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Abstract

This study presents an appearance-based face recognition scheme called the nonparametric-weighted Fisherfaces
(NW-Fisherfaces). Pixels in a facial image are considered as coordinates in a high-dimensional space and are
transformed into a face subspace for analysis by using nonparametric-weighted feature extraction (NWFE).
According to previous studies of hyperspectral image classification, NWFE is a powerful tool for extracting
hyperspectral image features. The Fisherfaces method maximizes the ratio of between-class scatter to that of
within-class scatter. In this study, the proposed NW-Fisherfaces weighted the between-class scatter to emphasize
the boundary structure of the transformed face subspace and, therefore, enhances the separability for different
persons’ face. The proposed NW-Fisherfaces was compared with Orthogonal Laplacianfaces, Eigenfaces, Fisherfaces,
direct linear discriminant analysis, and null space linear discriminant analysis methods for tests on five facial
databases. Experimental results showed that the proposed approach outperforms other feature extraction methods
for most databases.
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1. Introduction
Face representation is important in recognizing face in
many applications such as database matching, security
systems, face indexing on web pictures, and human-
computer interfaces. The appearance-based method is
one of the well-studied techniques for face representa-
tion [1,2]. Two purposes of the appearance-based
method are reducing dimensionality and increasing dis-
criminability of extracted features. Hence, a good feature
extraction method helps recognize face in a highly dis-
criminative subspace with low dimensionality.
Two of the most classical feature extraction techni-

ques for this purpose are the Eigenfaces and Fisherfaces
methods. Eigenfaces [3] applies principal component
analysis (PCA) to transform facial data to the linear sub-
space spanned by coordinates that maximize the total
scatter across all classes. Unlike the Eigenfaces method,
which is unsupervised, the Fisherfaces method is super-
vised. Fisherfaces applies linear discriminant analysis
(LDA) to transform data into directions with optimal

discriminability. LDA searches for coordinates that sepa-
rate data of different classes and draw data of the same
class close. However, both Eigenfaces and Fisherfaces
see only the global Euclidean structure, which may lose
some discriminability contained in other hidden
structures.
To discover local structure, He et al. [4] and Cai et al.

[5] proposed the Laplacianfaces method [4] and its
orthogonal form, which is referred to as O-Laplacian-
faces [5]. The Laplacianfaces algorithm is based on the
locality preserving projection (LPP) algorithm, which
aims at finding a linear approximation to the eigenfunc-
tions of the Laplace Beltrami operator on the face mani-
fold. Han et al. [1] proposed the eigenvector-weighting
function based on graph embedding framework.
Recently, many LDA-based methods have been pro-

posed to embed manifold structure into the facial fea-
ture extraction process [6-13]. Park and Savvides [6]
proposed a multifactor extension of LDA. Na et al. [7]
proposed the linear boundary discriminant analysis,
which increases class separability by reflecting different
significances of nonboundary and boundary patterns.
There are several drawbacks in LDA. First, it suffers

from the singularity problem, which makes it hard to
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perform. Second, LDA has the distribution assumption
which may make it fail in applications where the distri-
bution is more complex than Gaussian. Third, LDA
cannot determine the optimal dimensionality for discri-
minant analysis, which is an important issue but has
often been neglected previously. Fourth, applying LDA
may encounter the so-called small sample size problem
(SSSP) [14].
However, the classical LDA formulation requires the

nonsingularity of the scatter matrices involved. For
undersampled problems, where the data dimensionality
is much larger than the sample size, all scatter matrices
are singular and classical LDA fails. Many extensions,
including null space LDA (N-LDA) [15] and orthogonal
LDA (OLDA), have been proposed in the past to over-
come this problem. N-LDA aims to maximize the
between-class distance in the null space of the within-
class scatter matrix, while OLDA computes a set of
orthogonal discriminant vectors via the simultaneous
diagonalization of the scatter matrices.
Direct linear discriminant analysis (D-LDA) [16] is an

extension of LDA to deal with SSSP. D-LDA does not
use the information inside the null space, as some dis-
criminative information may be lost. D-LDA will be
equivalent to N-LDA and LDA in high-dimensional data
and small sample size.
In this study, we propose an appearance-based face

recognition scheme called nonparametric-weighted Fish-
erfaces (NW-Fisherfaces). The NW-Fisherfaces approach
is a derivative of the nonparametric-weighted feature
extraction (NWFE) [17], which performs well in the stu-
dies of hyperspectral image classification [18,19]. The
proposed NW-Fisherfaces method weights the between-
class scatter to emphasize the boundary structure of the
transformed face subspace and, therefore, enhances the
face recognition discriminability. The proposed
approach is compared with O-Laplacianfaces, Eigenfaces,
Fisherfaces, N-LDA, and D-LDA methods for tests on
five face databases. Experimental results show that the
proposed approach gains the least error rates in low-
dimensional subspaces for most databases.
The rest of this article is organized as follows. Section

2 gives a brief review of related studies. Section 3 intro-
duces the NW-Fisherfaces algorithm. Section 4 presents
the experimental results on face recognition. In Section
5, we draw some conclusions and provide some ideas
for future research.

2. Related study
Linear feature extraction methods can reduce excessive
dimensionality of image data with simple computation.
In essence, linear methods project high-dimensional
data to low-dimensional subspace.

2.1. PCA
PCA finds directions efficient for representation. Con-
sidering a set of N sample images, x1, x2,..., xN, in an n-
dimensional image space, the original n-dimensional
image space is linearly transformed to an m-dimensional
feature space, where m <n. The new feature vectors yk
are defined by the following linear transformation:

yk = wTxk, k = 1, 2, ...,N (1)

where W Î Rn×m is a matrix with orthonormal col-
umns. Total scatter matrix ST is defined as

ST =
N∑
k=1

(xk − μ)(xk − μ)T (2)

where N is the number of sample images and μ is the
mean of all samples. The objective function is as follows

WPCA = max
W

WTSTW = [w1 w2... wm] (3)

where WPCA is the set of n-dimensional eigenvectors
of ST corresponding to the m largest eigenvalues.

2.2 LDA
LDA finds directions efficient for discrimination. Con-
sidering a set of N sample images, x1, x2,..., xN, which
belong to l classes of face in an n-dimensional image
space, the objective function of LDA is as follows

WLDA = argmax
w

∣∣∣∣W
TSbW

WTSwW

∣∣∣∣ (4)

Sb =
l∑

i=1

Ni(μi − μ)(μi − μ)
T

(5)

Sw =
l∑

i=1

Ni∑
j=1

(xij − μi)(xij − μi)
T

(6)

where μ is the mean of all samples, Ni is the number

of samples in class i, μi is the average of class i, and xij
is the jth sample in class i. Sw is the within-class scatter
matrix. Sb is the between-class scatter matrix. WLDA is
the set of generalized eigenvectors of (Sw)

-1Sb corre-
sponding to the m largest generalized eigenvalues.

2.3 D-LDA
The new D-LDA method is applicable to solve the SSSP
which often arising in face recognition. Most LDA-
based algorithms including Fisherfaces [20] and D-LDA
[21] utilize the conventional Fisher criterion defined in
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(4) while some authors use the alternative given in (6)
proposed by Liu [22,23].

W = argmax
w

∣∣∣∣W
TSbW

WTStW

∣∣∣∣ (6a)

St = Sb + Sw (7)

where St is population scatter matrix.
A variant of Fisher criterion of D-LDA is expressed as

follows

W = argmax
w

∣∣∣∣ W
TStW

WTSwW

∣∣∣∣ (8)

2.4 N-LDA
In this new LDA method, they proved that the most
expressive vectors derived in the null space of the
within-class scatter matrix using PCA are equal to the
optimal discriminant vectors derived in the original
space using LDA. This method is more efficient, accu-
rate, and stable to calculate the most discriminant pro-
jection vectors based on the modified Fisher’s criterion
(7). This process starts by calculating the projection vec-
tors in the null space of the within-class scatter matrix
Sw. This null space can be spanned by those eigenvec-
tors corresponding to the set of zero eigenvalues of Sw.
If this subspace does not exist, i.e., Sw is nonsingular,
then St is also nonsingular. Under these circumstances,
we choose those eigenvectors corresponding to the set
of the largest eigenvalues of the matrix (Sb + Sw)

-1Sb as
the most discriminant vector set; otherwise, the SSSP
will occur.

2.5 LPP
LPP finds directions efficient for preserving the intrinsic
geometry of the data and local structure. The objective
function of LPP is as follows:

WLPP = argmin
W

∑
ij

(yi − yj)
2Sij

= argmin
W

∑
ij

(WTxi − WTxj)
2
Sij = argmin

W
WTXLXTW

(9)

with the constraint

WTXDXTW = 1 (10)

where Dii = ∑jSij and L = D - S is the Laplacian
matrix. S is a similarity matrix attempting to ensure that
if xi and xj are “close”, then yi and yj are close as well.
The basic functions of LPP are the eigenvectors of the
matrix (XDXT)-1XLXT associated with the smallest
eigenvalues. Moreover, Cai et al. [5] proposed the ortho-
gonal form of LPP (OLPP) and proved that OLPP

outperforms LPP. In this study, OLPP is applied with a
supervised similarity matrix for comparison. The
weights of S are defined as follows:

Sij =
{
cos(xki , x

l
j), if k = l

0 otherwise,
(11)

where cos(·) denotes the cosine distance measure, i and j
denote sample indices, and k and l denote classes. The
applied S preserves the locality depending on the cosine
distance measure and ensures preservation only for
within-class face by setting the between-class weights as 0.

3. Methodology: NW-Fisherfaces
The proposed NW-Fisherfaces scheme is based on the
NWFE method proposed by Kuo and Landgrebe [17].
NWFE is an LDA-based method that improves LDA by
focusing on samples near the eventual decision bound-
ary location. Both NWFE and OLPP use distance func-
tion to evaluate closeness between samples. While
OLPP emphasizes the local structure by defining a clo-
seness graph map, NWFE emphasizes the boundary
structure by weighting the calculation of mean and cov-
ariance with the measured closeness. The main ideas of
NWFE put different weights on every sample to com-
pute the “weighted means” and define new nonpara-
metric between-class and within-class scatter matrices.
In NWFE, the nonparametric between-class scatter
matrix is defined as follows:

SNW
b =

l∑
j=1

Pi

l∑
i=1
i�=j

Ni∑
k=1

λ
(i,j)
k

Ni
× (

xik − Mj(xik)
) (
xik − Mj(xik)

)T
(12)

SNW
w =

l∑
i=1

Pi

Ni∑
k=1

λ
(i,i)
k

ni
× (

xik − Mi(xik)
) (
xik − Mi(xik)

)T
(13)

Mj(xik) =
Nj∑
l=1

w(i,j)
kl xjl (14)

λ
(i,j)
k =

dist(xik,Mj(xik))
−1

Ni∑
l=1

dist(xil,Mj(xil))
−1 (15)

w(i,j)
kl =

dist(xik, x
j
l)

−1

Ni∑
l=1

dist(xik, x
j
l)

−1 (16)

where Ni is the training sample size of class i, xik is

the kth sample of class i, Mj(xik) denotes the weighted
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mean corresponding to xik for class j, and dist(x, y) is

the distance measured from x to y. The closer xik and

Mj(xik) are, the larger the weight λ
(i,j)
k

is. The sum of

λ
(i,j)
k

for class i is one. The weight w(i,j)
kl

for computing

weighted means is a function of xik and xjl . The closer

xik and xjl are, the larger w(i,j)
kl

is. The sum of w(i,j)
kl

for

Mj(xik) is one.

In face recognition, the dimension of face data often
exceeds the size of data. In this case, the covariance was
not a full rank matrix and could not be inverted. A sim-
ple method to deal with the SSSP is called regularized
discriminant analysis, which artificially increases the
number of available samples by adding white noise to
existing samples. Some regularized techniques [18,24],
can be applied to within-class scatter matrix. In this
article, the within-class scatter matrix was regularized by

SRNW
w = 0.5SNW

w + 0.5 diag(SNW
w ) (17)

where diag(.) denotes the diagonal part of a
matrix.
The NW-Fisherfaces computational scheme is as

follows.
(1) PCA projection: Face images are projected into the

PCA subspace by throwing away the components corre-
sponding to zero eigenvalue. WPCA denotes the transfor-
mation matrix of PCA projection. The projected
components are statistically uncorrelated and the rank
of the projected data matrix is equal to the data dimen-
sionality. This study applied the PCA projection method
proposed in [5,25] to prevent the singularity of Sw due
to the simple computation and fair comparison with
Fisherfaces and O-Laplacianfaces. However, throwing
the dimensionalities corresponding to zero eigenvalue
may lose important discriminant information [26]. For
further applying LDA-based methods to practical appli-
cations, an advanced regularization method proposed in
[26] is suggested.
(2) Compute the distances between each pair of sam-

ples and form the distance matrix.

(3) Compute w(i,j)
kl

with the distance matrix.

(4) Use w(i,j)
kl

to compute the weighted means Mj(xik) .

(5) Compute the scatter matrix weight λ
(i,j)
k

.

(6) Compute SNW
b and the regularized SRNW

w .

(7) Compute WNWFE = [w1,..., wm] as the eigenvectors

of ((SRNW
w ))−1SNW

b corresponding to the m largest

eigenvalues.

(8) Compute NWFE embedding as follows:

W = WPCAWNWFE

where W is the transformation matrix and the column
vectors of W are the so-called NW-Fisherfaces.

4. Experimental results
The performance of the proposed NW-Fisherfaces
method was compared with the three most popular lin-
ear methods in face recognition: Eigenfaces [3], Fisher-
faces [20], and O-Laplacianfaces [5]. Three face
databases were tested: Yale database, Olivetti Research
Laboratory (ORL) database, and the PIE (pose, illumina-
tion, and expression) database from CMU [24]. This
study applied the same preprocessing in [5] to locate
face. Gray level images were manually aligned, cropped,
and re-sized to 32 × 32 pixels. Each image was repre-
sented by a 1,024-dimensional vector. For simplicity, the
k nearest-neighbor (k-nn) classifier, where k = 1, was
applied in all experiments. Recognition processes were
as follows: face subspace was calculated from training
samples; new testing face images were projected into
calculated subspace; and new facial images were identi-
fied by the 1-nearest neighbor classifier.

4.1. ORL database
The ORL database contains 10 different images for
each of 40 distinct individuals. For some individuals,
the images were captured at different times, varying
the lighting, facial expressions (open/closed eyes, smil-
ing/not smiling), and facial details (glasses/no glasses)
as shown in Figure 1. The database is divided into
training and testing sets for experiment. The applied
divisions are n images per individual for training and
10 - n images per individual for testing, where n = 2, 3,
4, and 5. Furthermore, experimental results are aver-
aged over 20 random sets for each division. Table 1
presents the least error rates and the corresponding
dimensions obtained by Eigenfaces, Fisherfaces, O-
Laplacianfaces, and NW-Fisherfaces. The proposed
NW-Fisherfaces outperformed other methods on the
ORL database. Figure 1 shows the plots of error rate
versus reduced dimensionality. Since the optimization
of LDA produces at most L - 1 features [20], the maxi-
mal dimension of Fisherfaces is also L - 1, where L is
the number of individuals. As observed, error rates of
O-Laplacianfaces are below those of PCA and LDA
after the dimension reaches a certain degree, which is
19 in Figure 2a. The error rates of NW-Fisherfaces are
lower than those of other methods where over all
dimensions below L - 1.

Li et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:92
http://asp.eurasipjournals.com/content/2012/1/92

Page 4 of 11



Figure 1 Sample images of two different persons with different conditions.

Table 1 Performance Comparisons on the ORL Database

Method 4 Train 5 Train 6 Train 7 Train

Eigenfaces 80.25%(522) 78.24%(678) 77.15%(658) 75.49%(844)

Fisherfaces 47.69%(135) 50.30%(135) 48.78%(135) 49.71%(135)

D-LDA 39.59%(133) 37.13%(133) 31.43%(136) 26.45%(136)

N-LDA 41.32%(135) 44.36%(135) 45.28%(135) 51.32%(135)

O-Laplacianfaces 33.06%(198) 28.71%(355) 24.70%(443) 20.93%(543)

NW-Fisherfaces 31.05%(34) 26.27%(35) 21.96%(37) 17.70%(34)
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Figure 2 Error rate versus reduced dimensionality on the ORL database. (a) 2 Train, (b) 3 Train, (c) 4 Train, and (d) 5 Train.
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4.2. Yale database
The Yale face database contains 165 grayscale images of
15 individuals. There are 11 images per individual, one
per different facial expression or configuration: center-
light, w/glasses, happy, left-light, w/no glasses, normal,
right-light, sad, sleepy, surprised, and wink as shown in
Figure 3. The database is divided into training and test-
ing sets for experiment. The applied divisions are
n images per individual for training and 11 - n images
per individual for testing, where n = 2, 3, 4, and 5.
Furthermore, the experimental results are averaged over
20 random sets for each division. Table 2 and Figure 4
show the experimental results. The proposed NW-Fisher-
faces still outperformed other methods with low
dimensionality.

4.3. PIE database
The CMU PIE face database contains 41,368 face images
of 68 individuals. Each individual was imaged under var-
ious poses, illuminations, and expressions. In this study,
5 near frontal poses (C05, C07, C09, C27, and C29) and
all the images under various illuminations, lighting, and
expressions were gathered as 170 near frontal facial
images for each individual as shown in Figure 5. The
database is divided into training and testing sets for
experiment. The applied divisions are n images per indi-
vidual for training and 170 - n images per individual for
testing, where n = 5, 10, 20, and 30. Furthermore, the
experimental results were averaged over 20 random sets
for each division. Table 3 presents the least error rates
and the corresponding dimensions. Both O-Laplacian-
faces and NW-Fisherfaces outperformed the Fisherfaces
and Eigenfaces. O-Laplacianfaces resulted in the least
error rates on PIE database. However, the dimensional-
ity required by the NW-Fisherfaces to reach its least
error rate is much lower than the dimensionalities
required by other methods. As shown in Figure 6, NW-
Fisherfaces outperformed other methods over the
dimensions below L - 1, where L is the number of
individuals.
There is no result for N-LDA for PIE database after

10 Train. Because the sample number in training set is
larger than the dimension of feature, there was no null
space for within scatter matrix Sw.

4.4. PIE_Small database
The PIE_Small database is a part of PIE database. To
check the performance of the proposed method, we
reduced number of pictures for each subject. Instead of
170 images, we took 15 images for each person as
shown in Figure 7 and found that the performance of
the proposed method is better than that of others espe-
cially for small sample size data. The applied divisions
are n images per individual for training and 15 - n
images per individual for testing, where n = 5, 6, 7, and
8. Furthermore, the experimental results were averaged
over ten random sets for each division. Table 4 presents
the least error rates and the corresponding dimensions.
Both O-Laplacianfaces and NW-Fisherfaces outper-
formed the Fisherfaces and Eigenfaces. O-Laplacianfaces
resulted in the least error rates on PIE_Small database.
However, the dimensionality required by the NW-Fish-
erfaces to reach its least error rate is much lower than
the dimensionalities required by other methods. As
shown in Figure 8, NW-Fisherfaces outperformed other
methods over the dimensions below L - 1, where L is
the number of individuals.

4.5. AR database
In order to check the capability of invariance to lighting
condition and face orientation, which have been better
solved by 3D deformation approaches. We used AR face
database for our proposed method and we found that it
is giving better result compare to other method which
has been proposed previously.
In this database, there are totally 126 subjects (70

men, 56 women) and each subject has 26 different
images as shown in Figure 9. This had taken in differ-
ent facial expressions, illumination conditions, and
occlusions. The applied divisions are n images per
individual for training and 13 - n images per individual
for testing, where n = 5, 6, 7, and 8. Furthermore, the
experimental results are averaged over ten random
sets for each division. Table 5 and Figure 10 show
the experimental results. The proposed NW-Fisher-
faces still outperformed other methods with low
dimensionality.
The pictures were taken at the CVC under strictly

controlled conditions. No restrictions on wear (clothes,

Figure 3 Sample images of two different persons in 11 different facial expressions.
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Table 2 Performance comparisons on the Yale database

Method 2 Train 3 Train 4 Train 5 Train

Eigenfaces 53.96%(29) 50.04%(44) 44.33%(58) 42.28%(74)

Fisherfaces 56.48%(10) 40.08%(13) 30.95%(14) 26.22%(14)

D-LDA 75.30%(14) 44.79%(15) 37.67%(13) 32.94%(15)

N-LDA 45.52%(14) 33.25%(14) 26.60%(26) 22.71%(26)

O-Laplacianfaces 45.52%(14) 33.25%(14) 26.76%(14) 23.06%(14)

NW-Fisherfaces 43.30%(15) 31.83%(14) 24.10%(15) 20.00%(15)
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Figure 4 Error rate versus reduced dimensionality on the Yale database. (a) 2 Train, (b) 3 Train, (c) 4 Train, and (d) 5 Train.

Figure 5 Sample images of one individual with various expressions, illuminations, and lighting. There are totally 170 images for one
individual.
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Table 3 Performance comparisons on the PIE database

Method 5 Train 10 Train 20 Train 30 Train

Eigenfaces 76.50%(334) 64.68%(670) 48.88%(822) 1.92%(896)

Fisherfaces 42.58%(67) 29.24%(67) 21.53%(67) 10.93%(67)

D-LDA 39.70%(63) 24.64%(62) 14.26%(62) 9.80%(62)

O-Laplacianfaces 29.33%(131) 16.23%(272) 1.03%(601) 1.05%(701)

NW-Fisherfaces 33.97%(25) 20.34%(22) 1.66%(608) 1.08%(785)
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Figure 6 Error rate versus reduced dimensionality on the PIE database. (a) 5 Train, (b)10 Train, (c) 20 Train, and (d) 30 Train.

Figure 7 Initial 15 sample images of 5 different individuals from original PIE database with different expressions, illuminations, and
lighting.
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Table 4 Performance comparisons on the PIE_Small database

Method 5 Train 6 Train 7 Train 8 Train

Eigenfaces 55.97%(272) 51.26%(164) 47.00%(376) 43.34%(164)

Fisherfaces 39.56%(65) 34.64%(67) 32.74%(67) 29.35%(67)

D-LDA 36.32%(55) 31.47%(59) 28.51%(58) 25.76%(60)

N-LDA 29.97%(67) 26.36%(82) 25.18%(75) 22.73%(67)

O-Laplacianfaces 24.66%(99) 20.56%(97) 18.35%(99) 16.32%(99)

NW-Fisherfaces 25.21%(23) 20.00%(29) 17.50%(20) 15.69%(22)

Figure 9 Different 26 sample images of two individual. Intial first two rows are images of male in different conditions with various facial
expressions and last two rows are images of female with various facial expressions in different conditions.
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Figure 8 Error rate versus reduced dimensionality on the PIE_Small database. (a) 5 Train, (b) 6 Train, (c) 7 Train, and (d) 8 Train.
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glasses, etc.), make-up, hair style, etc. were imposed to
participants. Each person participated in two sessions,
separated by 2 weeks (14 days) time. The same pictures
were taken in both sessions.
In this face database, there are totally 13 expressions

of each person. The expressions are as follows: Neutral
expression, Smile, Anger, Scream, Left light on, Right
light on, All side lights on, Wearing sun glasses, Wear-
ing sun glasses and left light on, Wearing sun glasses
and right light on, Wearing scarf, Wearing scarf and left
light on, Wearing scarf and right light on 14 to 26: sec-
ond session (same conditions as 1 to 13).

5. Conclusions and future works
5.1. Conclusions
(1) The proposed NW-Fisherfaces consistently outper-
forms the Eigenfaces, Fisherfaces, D-LDA, and N-LDA
methods.
(2) This study applied a nonparametric feature extrac-

tion method into the scheme of appearance-based face
recognition.
(3) The proposed NW-Fisherfaces method weights the

between-class scatter to emphasize boundary structure
of the transformed face subspace and, therefore,
enhances the discriminability of face recognition.
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Figure 10 Error rate versus reduced dimensionality on the AR database. (a) 5 Train, (b) 6 Train, (c) 7 Train, and (d) 8 Train.

Table 5 Performance comparisons on the AR database

Method 4 Train 5 Train 6 Train 7 Train

Eigenfaces 80.25%(522) 78.24%(678) 77.15%(658) 75.49%(844)

Fisherfaces 47.69%(135) 50.30%(135) 48.78%(135) 49.71%(135)

D-LDA 39.59%(133) 37.13%(133) 31.43%(136) 26.45%(136)

N-LDA 41.32%(135) 44.36%(135) 45.28%(135) 51.32%(135)

O-Laplacianfaces 33.06%(198) 28.71%(355) 24.70%(443) 20.93%(543)

NW-Fisherfaces 31.05%(34) 26.27%(35) 21.96%(37) 17.70%(34)
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(4) For practical applications, the computational load
will depend on the dimensionality of the trained linear
projection matrix. In this study, experimental results
show that the proposed method can reach its lowest
error rate with low dimensionality. Hence, the NW-
Fisherfaces method is practical for real-world face recog-
nition due to the low dimensionality requirement.

5.2. Future works
The future research in this area could involve the
following.
(1) The supervised OLPP weights the scatter matrix to

preserve the locality of within class face. This weighting
concept may enhance the within-class scatter of LDA
and other LDA-based methods such as NDA and
NWFE.
(2) Linear feature extraction methods measure and

optimize closeness between samples depending on
Euclidean distance. However, Euclidean distance is basi-
cally light variant. Variance caused by lighting should be
reduced before using linear feature extraction methods.
Several solutions to reduce light variances of face images
are proposed:

(a) Mapping face images into the same intensity dis-
tribution by simple preprocessing such as histogram
specification.
(b) Transforming images into frequency domain by
Fourier-based methods such as Gabor wavelets.

The performance of NW-Fisherfaces in nonlinear fea-
ture space, such as kernel Hilbert space, can be further
evaluated.
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