition by selecting the time instants for which the
measurements do not present high values of Hs.
Starting with the measurements of the Ekofisk plat-

form, we divide the database as presented in Figure 16.
Comparing this database division with the one used ori-
ginally (see Figure 7a), the following differences are
found:

• Reduction of the number of measurements used in
the designing data sets in approximately 70%: from
≈ 40000 to ≈ 12600.
• Reduction of the maximum Hs considered in the
designing data sets in approximately 17%: from ≈ 7.8
m to ≈ 6.5 m.

Considering this new division of the Ekofisk database,
we design the MLP (tuning of its parameters), as done
for the original case of study, and we test it. The esti-
mates obtained by the standard and proposed methods
when processing the new testing data set are depicted in
the scatter plots of Figure 17. Comparing these results
with the ones obtained in the original case (see Figure
11), we observe several important aspects. First, the bias
of the Hs estimate error is very similar each other, being
still very low. Second, the SD of this error is increased
with respect to the original ones in both methods. Third,
the correlation coefficient is maintained in both cases
and methods, being very high again. Fourth, the problem
of overestimating the Hs for high values of lp is solved
again by the proposed method. Fifth, there are still some
underestimations of Hs in the proposed method, but its
number is much lower than the one obtained in the stan-
dard method. Sixth, the dispersion of the measurements
is greater for high values than for low values of Hs in the
MLP-based method. It happens because there were not
data available of these heights in the designing data sets,
but the Hs estimation still maintains high accuracy. And
seventh, since the number of measurements used now
for designing MLPs is lower than in the original case, the
time needed for training an MLP is reduced in ≈ 60%:
from ≈ 30 s in the original case to ≈ 12 s with this new
data set dimensioning. Since the size of the MLP does
not vary in the experiments, the time needed for obtain-
ing an estimate of the Hs is the same as in the original
case of study, i.e., ≈ 100 μs.
Finally, we perform a similar experiment (design and

test) as made above for the Ekofisk platform data, but
with the data of the FINO 1 platform. In this way, we
divide the database as presented in Figure 18, where we

Figure 16 New dimensioning and composition of the data sets of the Ekofisk database.
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apply deeper modifications in the composition of the
designing data sets with respect to the original case (see
Figure 7b). These modifications are:

• Reduction of the number of measurements used in
the design data sets in approximately 50%: from ≈
47500 to ≈ 23000.
• Reduction of the maximum Hs considered in the
designing data sets in approximately 50%: from ≈
10.0 m to ≈ 5.0 m.

The Hs estimates obtained by the standard and pro-
posed methods when processing the new testing data set
of the FINO 1 platform data are depicted in the scatter
plots of Figure 19. Comparing these results with the ones

obtained in the original case (see Figure 15), we observe
similarities and differences with respect to the aspects
observed in the previous analysis performed for the Eko-
fisk platform. Focusing on the differences, we observe
four main aspects. First, the SD of the Hs error estimate
is reduced in this case. Second, there are some underesti-
mations for the whole range of Hs (see Figure 19b), but
they are not so strong as in the original case (see Figure
15b). Even when they exist, they are less in number and
lower in error than the ones obtained by the standard
method (compare Figure 19a and 19b). Third, the levels
of dispersion and underestimation are higher in the high-
est range of Hs values (Hs >7 m). It happens because
there were not available data of this kind when designing
(training) the MLP. But even with that, these levels are

Figure 17 Scatter plots of the Hs measured by the buoy and estimated by the standard method or proposed MLP-based estimators
for the testing data set of the Ekofisk database using the data set distribution of Figure 16.

Figure 18 New dimensioning and composition of the data sets of the FINO1 database.
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not very high and the proposed approach is still working
properly. And fourth, the time needed for training an
MLP is reduced in ≈ 45%:from ≈ 55 s in the original case
to ≈ 30 s with this new data set dimensioning. The time
for obtaining an estimate of the Hs is the same as in the
original case and as for the other platform, i.e., ≈ 100 μs.

6. Conclusions
A novel method for improving the Hs estimate has been
presented in this article. This method is based on the
use of MLPs for implementing a non-linear function
that relates the selected input parameters with Hs. The
parameters selected in our case study are: the square
root of the signal-to-noise ratio (

√
SNR), the peak wave

length (lp), and the mean wave period (Tm). The
WaMoS II software used in the experiments extracts the
values of these parameters from temporal sequences of
radar images in real-time.
After analyzing the results achieved by the MLP-based

method proposed for estimating Hs and comparing
them with the ones achieved by the standard method,
four main conclusions are drawn. The first conclusion is
focused on the performance improvement achieved by
the proposed method. This method is able to outper-
form the standard method by reducing the SD of the Hs

estimate error and increasing the correlation coefficient
of the Hs time series, while maintaining a negligible esti-
mate error bias. The second conclusion concerns to the
mitigation of the problem of overestimating Hs for
swell-dominated sea states observed in the standard
method. This mitigation is achieved regardless of the
platform under study. The third one concerns to the
robustness of the solution against sea state changes and
platform. In this way, similar performances are achieved

for different places of the North Sea (different plat-
forms), where different sea states are commonly
observed. This indicates that the performances pre-
sented here can be maintained for new data sets pro-
cessed in the future for the same platforms. The last
conclusion is focused on the low computational cost of
the proposed method. Thus, once the MLP is trained,
the time needed to make an Hs estimate (≈ 100 μs in
average) is much lower than the time between two con-
secutive Hs estimates (minimum of ≈ 180 s). In conse-
quence, the proposed MLP-based Hs estimator is able to
process data in real-time.
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