Valizadeh and Wang EURASIP Journal on Advances in Signal Processing 2012, 2012:88
http://asp.eurasipjournals.com/content/2012/1/88

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

Efficient blind decoders for additive spread
spectrum embedding based data hiding

Amir Valizadeh™ and Z Jane Wang

Abstract

This article investigates efficient blind watermark decoding approaches for hidden messages embedded into host
images, within the framework of additive spread spectrum (SS) embedding based for data hiding. We study SS
embedding in both the discrete cosine transform and the discrete Fourier transform (DFT) domains. The
contributions of this article are multiple-fold: first, we show that the conventional SS scheme could not be applied
directly into the magnitudes of the DFT, and thus we present a modified SS scheme and the optimal maximum
likelihood (ML) decoder based on the Weibull distribution is derived. Secondly, we investigate the improved spread
spectrum (ISS) embedding, an improved technique of the traditional additive SS, and propose the modified 1SS
scheme for information hiding in the magnitudes of the DFT coefficients and the optimal ML decoders for 1SS
embedding are derived. We also provide thorough theoretical error probability analysis for the aforementioned
decoders. Thirdly, sub-optimal decoders, including local optimum decoder (LOD), generalized maximum likelihood
(GML) decoder, and linear minimum mean square error (LMMSE) decoder, are investigated to reduce the required
prior information at the receiver side, and their theoretical decoding performances are derived. Based on decoding
performances and the required prior information for decoding, we discuss the preferred host domain and the
preferred decoder for additive SS-based data hiding under different situations. Extensive simulations are conducted

to illustrate the decoding performances of the presented decoders.
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1. Introduction
The growing use of Internet has enabled the users to
easily access, share, manipulate, and distribute the digital
media data, and digital media has profoundly changed
our daily life during the past decade. This proliferation
of digital media data creates a technological revolution
to the entertainment and media industries, brings new
experience to users, and introduces new Internet con-
cepts. However, the massive production and use of digi-
tal media also pose new challenges to the copyright
industries and raise critical issues of protecting intellec-
tual property of digital media, since current media shar-
ing makes unauthorized copying and illegal distribution
of the digital media much easier.

One popular technology for digital right protection is
digital watermarking [1], where a specific signal (e.g.,
the ownership information) is embedded into the host
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media content without significantly degrading the per-
ceptual quality of the original media data. In contrast to
traditional encryption techniques, watermarked media
data can still be used while remaining protected, and
thus watermarking can provide post-delivery protection
of digital media. It is worth mentioning that, despite the
popularity of watermarking techniques, effective digital
right protection is extremely challenging and currently
there is no commonly accepted technical solution which
is practically unbeatable when deployed to practical user
settings. At any sense, watermarking techniques should
only be considered as one important component of an
overall protection system.

Amongst the proposed schemes for watermark
embedding, spread spectrum (SS) and quantization
based methods [2,3] are the two main broad categories.
In SS embedding, an additive or multiplicative water-
mark is added into the host signal. The quantization
based schemes are implemented by quantizing the host
signal to the nearest lattice point. In this article, we
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focus on spread spectrum embedding schemes originally
proposed by Cox et al. [4]. At the receiver side, a blind
detection scheme is employed, since the original image
is generally not available and thus is treated as a noise
source. There are two main approaches of SS embed-
ding: the additive spread spectrum watermarking and
the multiplicative spread spectrum (MSS) watermarking.
In additive SS [5,6], the watermark is spread over the
host signal uniformly while in MSS [7,8], the watermark
spreads according to the content of the host signal. In
order to reduce the noise effect of the host signal in
additive SS, Malvar and Florencio [9] proposed the
improved spread spectrum (ISS), a new modulation
technique exploiting the side information at the encoder
to reduce the effect of host signal and improve the
decoding performance [10]. Recently, the authors have
proposed an embedding scheme incorporating the SS
and ISS schemes which employs the correlation between
the host signal and the signature code to improve the
decoding performance [11].

As summarized in [12], depending on different pur-
poses, there are two main types of watermarking
schemes: In one type, the embedded watermark is used
to communicate a specific hidden message (e.g., binary
identification numbers used for image tracking and for
video distribution, or a secret hidden message repre-
sented by binary sequences) which must be extracted
with sufficient decoding accuracy. In the other type of
systems, the goal is only to verify whether a specific
embedded watermark (e.g., representing copyright infor-
mation) is presented or not, and the embedded water-
mark normally does not communicate a secret message
that needs to be accurately decoded. It is important to
emphasize that the above two problems are formulated
differently and different detection (decoding) approaches
are desired to serve different performance criteria.
References [13-18] explicitly have pointed out this dis-
tinction in their works.

Based on the above two types of watermarking
schemes, current researches on watermark extraction
can be categorized into two broad topics: watermark
decoding [12,13,19] for the case of decoding the hidden
message and watermark detection [16-18,20-22] for the
case of detecting the presence of a specific watermark.
Although watermark detection and decoding problems
seem to be similar from the hypothesis testing point of
view, they actually serve different goals and thus differ-
ent criteria are used. In watermark decoding, the
embedded hidden message should be decoded accurately
at the receiver side and therefore the bit error rate is
usually used as the performance criterion to measure
the accuracy of the decoder in extracting the hidden
message, and the watermark decoding problem can be
formulated as minimizing the bit error rate. In
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watermark detection, the goal is to determine whether a
specific watermark exists or not, and the detection cri-
teria are mainly based on Neyman-Pearson Theorem (i.
e., maximizing the probability of detection for a given
probability of false alarm). Performance criterion such
as the false alarm probability and the true detection
probability are used for evaluating the watermark detec-
tor performance. To our knowledge, the majority of the
current literature has been focused on watermark detec-
tion and many algorithms have been proposed. For
instance, in [23] a watermark based on the host content
is added and the detection is accomplished with the
Neyman-Pearson criterion. In [24], a new perceptual
masking is proposed and a correlation based detector is
studied for watermark detection. In [25], a class of
watermark detectors, including the generalized likeli-
hood ratio, Bayesian, and Rao test detectors are pro-
posed. In this article, we focus on the topic of
watermark decoding, since we are particularly interested
in communicating hidden message. Since in practice the
original host image is generally not available at the
decoder side, we focus on blind watermark decoding.
The very first decoder used for watermark decoding in
SS embedding is the traditional correlator proposed by
Cox. This decoder extracts the embedded information
using the correlation between the signature code and
the received data. Utilizing the probability density func-
tion (PDF) of the host signal could help enhancing the
performance of watermark decoding. An optimum ML
decoder for additive SS in the DCT domain was pro-
posed by Hernandez et al. [26]. The optimal decoder for
multiplicative SS in the DFT domain was investigated in
[13]. Regardless of the above referred literatures, com-
pared with the research works on watermark detection,
watermark decoding is less studied, and a thorough ana-
lytical study of watermark decoding is still required. It is
worth emphasizing that, since the watermark decoding
problem is formulated as different hypotheses testing
problem from the watermark detection problem (i.e.,
with H, being the noise-only hypothesis), a specific
watermark detector does not necessarily mean a specific
watermark decoder. For instance, the local optimum
(LO) test (which is based on the derivative of the likeli-
hood) will yield different forms for the LO detector and
the LOD. Also, even though ML criterion has been used
for both watermark detection and watermark decoding,
it is derived differently and has different meanings (i.e.,
the ML watermark decoder is a Bayesian approach to
minimizes the probability of bit error when assuming
the equal prior probability of the bit information and
thus assuming the threshold to be 1; while for water-
mark detection, the ML solution is the likelihood ratio
test (LRT) detector based on the Neyman-Pearson theo-
rem, where the LRT exploits the probability of false
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alarm to set the detection threshold). We would also
like to emphasize that since different performance cri-
teria are desired in watermark detector and watermark
decoding, a specific type of efficient watermark detector
does not necessarily mean an efficient watermark
decoder.

The common objective of communicating hidden
message using watermarking is to successfully embed
and decode an imperceptible watermark which can be
resistant against distortions and attacks. In order to
reduce the performance degradation under certain
attacks such as geometric attacks and to take advantage
of the properties of certain transform domain, the mes-
sage embedding can be performed in different domains
such as the discrete cosine transform (DCT) domain
[27], the discrete Fourier transform (DFT) domain
[28-31], and the discrete wavelet transform (DWT)
domain [32,33].

In this article, our main purpose is to provide a rigor-
ous watermark decoding framework for data hiding
using spread spectrum embedding in the DCT domain
and the DFT magnitude domain. In the literature of
additive SS, there is lack of investigation on the optimal
and sub-optimal decoders using the additive SS in the
DFT magnitude domain and we will fill this gap in this
article. We will show that the conventional SS scheme
could not be applied directly in the DFT magnitude
domain and thus we will propose a modified SS embed-
ding scheme. To further provide a guidance on the pre-
ferred domain for information hiding using additive SS
embedding, based on the derived decoders, we will dis-
cuss which domain is preferred under different circum-
stances. We present a theoretical framework of optimal
decoders for additive SS and improved SS in the DCT
and DFT magnitude domains. Embedding in the DFT
domain has its own advantages and it motivates us to
develop optimal watermark decoding schemes for this
domain. We note that optimal decoders using ISS pro-
vide better decoding performances than the traditional
additive SS. As the optimum ML decoder requires the
distribution parameters of the host image and the water-
mark strength information, to address this concern, we
also investigate several sub-optimal watermark decoders.
By invoking the Taylor series, the LOD is proposed by
relaxing the requirement on watermark strength. We
derive the generalized maximum likelihood (GML)
decoder for information hiding in the DFT magnitude
domain. Further, due to simplicity and good perfor-
mance, we employ the linear minimum mean square
error (LMMSE) criterion and derive the LMMSE deco-
ders. We derive the theoretical performance analysis of
the proposed ML, LOD, and LMMSE decoders, where
the theoretical performance of the ML decoder is served
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as the performance upper bound of watermark decoding
schemes. The main contributions of this article are sum-
marized as follows:

« Proposed modified SS and ISS embedding schemes
in the DFT magnitude domain.

+ Derive the ML and GML decoders for SS and ISS
in the DFT magnitude domain; Derive the ML deco-
der for ISS embedding in the DCT domain.

+ Derive the LOD decoders for SS embedding in the
DCT and the DFT magnitude domains, and derive
the LOD decoders for ISS embedding in the magni-
tude of the DFT domain.

o Derive the LMMSE decoders for SS and ISS
embedding in both the DCT and the DFT magni-
tude domains.

+ Provide the theoretical bit-error-rate performance
analysis of the above decoders.

The rest of this article is organized as follows. In Sec-
tion 2, the traditional additive SS and ISS embedding
schemes are briefly reviewed for data hiding and com-
municating hidden message. Host probability distribu-
tion functions for DCT and DFT domains are described
in Section 3. The optimal ML decoders are derived in
Section 4 and the corresponding bit-error-rate analyses
are presented. In Section 5, the sub-optimal decoders,
including LOD, GML, and LMMSE decoders are pre-
sented and their theoretical performance analyses will
be provided. The simulation results are demonstrated in
Section 6 to validate the analysis. Finally, the discussions
and concluding remarks are given in Section 7.

2. Additive SS and ISS embedding procedure

Suppose a host image I € M™" is supposed to be
watermarked, where A means the image alphabet, e.g.,
M ={0,1, ..., 255} for a gray scale image, and m and n
represent the size of the image in the pixel (spatial)
domain. Here for simplicity we assume m = n, though
the results could be extended to the general case of hav-
ing unequal m and n. The additive SS embedding proce-
dure for a host image is summarized as follows. First,

m
the image I is partitioned into 5 X sub blocks of size

p x p. Then, each block is usually transformed to a
domain which is insensitive to tampering, i.e.,
T (1) € RP*? where T denotes the transform function
transforming the host image into the new domain called

2
host domain. For the total g = <m> sub blocks, each
p

of them conveys one hidden information bit b € {+1}
for one-message embedding or multiple hidden informa-
tion bits for multi-message information embedding. A
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perfect transform should remove the imperceptible part
of the data and should be insensitive against operations
such as translation, lowpass filtering, compression, and
other standard signal processing manipulations. In the
context of image processing, two popular transform
domains include the DCT and DFT which are of inter-
est of this article.

For each block of size p x p in the transformed
domain, a subset of host coefficients with length / < p2
is selected to be the carrier vector for embedding. Such
selected vectors x; € RL i = 1, 2,..., g, are used for infor-
mation embedding. A signature code s = [s3, sy,..., st
with length / can be employed for one bit embedding,
and using multiple signature codes can allow us to
embed multiple bits simultaneously. Usually in decoding
problem, the signature code coefficients are from the
values +1 and -1.

2.1. Additive SS embedding scheme
In the additive SS, the watermark is added to the host
signal x = [x1, %9, ..., %/] T The signal model for the addi-
tive SS data hiding is expressed as

I =X+ SAb, (1)

where vectors r, x, s are with length /, and A means
the bit information amplitude and b means the bit infor-
mation to be embedded. Distortion due to information
hiding is defined as

D= ;E{||r—x||2}, ()

which can be easily shown equals to A” in SS embed-
ding. The point that should be taken into account is
that different domain host signals may affect the proce-
dure of adding the information. Using the DCT domain
makes no restriction on the additive SS watermarking.
Employing the DFT and explicitly embedding the infor-
mation in the magnitude of DFT coefficients limit the
set of coefficients to be watermarked, since the water-
marked DFT coefficients are required to be positive. We
will discuss about the embedding scheme in the magni-
tude of the DFT domain more precisely when the opti-
mal decoders are explained in Section 4.

2.2. ISS embedding scheme

The traditional additive SS, where the host signal acts as
a noise source, is a non rejected host method which
does not use the host signal information in the decoder.
It was shown in [9] that ISS, which reduces the interfer-
ence effect of the host signal, leads to significant perfor-
mance improvements. In this article, we employ ISS
proposed in [9] to achieve a better performance in
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decoding hidden information. The signal model for ISS
data hiding is defined as

r=sAb+u, (3)
where
u= (I — kss") x, (4)

and I; denotes the identity matrix and k is obtained
usually by maximizing the watermark to data ratio or by
minimizing the probability of error. The distortion for
ISS embedding could be obtained as follows

D= ;E { |sAb — kssTx||2} = A? + I*s"Rys. (5)

At the receiver side the hidden information needs to
be decoded. Since the optimal decoders require the dis-
tribution of the host signal, different distributions for
the DCT coefficients and the magnitude of DFT coefti-
cients will be discussed in the next section.

3. Data hiding in the DCT and the DFT magnitude
domains

As to be shown in the next section, the distribution of
the DCT coefficients is needed to derive the optimal
decoder. The authors in [26] suggested that the heavy
tailed property for low and mid frequency of DCT coef-
ficients can be modeled by the zero mean generalized
Gaussian distribution (GGD) [26] as

fi(x) = ae™ T, (6)

\/ r'(3/c)
,BC F(l/c) (7)

—ZF(I), = o 7
c

and o, means the standard deviation of the host signal
and I'(.) means the Gamma function defined as
I'(x) = [;° " 'e~'dt. The power exponent c is the shape
parameter where its smaller value leads to the more
impulsive shape and heavier tail. The scale parameter 3
and the shape parameter ¢ can be estimated from the
host signal [34].

The DFT is another popular transform domain for
image analysis, where the DFT magnitude could be used
to represent the host signal. Since the magnitude of the
DFT coefficient is real and positive, the Weibull distri-
bution was suggested [13] to model the PDF, because of
its flexibility and consistency with the DFT magnitude,
as follows

where
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fx(x) = Z (';')H exp [—('i')y} u(x), ®)

where u(.) determines the step function which returns
one where its argument is positive and returns zero
when its argument is negative. Moreover, the para-
meters 7 > 0 and ¥ > O represent the scale and the
shape parameters of the Weibull distribution.

4. The ML optimal decoders
The optimal decoder attempts to obtain an estimate }, of

b such that the probability error P, = Pr { b # b} is mini-

mized. This can be done with the maximum aposteriori
(MAP) decoder, which is simplified to the maximum
likelihood (ML) decoder with the assumption of the
equal prior probability of the bit information. The ML
estimate }, can be expressed as

b= argmaxfg (r|b, A, s), 9)
be{£1}
where fr(r|b, A, s) represents the conditional PDF of r
when given b, A, and s. It is clear that the distribution
of the host signal plays an important role in the ML
decoder structure and thus, distribution of the DCT and
magnitude of DFT domains were introduced in Section
3. The ML decoder for binary information hiding could
be expressed by using the likelihood ratio rule. In this
case the ML decoder decides } = 41 if

fa(rlb=+1) _
f(xlb = —1)

As discussed in Section 3, the PDF of the host signal
can be different depending on the transform domain. In
practice, due to different desired properties, different
transform domains could be used for data hiding. Deri-
vation and performance analyses of the ML decoder for
SS embedding require the distribution of the host signal
in a specific domain. In the following subsections, the
ML decoders for SS and ISS embedding schemes in
DCT and DFT domains are derived. It is worth men-
tioning that the ML decoder for the SS scheme in the
DCT domain has been already proposed in [26].

(10)

4.1. ML decoders in the DFT domain

One possible host signal for information hiding is the
DFT magnitude domain. However, it is important to
note that the SS (1) and ISS (5) embedding schemes can
not be applied directly in this domain because of the
special property of the magnitudes of the DFT coeffi-
cients, i.e., they should be always positive. To ensure the
intuition that the watermarked signal should be always
positive, we propose a modified SS embedding scheme
in the DFT magnitude domain as follows
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r=x+sAb+e, (11)
where the insurance vector e = [e}, e, ..., e]]7 is

designed to make /s positive. More specifically, if x; +
s;Ab is positive, its corresponding element e; is set to be
zero; If x; + s;AD is negative, e; = -s;Ab is set to make r;
equal to x; which is consequently positive. In summary,
e; in (11) can be formulated as

ej = (—S;Ab) u (— (x; + s;Ab)) . (12)

The modified SS embedding scheme (11) and the vec-
tor e defined in (12) reveal that, for those coefficients
where e; > 0, the watermarked signal becomes r; = x;
meaning that the coefficient r; does not convey informa-
tion directly. However, because of the structure of the
optimal decoder, which will be derived shortly, such /s
still could help for decoding. We also note that, for the
modified SS scheme (11), by increasing the watermark
amplitude A, the number of coefficients with e; > 0
increases and consequently the number of watermarked
coefficients decreases. Generally, the goal of this modi-
fied SS embedding scheme is to make all the water-
marked coefficients positive.

Having proposed the modified SS embedding scheme
for information hiding in the magnitude of the DFT
domain, we can derive the optimal decoder using the
distribution of the host signal. Referring to expression
(8), assuming the independent and identical distribution
of the coefficients, we have the joint PDF of the host

data as
(2 (g o

Based on the ML decoder structure (10), it decides
13 =4+1if

1
i=1

() =exp[—_2

fr(xlb=+1) _
fr(xlb=—1)
exp {_ i:1 (ln ;SIA‘) } l_lLl (:yl,) (Iri = AN u (1 — siA) (14-)
! " ‘v > 1.
exp {f YL ('" ;f”“) } ., (nyy) (11 = sADP 1 (- 5i4)
Generally, the ML decoder could be expressed as
b = sign{z}, (15)

where in this case, after some manipulations, the test
statistic regarding (14) is obtained as follows

I , v
i + SiA|>y’ <|Ti - SiA|>y’
z= -
Z |:< ni Ni
i=1
i — S

AD <u(r,<—5,»A)>]
+1n .
T + SiA u (1 + 5;A)

(16)

+(yi—1)ln(
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Investigating the test statistic of the ML decoder in
the DFT magnitude domain reveals that the bit informa-
tion amplitude as well as the PDF parameters should be
provided at the receiver side. Now, we proceed to show
that the decoding procedure is error free for two cases.
For one case that b = +1 and there is one coefficient
with r; + s;A < 0 at the decoder side, we can see that
the test statistic in (16) goes to infinity and thus the
decoder (15) definitely decides §, = ;1. More precisely, in
this case, In(u(r;-s;A)) is positive and In(u(r; + s;A)) goes
to minus infinity, and thus the test statistic in (16) goes
to infinity. Similarly, for the other case that b = -1 and
at the decoder side there is one coefficient with r; - s;A
< 0, the test statistic in (16) goes to minus infinity and
thus the decoder (15) definitely decides j = _1.

As mentioned earlier, these coefficients which do not
convey information directly could help decoding indir-
ectly. To explain this better, let assume that b = +1 and x;
+ s;A < 0, thus the corresponding coefficient becomes r; =
x; at the embedding side. At the decoder side we will have
r; + $;A < 0, which based on the above discussion, leads to
the decision }, = ;1. Similarly, let assume that b = -1 and «;
- ;A < 0, thus the corresponding coefficient becomes r; =
x; at the embedding side. At the decoder side we will have
r; + 8;A < 0, which leads to decision § = _1. In both cases,
the decoder performance would be error free and there-
fore, even some coefficients do not convey hidden infor-
mation directly, they still could contribute to accurate
decoding indirectly.

Deriving an analytic expression for the probability of
error is always desirable, because it could help to analyze
the behavior of the error. We first show that the test statis-
tic used for decoding could be modeled as Gaussian ran-
dom variable. It is noted that the test statistic (16) is the
sum of / random variables, which with the assumption of
independent host signal samples and with the knowledge
of signature codes, by employing the central limit theorem,
the test statistic could be approximated as a normal ran-
dom variable if / would be large. Assuming that the signa-
ture code accepts values +1 and -1 with the equal
probability, one could show that the conditional PDFs of
the test statistic are expressed as

fz @b =+1) = N (m;, 0?), (17)

fz@b==1)=N(-m0}),

where m1, and o2 represent the mean and the variance
of the test statistic. Assuming the equal prior probability
for the information bit, i.e., Pr{ib = +1} = Pr{b = -1} = 1/
2, the probability of error can be expressed as

1 WIR 1 m?2
P, = erfc \/ = _erfc <,
2 2 2 202

(18)

(19)
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where er fc(x) = I e “dt is the complementary

2
JT
error function and WIR is referred as the watermark to
interference ratio. It could be shown that the mean and
variance of the test statistic (16) when b = +1, and for
all host signal coefficients which x; > 24, and with
assuming equal probability for the signature code Pris; =
+1} = Pr{s; = -1} = 1/2, are achieved as below

1/ 1%+ 2A1\Y 1/ |xi —2A1\"
m, = Z |; + | + |x; |
— |2 ni 2 ni

1

_ (20)
+ ! (yi—1)In x’2 — (xi>yl
2" |x? — 4A2] ni) |’
) 1 [ |x; + 24\ 1<|xi—2A|>2”' (xi)“’
UZ_ZL( ni ) T2 ni * ni
1 ! 2 Xi 2
NPRO [ln<|xi+2Al>]
1 ,_12|:1 Xi )]2_ xi + 2A] V‘(&-)”
+2(y1 ) n(lxi—ZAI ( ni > ni
(G
ni ni
|xl-+2A| ¢ Xi
-0 (5 (21)

|xi—2A|)y’ ( Xi )
+(yi—1 In
(r )( ni i — 24|
x\” x? 1/ |x; + 2A1\”
—(vi—1 1 ! —
(r )<m> n(xf—4A2> [2< ni )
(-G
+ _
2 ni ni
Y- <
+ i—1)In .
2 |x? — 4A2]

If there is a host signal coefficient x; < 24, according
to the earlier discussion, the probability of error would
equal to zero. Therefore, the theoretical error probability
of the modified SS scheme is expressed as (19) when the
mean and variance could be achieved using expressions
(20) and (21).

Having introduced information embedding using the
modified SS scheme in the DFT magnitude domain, we
now present the modified ISS scheme. Similar to the
modified SS scheme, to avoid having negative water-
marked coefficients, we propose a modified ISS embed-
ding scheme as

r=sAb+u+e, (22)

where the insurance vector e is determined as follows.
If u; + s;Ab is positive then the corresponding e; is set
to zero; If u; + s;,Ab is negative, then e; = -s;,Ab + ksis™x
to ensure that r; is positive. Therefore e; in the modified
ISS scheme could be expressed as
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e = (—siAb + ksis'x) u (— (u; + siAb)) . (23)

In order to obtain the ML decoder, the conditional
distribution of the received signal r should be exploited.
To do so, it is straightforward to show that the distribu-
tion of the vector u could be given by

! R A [
i pyos [  omrm]. 20
where |[M| is the determinant of M and m,; is the ith

row of M}, where M is defined as

M=1—kss’. (25)

Exploiting the ML theory leads to decide §, = ;1 when
the following inequality holds

Jr(rlb=+1) _
i telb = ~1)
i (r—sA)\" i -
op {2 (™)L () am - sop -] (26)
i i

> 1.

— Yi
exp [f > (‘m' - SA)‘) } I, [(nyy) (1 (€ — sAY)"~u (m (5 — sA))]

ni

With some manipulations on (26), we can have the
following test statistic

z= i [(Imi(nsA)l)” _ <|ml- (r— sA)|>Vf
i1 Ni Ni
+(vi—1)In (‘ m;(r = sA) D +In (mi(r_ SA)>] .
m;(r + sA) m;(r + SA)

We now investigate the error probability behavior of
this scheme. It is observed from (26) that at least one of
the terms m; (r + sA) and m; (r - sA) should be positive
for all watermarked coefficients, but we can show that
the scheme in (22) may not fulfill this requirement. For
instance, let us assume that b = +1 is hidden into the
host signal, with the embedding scheme (22) and the
ML decoder (26), the two terms u(m;(r - sA)) and u(m;
(r + sA)) become (u(x; + m;e)) and (u(x; + me-2Am;s)),
respectively. Although the host signal vector and the
insurance vector have positive coefficients, since the ele-
ments of m; could be negative, it can not be guaranteed
that all coefficients of x; + m;e and x; + m;e - 2Am;s be
positive. A similar observation can be noted when b =
-1 is hidden into the host signal. Referring to (26), one
could conclude that in the cases that both terms m,(r +
sA) and m,(r - sA) are negative, the decoder makes ran-
dom decisions. In order to avoid this undesirable beha-
vior, we improve the modified ISS embedding scheme
by proposing

(27)

r=sAb+u+e+q, (28)

where the vector q = [g1, g, .., q;]” is to make my(r +
sA) when b = -1 (or m(r - sA) when b = +1) positive.
With (28), when b = -1, then y = M }(r + sA) becomes
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y=x+ M'e + M'q, where y = [y1, ¥2, ..., y,]”. Let us

. T
denote x + M'e = Vp + Vy where v, = [vp1, Upa, ..., ppi ]
is the vector whose elements are non-negative, and
Vy = [Un1, Un, ..., vpy]T is the vector whose elements are
less than zero. Therefore, the vector y could be written
as

y=vp+vn+M71q‘ (29)

In order to make all the elements of y positive, it is
sufficient to make v, + M'q = 0, which leads to the
vector q as

q=—Mv,. (30)

We will apply the modified ISS scheme in (28) for
embedding, and use the decoder in (26) for extracting
the hidden information. So far, as a summary, the modi-
fied ISS embedding scheme (28) in the DFT magnitude
domain has been proposed in order to make all the
watermarked coefficients positive and to make the deco-
der (26) meaningful.

The remaining point is determining the parameter k
in ISS embedding which could be done using the prob-
ability of error. This parameter should take the value
which minimizes the theoretical probability of error. It
could be shown that the probability of error for modi-
fied ISS scheme is obtained using the expression (19)
when x; > 2A([(k" - )" + 1), based on the following
mean and variance

e () Y oo (2) ()] e
() G ()]
o) ()
(a7

1 x?
+2(y1—1)ln(‘aidi‘ :|
where
ai=x;i+2A(du + 1), bi=x; —2A(u+1), (33)
= (=17 (34)

It should be noted that regarding to (5) and the point
that the parameter A is always positive, one could con-
clude that the parameter k in ISS embedding scheme

should satisfy (0 <k< \/D/ (sTRXs)). This parameter
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could obtain by optimizing the WIR as the following
constrained maximization

2
mZ

5

A = argmax

p %
0<k<
sTRys

4.2. ML decoders in the DCT domain

As opposed to the SS and ISS schemes in the magnitude
of DFT which suffered from lack of optimal decoder, the
optimal decoder in the DCT domain exploiting SS
scheme has been accomplished in [26]. It has been
shown that the ML decoder satisfies (15) where

1
i=1

We can see that the ML decoder requires knowledge
of the bit information amplitude and the shape para-
meter as well as the signature code. For practical imple-
mentation, the receiver should either have these prior
information or estimate them. One way to avoid esti-
mating the shape parameter is to use a general value for
all images, hoping it could describe the distribution of
the DCT coefficients relatively well [35].

Now, we extend this work to obtain the ML decoder
for ISS embedding scheme in the DCT domain to
achieve better decoding performance. To do so, we
should first derive the PDF of the vector u defined in
(4). To this end, the PDF of generalized Gaussian is
rewritten in the following vector form

, ()]

(35)

i+ SiA ‘C i — SiA

C]. (36)

Oy, Oy

i

A= epd- r | [r2x] L (37)
Hf=1¢7xi F(l) ; ;
Cc
where
r 3
A= ° (;), (38)
2r )\ T (e)

and Ry = diag {0}, 02, ..., 03} In addition, we define
lay, az.... alllle = [la1l |az| - |ai|]. Regarding to the
ISS signal model (3), it is shown [36] that the PDF of u
can be expressed as

o -1
u'M™'R, 2

g ro)] T
f”(“)z|M|1‘[:3}ox,vexp[_HF(l)} L gl' (39)

Then, likelihood ratio for ISS (3) leads the decoder
decides } = 41 when
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fatrlb=+1) _
fa(rlb=—1)

exp {_ (1' - SA)TMile 721 c R 721 Mil(r B SA) H S } (40)
2 2

. -1 -1
exp i— (r+sA)"M7IR, 2 Ry 2 M7l(r+sA) }
c c
2 2

Having accomplished some algebraic simplifications,
the ML decoder for ISS embedding scheme is obtained
as in the form of (15) where

!
m;(r + SA)
=™
i=1 i

Having proposed the optimal decoder of the ISS
scheme in the DCT domain, the error probability is
obtained by (19) where the mean and variance are
determined as follow:

¢ ‘m,-(r—sA) ¢
Oy;

]. (41)

1

m, = Z [( 1-’)6 (; ‘x[ +2A(Ip + 1)|c + ;‘xi —2A(Ipn + 1)|c - Ixilt):|, (42)

0.
i=1 *

1

1\% /1 . 2
o2 = 21: [(G) (4[|xi +2A (I + DI = | — 2A( + D] )} . (43)

Similar to the ISS embedding in the magnitude of the
DFT domain, the parameter k could be determined
using the constrained maximization (35) taking into
account the mean and variance defined in (42) and (43).

5. Sub-optimal decoders

As shown in Section 4, the ML decoder requires the host
distribution parameters as well as the watermark ampli-
tude. Assuming low distortion due to watermark, we
could estimate the host signal parameters using the
received signal, while estimating the watermark ampli-
tude is not easy because of the complex structure of the
embedding scheme. Therefore, to reduce the dependency
on such prior information, in this section, we will investi-
gate two sub-optimal decoders [37]. In addition, since it
was shown that the ML decoder for embedding in the
magnitude of the DFT domain is sensitive to watermark
amplitude, we hope that the sub-optimal decoders in this
domain could decrease this sensitivity and lead to good
performances in the presence of additional noise.

5.1. Local optimum decoder

To make the hidden information imperceptible, the
watermark amplitude should be small. This motivates us
to explore the LOD idea of using Taylor expansion of
the test statistic around zero. The Taylor series of f(x)
around the point ¥ = a excluding the second and higher
orders can be expressed as
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1(x) = () + f(a) (x — a), (a4)
where f(a) is the first order derivative of f{.) at the
point x = a.

Having introduced this approximation, we first con-
sider the LOD for SS embedding in the DCT domain.
Taking into account the point that the test statistic (36)
at A = 0 equals to zero, and by taking the derivative of
the test statistic and deriving the Taylor series around A
= 0, the approximation of the test statistic turns to the
following expression

1

Z silri| 1)s1gn{r}

i=1 xl

(45)

Thus, the LOD for SS embedding in the DCT domain
is achieved by

. L sijr 1€ Dsign{r;
b - sign {Z silril aflgn{r'} } |
Xi

i=1

(46)

The provided above decoder expression reveals that it
is independent of the watermark amplitude and appro-
priate for the cases which there is no access to the
watermark amplitude.

Having obtained the test statistic of LOD for SS
embedding, the error probability can be analyzed using
(19) where it could be shown that the mean and the
variance are as follow

1

me= [: (I + A€ Dsignx; + A) — bx; — A Dsignlx; — A})} (47)

i=1

= i |: (\x + Al 1)51gn{x, + A} + x — Al 1)51gn{x, A})2j|. (4-8)
We follow the same procedure provided for LOD
using the SS scheme to obtain its counterpart using the
ISS scheme. To derive the LOD for ISS in the DCT
domain, the test statistic (41) should be rewritten in a
more tractable form. After some algebraic manipula-
tions, we have the following form of the test statistic

=

i=1

msi iz $ity + (1 + p)ri+ (In + 1)siA

Oy,
C:|

Taking the derivative of above expression and using
the Taylor series around A = 0, we have the LOD for
ISS embedding as

(49)
wsi Dz Sty + (1 + p)ri — (I + 1)siA

Oy,

i
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(e=1)

EE

i=1 xi

(I + 1)si| s Zs]r] +(1+p)r

j#

sign [MSiZSjTj +(1 +/L)Ti}:| ] .
j#

Again, we observe that above expression, for informa-
tion decoding using the ISS scheme, has relaxed us hav-
ing the watermark amplitude, and it is suitable in cases
which we do not have access to them. Exploiting (19)
leads to the corresponding theoretical error probability
of the LOD in (50), with the following mean and var-
iance parameters

m, ‘Z {(lﬂ«; 1) (

i=1 Xi

(50)

1y six+ pA(l = 1) — pk(l— 1)(s"x)
j#

+(1+p)(xi+A— ksTX)|(C_1))

sign [u > s+ nA(l— 1) — pk(l - 1)(s"x)
j#i
+(1+p)(xi + A — ks'x)} (51)

==Y s — nA(l = 1) + pk(l = 1)(s"x)
Jj#

+(1+p)(x+A+ksx)

|(C—1)

sign [_M D sixg — A= 1) + pk(l = 1)(s"x)
+(1 i)(x,- +A+ks™)})],

S [(’“ D ( S 55+ wAQ— 1) — k(I — 1)(sx)

A1+ 0)(x +A#— ksTx)| €

i= %

j#
+(1+p)(xi + A —ks'x)}

sign {Mzijj + Al = 1) = pk(l — 1)(s"x)

(52)

— =1 > s — wA( = 1) + k(1= 1)(s"x)
j#i

+(1+p)(x; + A +ksTx)

|(6*1)

sign {—u D six = wA(l = 1) + k(1 — 1)(s"x)+
j#

+(1+p)(xi+A+ ksrx)})z} .
Since the LODs are approximations of the ML deco-

ders, the degraded decoding performances from the
optimal ML ones are expected. LOD has the advantage
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that the additional information of the watermark ampli-
tude at the decoder side is not required.

A similar procedure could be taken to obtain the LOD
in the DFT magnitude domain. Referring to the test sta-
tistic (16), we can obtain the LOD decoder for SS
embedding in the DFT magnitude domain as

vimle, A
b=sign{Z [ i 1)‘;’”.
i 1

i

(53)

It is worthy mentioning that, since LOD is indepen-
dent of the watermark amplitude A, decoding perfor-
mance degradation is observed in LOD compared with
ML, especially for the high watermark amplitude cases.
As discussed in Section 4, though those watermarked
coefficients with x;-s;A < 0 or x; + s;A < 0 do not convey
information directly, they do help accurate decoding in
the ML decoder in (16). From the LOD in (53), it is
clear that with no access to the watermark amplitude
information, all the received coefficients are exploited
for extracting the hidden information even though some
of them do not convey any information. This is the
source of the decoding performance degradation from
ML.

In order to reduce the LOD decoder’s sensitivity to
watermark amplitude, alternatively, we present the GML
as the sub-optimal decoder in the DFT magnitude
domain for SS embedding. The GML considers A, b,
and e as unknown parameters to be estimated. Referring
to the embedding scheme (11), we can obtain the GML
decoder as

?=a%§mxﬁu—y) (54)

where f,(.) is the Weibull distribution defined in (8)
and y = sAb + e. By taking the derivative of the above
expression with respect to y and making it zero, we
have

y-r—g (55)

) 1 ) 1 ) 17T
g= |:nl(y1_ >Vlln2(y2_ >y2,”.,nt<yt_ )y :| (56)
Y1 Y2 yi

The main goal is to estimate b from y. From the
expression of ¥ = sAb + e, it is clear that the correlator
b= sign {5T§r} is the solution. It should be pointed out
that since the GML decoder does not have access to the
watermark amplitude information, the GML decoder’s
performance degrades from that of ML. However, when
compared with LOD, GML yields less errors for high
watermark amplitudes and thus provides better decod-
ing performance.
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The GML decoder for ISS scheme could be obtained
similarly by maximizing

§ = argmax fu(r — ), -
y
where fy(.) is defined in (24) and y = sAb + e + q.
Similar to the SS case, we have

y=r—Mlg (58)

Therefore, the GML decoder for ISS is b = sign {5T§7}
where ¥ is defined as in (58).

5.2. LMMSE decoder

In Section 4, we focused on the optimal ML decoders,
which require the PDF parameters as well as the water-
mark strength and signature code. Since providing the
watermark strength information to the decoder is not
always possible, the LOD and GML decoders were pro-
posed in Section 5 to make the decoders independent of
this information. However, the PDF parameters are still
required by these decoders. This motivated us to develop
sub-optimal decoders which depends neither on PDF para-
meters nor on the watermark strength information. Here,
we introduce the LMMSE decoder which requires only the
signature code as prior information at the decoder side.

In signal processing, the mean square error (MSE) is a
common measure of estimation and the MMSE estima-
tor minimizes the mean square error in a Bayesian set-
ting. More specifically, let # be an unknown random
variable to be estimated, and let y be the measurement,
the MMSE estimator is to find a function § = g(y) such
that it minimizes the MSE E{(6 - g(y))2|y}. It is known
that, under some weak regularity assumptions, the
MMSE estimator is given by Oysg = E{]y}- In many
cases, the minimum mean square error estimator could
not be achieved, since we may not know the distribu-
tions f{0]y) and fl0, y) or the conditional expectation can
be difficult to compute. Therefore, in practice the
LMMSE estimator which has a linear structure and
could be achieved more easily [38], is usually applied.
The LMMSE decoder takes a linear combination of the
received signal r; and some coefficients w; as follows

z=wWTr, (59)

which the later coefficients should be determined, and
the hidden information is extracted using (15). The
weight vector w is obtained by minimizing the MSE as
W = arg minyE { ||Ab — wTr||2} . (60)
The information embedding whether in the DCT

domain or the magnitude of the DFT domain could be
shown in the general form of (28). It could be shown
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that the result of this minimization leads the LMMSE
decoder to the following conventional [38] form

w=R,"ls, (61)

where the autocorrelation matrix R, defined as R, = E
{rr’}, can be estimated at the receiver side. Therefore,
from former expression, we can see that only the signa-
ture code is required at the receiver side. Although the
LMMSE decoder has the same structure for information
embedding in the DCT and magnitude of the DFT, its
performance varies in these host domains. As explained
earlier for LOD in the magnitude of the DFT domain,
all the coefficients do not convey the information. On
the other hand, the autocorrelation matrix is estimated
using all the coefficients of the received signal and thus
it causes degradation in the decoding performance.

To obtain a closed form expression of the error prob-
ability for the LMMSE decoder when SS scheme is
exploited for information hiding in the DCT domain, by
assuming that the test statistic z in (59) follows a Gaus-
sian distribution, we can show that the probability of
error would be in the form of (19) when

E {(ASTRr’ls)z} A2 (STRr’ls)Q
WIR = =

. 62
Eleonos?] T IRORRSS

In a similar way, the theoretical error probability of
LMMSE decoder for ISS embedding in the DCT
domain, using (3), obtains as

E{||sTR:15Ab{|2} A(sTRs)?

WIR = E [ |STRE (1 — kess” )XH2} - STR; (I — kssT)Ry(I) — kssT)R; s’ (63)
where
R; = A%ss” + (I) — kssT )Ry (I — kss"). (64)

In order to achieve a simpler expression of the WIR,
by employing the matrix inversion lemma and after
some manipulations, we have

(D — k?s"Rys)(s'R;'s)

WIR =
(sTs)(1 — kI)?

(65)
Taking the derivative of the WIR in (65) with respect
to the parameter k gives the optimal value of k as

) (s"Rys + DI2) — \/ (s"Rys + DI2)? — 4DI2TR,

%(66)
21sTRys '

Since all the required information are available during
the encoding of the image, k can be calculated as above.
Similarly, the theoretical error probability of the SS
scheme in the magnitude of the DFT domain is
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obtained, using the embedding scheme (11), in the form
of (19) where

A2(sTR's)?

, (67)
sTR;'RyR; 's + sTR; 'R R 's

WIR =

where R, = E{ee’}, and the theoretical error probabil-
ity of the ISS scheme, using (22), be in the form of (19)
where

A2(sTR1s)?

, (68)
sTR;'MRMR; 's + sTR; 'R¢R; 's

WIR =

and Ry = E{(e + Qe+ q").

6. Experimental results

In this section, simulations on real images are con-
ducted to illustrate the performance of the proposed
watermark decoders for decoding hidden message. A set
of testing images, such as [13], with size 512 x 512 is
employed for information embedding which includes
“Boat”, “Peppers”, “Baboon”, “Lena”, and “Barbara” to
represent almost a wide range of images.

For information embedding in the DCT domain, for
each 8 x 8 block of the image, the DCT coefficients are
calculated and all coefficients except the dc one are
used as the host signal to convey the hidden informa-
tion, therefore, 63 coefficients are used for conveying of
one bit of information. For information hiding in the
DFT domain, since the coefficients should remain con-
jugate symmetric, 31 coefficients are employed. For the
DCT-domain data hiding, determining an appropriate
value of the shape parameter is important, though the
details are out of scope of this article. One approach
could be using the ML estimation [39,40]. In practice,
to reduce the computational complexity, an alternative
way is to use a constant value regardless of the specific
image under analysis. One such constant value was sug-
gested [35] as ¢ = 0.8, and we use this value in our
simulations for avoiding additional estimations. Our
results are based on 100 simulation runs with using dif-
ferent signature codes, and since each block with size 8
x 8 is used for hiding one bit, the total number of
embedded bits is 512%/8” = 4096 in each test image.

We first verify the theoretical error probabilities when
employing the ML decoders proposed in Section 4 for
both traditional SS and ISS embedding. For data hiding
in the DCT domain, both the simulation results and the
theoretical results are shown in Figure 1, where the bit
error rate (BER) is plotted as a function of the data-to-
watermark ratio (DWR) defined in the form of

DWR = 10 10g(‘§). It should be mentioned that the

average of the BER for five test images has been calcu-
lated as the final result. From Figure 1, it is clear that
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Figure 1 The average bit error rates versus DWR for the ML decoders, where 4,096 bits of information are embedded in the DCT
domain of each of the five testing images employing the SS and 1SS embedding schemes. The theoretical performances are also reported
for comparison.
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Figure 2 The average bit error rate versus DWR for the ML decoders, where 4,096 bits of information are embedded in the DFT

magnitude domain of each of the five testing images employing the modified SS and ISS embedding schemes. The theoretical
performances are also reported for comparison.
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the theoretical analysis and the simulated BER result
match closely with each other, and this verifies the theo-
retical analysis of the error probability. Also, comparing
the performances of SS and ISS, as expected, we note
that ISS clearly outperforms the traditional SS.

Similar to the DCT-domain results, we also investigate
the performances of ML decoders when the magnitude
of the DFT-domain is exploited for information hiding.
The average BER performance based on five testing
images and the theoretical performance derived in Sec-
tion 4 are shown in Figure 2. The consistency between
the simulated and theoretical results proves the correct-
ness of the provided error analysis in Section 4. From
Figures 1 and 2, we note that, at low DWR, the theoreti-
cal results of the DCT domain data hiding are more
accurate than that of the DFT magnitude domain. The
reason is most likely due to the assumed Gaussian dis-
tribution of the test statistic, which is more true when
more random variables are added together. Since the
total number of available coefficients for information
hiding in the DFT magnitude domain is only half of
that of the DCT domain and, as explained in Section 4,
and more DFT coefficients do not convey information
when the DWR decreases, the Gaussian assumption
imposed on the test statistics in (36) and (41) for the
DCT domain embedding is more accurate than the test
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statistics in (16) and (27) for the DFT magnitude
domain embedding. From Figures 1 and 2, we also note
that data hiding in the magnitude DFT domain yields
better decoding performances than that of the DCT
domain. This observation could be explained by the spe-
cial structure of the test statistic in (14), which is error
free when r; + s;A < 0 or r; - s;A < 0 and thus leads to
better decoding performances.

To gain more insight into the optimal and sub-opti-
mal decoders derived in Sections 4 and 5, the decoding
performances of the ML, LOD, and LMMSE decoders
are compared in Figure 3 where the DCT-domain SS
and ISS embedding schemes are studied, respectively. It
is noted from these figures that the ML decoder outper-
forms the sub-optimal ones. The ML decoder uses the
watermark amplitude information to make the decision,
while the LOD and LMMSE decoders do not require
this information and provide close, slightly worse perfor-
mance to that of ML. The other point observed is that
the LMMSE decoder yields slightly better decoding per-
formance than the LOD one, which could be intuitively
justified by the structure of LOD. In deriving LOD, it is
assumed that the watermark amplitude is small, and the
LOD shows close decoding performance to that of ML
as long as this assumption is satisfied. As it is seen from
Figure 3, the performance gap between the ML and the

10

BER
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~¢ ML-ISS
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Figure 3 The average bit error rates versus DWR for the ML, LOD, and LMMSE decoders, where 4,096 bits of information are
embedded in the DCT domain of each testing image employing the SS and ISS embedding schemes.
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LOD gets bigger as the DWR decreases. This is because,
by decreasing the DWR, the watermark amplitude gets
larger and the LOD derived by truncating the second
and higher orders of Taylor’s series results in a coarser
approximation of the ML decoder. The LMMSE does
not impose any constraint on the watermark amplitude,
and this might be one reason that LMMSE is slightly
better than LOD. In addition, the LMMSE decoder does
not need to estimate parameters of the host signal and
this simplicity makes it attractive for decoding. There-
fore, we suggest that the LMMSE decoder is generally a
good choice for extracting the information hidden in
the DCT domain, in the sense that it needs less infor-
mation than the ML decoder yet yields close decoding
performance.

To verify the derived theoretical decoding perfor-
mance analysis in Section 5, the BER curves of the LOD
and LMMSE decoders in the DCT domain are shown in
Figures 4 and 5. We observe close matches between the
theoretical BER performances and the performances cal-
culated based on the simulations.

To compare the performances of the sub-optimal
decoders for the DFT magnitude domain embedding,
Figure 6 is reported. From Figure 6, we note that, for
the SS embedding, the LOD decoder does not provide
comparable BER performances when compared with
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other decoders. As discussed in Section 5, though not
all DFT coefficients convey hidden information, the
LOD and LMMSE decoders use all the received coeffi-
cients for decoding and thus have degraded decoding
performances from that of ML. More specifically, at
lower DWR, since less DFT coefficients can be used for
conveying the information bit, the decoding perfor-
mance gap is larger, as observed in Figure 6. It is
observed from the Figure 6 that the slope of decoding
performance of LOD becomes smaller as the DWR
decreases, and the same behavior is observed for the
LMMSE decoder in Figure 6. However, this behavior is
not observed for the GML decoder, even though GML
yields worse performances than the LMMSE decoder.
The fact that GML estimates the unknown parameters
and uses them to extract the hidden information might
be the justification why the slope of its performance
does not become smaller as the DWR decreases. From
the Figure 6, we note that overall the LMMSE decoder
outperforms other sub-optimal decoders.

To examine the performances of the proposed deco-
ders in the presence of additional distortions/attacks, we
consider a scenario, where an additive Gaussian noise is
added into the watermarked images, and the decoders’
performances are shown in Figures 7 and 8 for the
DCT and the DFT magnitude domain embedding,
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; - 8 - LMMSE-ISS
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30 35 40 45 50 55 60 65
DWR (dB)
Figure 4 The average bit error rate versus DWR for the LMMSE decoders, where 4,096 bits of information are embedded in the DCT
domain of each testing image employing the SS and ISS embedding schemes. The theoretical performances are also reported for
comparison.
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Figure 5 The average bit error rate versus DWR for the LOD decoders, where 4,096 bits of information are embedded in the DCT
domain of each testing image employing the SS and ISS embedding schemes. The theoretical performances are also reported for
comparison.
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Figure 6 The average bit error rate versus DWR for the ML, GML, LOD, and LMMSE decoders, where 4,096 bits of information are
embedded in the magnitude of the DFT domain of each testing image employing the modified SS and ISS embedding schemes.
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Figure 7 The average bit error rate versus WNR for the ML, LOD, and LMMSE decoders, where 4,096 bits of information are
embedded in the DCT domain of each testing image. The SS and ISS embedding schemes are employed, respectively, and DWR = 30 dB.
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Figure 8 The average bit error rate versus WNR for the ML, GML, and LMMSE decoders, where 4,096 bits of information are
embedded in the magnitude of the DFT domain of each testing image. The modified SS and ISS embedding schemes are employed,
respectively, and DWR = 30 dB.
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respectively. The DWR has been fixed to be 30 dB and
the WNR varies between 0 to 10 dB, where

WNR = 10log( ) and o2 denotes the noise variance.

From Figure 7, we note that the ISS scheme has better
performance than SS, and that all sub-optimal decoders
yield close decoding performances to each other. An
interesting observation in Figure 8 is that the LMMSE
and GML decoders outperform ML. Even though in the
absence of any additional attack, ML in the DFT magni-
tude domain provides the best decoding performance,
its performance in the presence of additional noise
degrades significantly. This could be explained by the
sensitivity of the ML decoder to the watermark ampli-
tude. In the presence of additional noise, the received
coefficients can be changed (e.g., the noisy coefficients
could satisfy r; + S;A > 0 or r; + s;A > 0 even though
they really do not convey any information), and thus are
wrongly exploited for decoding and consequently
degrade the performance of the ML decoder. On the
other hand, the LMMSE and GML decoders do not
depend on the watermark amplitude and can yield bet-
ter performances than ML under additional noise.

In order to illustrate that the proposed modified SS
and ISS schemes in the DFT magnitude domain always
lead to positive watermarked coefficients, the histogram
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plots of the watermarked coefficients for the proposed
modified schemes are provided in Figures 9 and 10. It
could be seen that, as we expected, all coefficients are
positive, supporting the intuitive rationale behind using
the modified embedding schemes.

Further to justify the benefit of the modified SS
scheme in the DFT magnitude domain, we compare the
decoding performance of the proposed SS-based scheme
with three existing SS-based methods in the DFT mag-
nitude domain in Figure 11. One approach is to use the
conventional correlator in SS [41,42]. The second
approach is a decoder based on the Weibull distribution
in SS [43], which does not take into consideration of the
signs of r; + s;A and r; - s;A. For embedding the infor-
mation into the DFT magnitude domain, the third
approach is based on the MSS [13,43]. It is clear that
the proposed modified scheme yields superior decoding
performances over the conventional ones. The modified
SS scheme provides better performance than the MSS
probably because there are some error free cases in the
proposed scheme.

Since some researchers suggested that magnitudes of
DFT coefficients may follow PDF other than the Wei-
bull, to check whether the Weibull distribution is a
valid assumption, we estimate the PDF of the
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Figure 9 Histogram of the watermarked coefficients for the modified SS embedding in the DFT magnitude domain when DWR = 30
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coefficients based on the Weibull distribution and
report empirical results for 15 images. Figure 12
reveals a close match between the empirical and Wei-
bull-based PDFs, supporting the assumption of the
Weibull distribution of the coefficients. To investigate
the performance consistence on more images, the
decoding performance of the proposed decoders are
robust, the decoding performances of the ML decoders
using the modified SS and ISS schemes in the DFT
magnitude domain are shown in Figure 13 based on
100 images. We can see that the decoding perfor-
mances for 5 and 100 images are similar.

In summary, some useful observations can be con-
cluded from the experimental results: with the water-
mark amplitude information available at the receiver
side, the DFT magnitude domain data hiding could
result in better performances when the ML decoder is
employed; With no access to the watermark amplitude
information, the information embedding in the DCT
domain data hiding is preferred, and the LMMSE deco-
der is preferred; When considering additional noise,
data hiding in the DCT domain with ISS is preferred
than the DFT magnitude domain ISS embedding. How-
ever, for SS embedding, the LMMSE decoder in the
magnitude of the DFT domain provides fairly compar-
able performances to that of LMMSE in the DCT
domain.

7. Conclusion

In this article, the optimal and sub-optimal decoders for
additive spread spectrum data hiding were investigated.
Overall, we presented a rigorous decoding analysis fra-
mework of additive spread spectrum and ISS data hiding
when the information bit is embedded into the DCT
and the magnitude of the DFT domains, respectively.
Generalized Gaussian distribution and Weibull distribu-
tion were used for deriving the ML decoders in the dif-
ferent domains. To improve the accuracy of the
extracted hidden message, we employed ISS embedding
and presented the optimal ML decoders. The theoretical
error analyses of SS and ISS embedding in the DCT
domain and in the magnitude of the DFT domain were
derived. Simulation results showed that, when the water-
mark amplitude is available at the decoder side, data
hiding in the magnitude of the DFT domain could yield
better decoding performances than that of the DCT
domain.

Though theoretically the ML decoder achieves the
decoding performance upper bound, it requires addi-
tional prior information such as the watermark ampli-
tude. To relax the requirements on such prior
information, the LOD and LMMSE decoders were
derived for practical data hiding applications in the
DCT domain. The LOD decoder is independent of the
watermark amplitude, though it still requires the host
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Figure 13 The average bit error rate versus DWR curves for the ML decoders, where 4,096 bits of information are embedded in the
DFT magnitude domain of each of the 100 testing images employing the modified SS and 1SS embedding schemes respectively.

signal parameters. The LMMSE decoder provides a lin-
ear decoder in terms of the received signal which is
independent of the watermark amplitude. The LOD and
LMMSE decoders yield performances close to that of
the ML decoder, with the LMMSE being slightly better
than the LOD, especially at low DWR. For the proposed
sub-optimal decoders, we also provided the theoretical
analysis of the bit error rate decoding performances.

The sub-optimal LOD was also proposed in the DFT
magnitude domain. However LOD does not provide
close performances to that of the ML decoder, probably
because that LOD uses all the received coefficients for
decoding. In order to address this issue, the GML deco-
der was proposed to provide an estimate of the water-
mark amplitude and the bit information. Although GML
could tackle the LOD deficiency at low DWR, its perfor-
mance is much worse than that of ML in the absence of
any additional attack/distortion. The LMMSE decoder
in the DFT magnitude domain shows better perfor-
mance than that of the LOD and GML decoders.

The simulation results suggest that, with no access to
the watermark amplitude information at the decoder
side, the sub-optimal decoders in the DCT domain are
more reliable than their counterparts in the DFT

magnitude domain. Among the proposed sub-optimal
decoders, overall the LMMSE decoders are preferred. As
expected, the ISS embedding scheme outperforms SS in
both the DCT and the DFT magnitude domains, and
thus is preferred. Simulations in the presence of addi-
tional noise showed that ISS embedding in the DCT
domain is preferred. The GML and LMMSE decoders
are preferred in the presence of additional noise than
the ML one for data hiding in the magnitude of DFT
domain.
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