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Abstract

In high resolution computed tomography (CT) using flat panel detectors, imperfect or defected detector elements
cause stripe artifacts in sinogram which results in concentric ring artifacts in the image. Such ring artifacts obscure
image details in the regions of interest of the image. In this article, novel techniques are proposed for the
detection, classification, and correction of ring artifacts in the sinogram domain. The proposed method is suitable
for multislice CT with parallel or fan beam geometry. It can also be employed for ring artifact removal in 3D cone
beam volume CT by adopting a sinogram by sinogram processing technique. The detection algorithm is based on
applying data driven thresholds on the mean curve and difference curve of the sinogram. The ring artifacts are
classified into three types and a separate correction algorithm is used for each class. The performance of the
proposed techniques is evaluated on a number of real micro-CT images. Experimental results corroborate that the
proposed algorithm can remove ring artifacts from micro-CT images more effectively as compared to other
recently reported techniques in the literature.
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1 Introduction
Flat panel detectors (FPDs) are used to obtain high reso-
lution computed tomography (CT) image. But due to
technical faults of these FPDs, ring artifacts are often
generated in the CT image. These artifacts may be
caused by damaged detector pixels, mis-calibrated detec-
tor pixels, impurities in scintillator crystal or dust on
scintillator screens. All these phenomena attribute to
the generation of a number of concentric superimposed
rings in the reconstructed image which correspond to
stripe artifacts in sinogram domain. These rings can be
of different types and of different intensities. As for
example, completely damaged detector pixels cause
strong isolated or band rings. Similar artifacts also arise
from dusty or damaged scintillator screens [1]. On the
other hand, mis-calibrated detector elements lead to less
strong ring artifacts in the tomographic image [2].
These artifacts are also sensitive to tube voltage.
Changes in the tube voltage alter the intensity of the
ring. As these artifacts severely degrades the image

quality by obscuring significant image details, it is neces-
sary to remove them, otherwise, post processing, such as
noise reduction or segmentation of image information,
becomes quite difficult.
There are a number of different methods to reduce

these ring artifacts, e.g., hardware modification [3], flat-
field correction [4], and signal processing in sinogram
domain [5-7]. In hardware based approach, the detector
array is moved during data acquisition to reduce the
non-uniform sensitivity of different detector elements.
Then an average response of all the detector pixels is
calculated to suppress the ring artifacts [8,9]. But in this
approach special hardware arrangement is needed. In
flat-field correction, image acquisition is done twice. At
first image is obtained without placing the object in the
X-ray beam and then with the object placed in the X-
ray beam. The first image has the response of faulty
detector elements, damaged scintillator and also inho-
mogeneities in the incident X-ray beam. But this
approach fails to remove the rings completely if the
response function of different detector element is differ-
ent [4]. In [10], two post-processing techniques both
using mean and median filtering but working in differ-
ent geometric planes (i.e., polar and cartesian) were
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proposed for the correction of ring artifacts. In the
reported work, it was shown that the algorithm in polar
coordinate (RCP) outperforms the algorithm in cartesian
coordinate in removing ring artifacts in the images
obtained from C-Arm CT system. In addition to that,
the RCP method was also applied for removing ring
artifacts from micro-CT images [11]. But when there is
a strong ring having high frequency content is present
in the CT image, the RCP algorithm fails to remove it
effectively. On the other hand, sinogram processing is
used before reconstructing the image. As ring artifacts
appear as stripes in the sinogram domain, it is more
convenient to remove the stripes in sinogram [5,6]. A
sinogram correction technique using its original mean
curve and smoothed version has been proposed in [12].
But this approach is not effective for removing all types
of artifacts. Strong rings with varying intensities appear-
ing from damaged detector pixels cannot be removed by
this method [6]. Different filtering techniques like com-
bined wavelet-Fourier filtering [1] and iterative morpho-
logical filtering [13] were also proposed as ring
correction methods recently. These methods present a
general analysis for eliminating ring artifacts from the
tomographic slice. But all these reported works do not
provide any classification of the different types of arti-
facts present in the CT image. These different types of
rings that are present in a CT image was first men-
tioned in [14]. But no separate detection or correction
algorithm for these different types of rings was proposed
in that work. Therefore, a single removal algorithm was
applied for all types of rings which often does not give
good result. But in a very recent work in this field, a
two-class classification scheme was proposed for the
ring artifacts present in a CT image [15]. It classified
strong artifacts due to completely dead pixels and weak
artifacts due to mis-calibrated pixels. But X-ray beam
intensities in the mis-calibrated pixels can be of time
independent or time dependent nature. These two types
were not separately addressed in [15]. Normalization
technique was proposed for correcting the artifacts due
to mis-calibrated pixels. This technique works satisfacto-
rily on artifacts that occur due to pixels having time
independent X-ray beam intensity but it is not suitable
in case of time dependent one. Hence, the performance
of the reported work will not be satisfactory on CT
images that are corrupted with this type of artifacts.
In this article, a novel ring removal scheme is pro-

posed based on the detection, classification, and correc-
tion of rings in the sinogram domain. A rigorous three
level detection algorithm is proposed here for detecting
band rings and isolated rings. To check for any residual
ring artifacts after the correction algorithm is applied, a
feedback detection algorithm is proposed in the third
level of detection. This novel algorithm is specially

suitable for detecting minor residual rings. The artifacts
detected in a corrupted image are classified into three
types, as they are generated due to different kinds of
technical faults and they show different characteristics
in both sinogram and reconstructed image domain. The
threshold levels used in detection and classification algo-
rithms are data driven and automatic. Customized cor-
rection technique is also proposed here for correcting
the three types of artifacts separately. The proposed
algorithm can be used with parallel, fan or cone beam
geometry.
This article is organized as follows. Materials and

methods of the complete ring removal scheme is pre-
sented in Section 2 under three subsections, i.e., detec-
tion, classification, and correction of ring artifacts. In
Section 3, experimental results and comparative analysis
of performances of the proposed algorithm and two
other recently reported ring removal algorithms are pre-
sented [11,15]. Finally, Section 4 presents some conclud-
ing remarks.

2 Materials and methods
Tomography is the study of the reconstruction of 2D
and 3D objects from 1D projections. The projection of
an object at a given viewing direction is made up of a
set of line integrals. To construct the sinogram, similar
projections from a number of viewing directions is
obtained and stacked together. In X-ray CT, the line
integral represents the total attenuation of the beam of
X-rays as it travels in a straight line through the object.
As mentioned above, the resulting image is a 2D (or
3D) model of the attenuation coefficient, which is com-
monly known as sinogram B(i, t). Here i denotes the
detector pixel and t denotes the view number. From this
sinogram, the actual 2D image, f(x, y) is reconstructed
using an appropriate reconstruction algorithm. Figure 1
gives the schematic representation of this procedure.
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Figure 1 Schematic representation of the relation between
sinogram B(i, t) and corresponding CT image f(x, y).
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In this section, the detection, classification, and cor-
rection methods of ring artifacts are discussed in detail.
The first two levels of our detection algorithm detect
the isolated rings and band rings. The third level of
detection detects the residual stripes of the corrected
sinogram. Statistical properties of the response of stripe
artifacts are used to categorize them into three classes:
a) artifacts due to damaged cells and/or damaged scintil-
lator and/or dust (Type 1), b) artifacts due to mis-cali-
brated detector pixel having time independent beam
intensity (Type 2), and c) artifacts due to mis-calibrated
detector pixel having time dependent beam intensity
(Type 3). The correction method proposed here are
exemplar based inpainting algorithm for Type 1 artifact,
DC shift for Type 2 artifact and interpolation for Type 3
artifact. The whole ring removal algorithm presented
here works in a specific order. The steps of the pro-
posed algorithm is given in Table 1.

2.1 Detection of ring artifacts
In sinogram domain, there are stripe artifacts of varying
properties. Different types of fault in detector element
as described above cause different types of isolated and
contagious stripe artifacts. To detect all these artifacts
accurately, a three step detection scheme is developed.
In the first step, only the most prominent rings are
detected around which the band rings occur. In the sec-
ond step, the minor rings and the band rings are
detected. The third step of detection algorithm works as
a feedback step. It checks whether there remains any
ring artifact after applying the correction algorithm. If
such artifacts are identified, the correction algorithm is
applied again on those artifacts. This process continues
until all the artifacts are corrected. The three step detec-
tion algorithm is described in the following subsections.
2.1.1 First level detection of ring artifacts
In the first level detection of ring artifacts, the difference
curve of the corrupted sinogram is exploited. The sum
of squared difference curve d(i) of the uncorrected sino-
gram B(i, t) is calculated as

d(i) =

[∑
t

(B(i, t) − B(i − 1, t)) +
∑
t

(B(i, t) − B(i + 1, t))

]2

, (1)

where i and t are the position of the detector element
and the view number of the sinogram, respectively.
Throughout the entire article, the definitions of i and t
are kept same.
This curve has distinct peaks at the position of faulty

detector elements as shown in Figure 2a. These peaks
are identified using the first derivative of d(i). Sliding
window based data driven threshold is applied to sepa-
rate the peaks that are due to the ring artifacts, from
the peaks that results from the image detail. This tech-
nique is illustrated in Figure 2b. The threshold level
changes from window to window. If a constant thresh-
old is used for the whole sinogram then it will either fail
to detect most of the artifacts or will detect too many
false artifacts. In each data window, the threshold level
is calculated as

Th =
δ

W

i0+W∑
i=i0

d(i), (2)

where W is the length of the data window and δ is a
constant. In the first level, we are aiming for the detect-
ing only the prominent rings in the image (large peaks
in the d(i) curve), which usually act as the center of the
band rings. In the second level of detection, iterative
search around these detected ring positions are carried
out to detect the adjacent band rings. To detect only
the large peaks in the d(i) curve, the threshold level Th

is set quite high by choosing δ = 8. It has been chosen
by a rule of thumb, and experimentation on a set of real
images has revealed that this is a suitable value of δ at
this level and it does not need any tuning for applying
to different types of images. In this study, a total of 13
2D micro-CT images and a single 3D cone beam
volume CT image were used. Among the 2D test images
there were four synthetic images, seven physiological
images and two structural images (like capacitor). The
3D image was a physiological image of a rat abdomen.
The effect of changing δ on the reconstructed image is
shown in Figure 3. Here the cow-bone image is chosen
as the test image. From the figure it can be observed
that setting δ a higher value than 8, results in poor per-
formance because a too high threshold misses the
stripes around which band rings may occur. So, even if

Table 1 Steps of ring removal algorithm

1. Read corrupted sinogram image.

2. Detect isolated and band rings from first and second level of detection.

3. Classify detected artifacts into Type 1, Type 2, and Type 3.

4. Correct Type 3 artifacts by interpolation.

5. Correct Type 2 artifacts by DC shifting.

6. Correct Type 1 artifacts by exemplar based inpainting.

7. Check for any residual rings in third level detection. If residual ring is detected then go back to step 3. Otherwise exit.
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the stripes are detected in the next step, no iterative
search is carried out around those, therefore the band
rings are remained undetected (see Figure 3e). Again
when δ is set to a lower value then false rings are
detected and processed increasing discrepancies in the
image. This phenomena is illustrated in Figure 3d. But
the output image obtained by using δ = 8 gives the best
result as shown in Figure 3c.
2.1.2 Second level detection of ring artifacts
It is well known that the mean curve of the corrupted
sinogram shows peaks at the positions of the faulty
detector element. The mean curve m(i) of the uncor-
rected sinogram B(i, t) is calculated as

m(i) =
1
Ni

∑
t

B(i, t), (3)

where Ni is the total number of detector elements.
Distinct peaks in the mean curve identify defective
detector elements. To locate these peaks, at first the
baseline of the mean curve m(i) is estimated by using
the least squares smoothing filter which is more

commonly known as Savitzky-Golay smoothing filter
[16]. The estimated baseline is denoted as z(i). Then the
baseline subtracted mean curve r(i) is obtained as

r(i) =
∣∣m(i) − z(i)

∣∣ . (4)

The same peak detection and threshold calculation
technique, as used in the first level of detection, are
applied on r(i). Here the value of the parameter δ is set
to 2, a lower value than that was set at the preceding
level of detection, to enable detection of the minor arti-
facts in this phase. But lowering the threshold level
leads to detection of some false artifacts. Therefore to
avoid the detection of such false artifacts, r(i) is
smoothed. This reduces the number of trivial peaks in r
(i) which are responsible for false artifact detection. To
smooth r(i), minimax estimation via wavelet shrinkage
technique is used [17]. This technique is particularly
suitable in peak preserving noise reduction. The value of
the parameter δ at different levels of detection are vali-
dated by experimenting on a number of different types
of images and it does not need to be varied from one
image to another. The test images that are provided in
the results section are all corrected beautifully using
these parameter values, giving a proof of the experimen-
tal validation.
The second step of the detection process is iterative.

After the first iteration, the ring artifacts detected in the
first level of detection are made zero. Therefore, the
adjacent artifacts are detected as peaks in the next itera-
tion. The same process continues iteratively until all the
contagious artifacts are detected. This technique is illu-
strated in Figure 4.
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Figure 3 Effect of changing δ on output image (C/W=.6523/
.7564). (a) Original Cow-bone image, (b) zoomed view of ROI,
Zoomed view of output image with (c) δ= 8, (d) δ = 5, and (e) δ =
12. Rings are marked by arrows.
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Figure 2 Windowed data driven thresholding of sum of squared difference curve, d(i). (a) Plot of sum of squared difference curve d(i)
against detector position i of the corrupted sinogram showing distinct peaks at faulty detectors and (b) Zoomed view of two data windows.
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2.1.3 Third level detection of ring artifacts
After application of the correction algorithm, some
minor residual artifacts may still remain. Such a case is
illustrated in Figure 5. There is a very minor artifact at
the detector position 627 (see Figure 5a). Its response
resembles the response of adjacent non-defective pixels
and also the shift from the non-defective pixels’
responses is very negligible (see Figure 5b). Therefore,
these artifacts will not show distinct peaks in d(i) or r(i).
A simple algorithm is considered for detecting these
minor artifacts. It is observed that generally the response
of a good pixel lies in between the nearmost preceding
and succeeding non-defective pixel whereas faulty detec-
tor pixel’s response will either lie above or below of
both the non-defective responses. As can be observed
from Figure 5b, the response of the faulty pixel at 627
lies above of the two adjacent non-defective responses.
This property is used here to detect these artifacts. An
interesting feature of this technique is that rather than
calculating the amplitude difference between the adja-
cent defective and non-defective element (which is very
low), it counts the number of points of the response
curve of a faulty detector in which the amplitude of
intensity is not in between the near most preceding

non-defective detector element and succeeding non-
defective detector element. The total number of such
points in a response of detector position i is denoted as
c(i). If c(i) is plotted against the detector position then
the detector elements causing minor artifacts show dis-
tinctly higher values than that of non-defective detector
elements as shown in Figure 5c. Then by applying a sui-
table threshold on c(i) these artifacts can be identified.
The threshold level Tc is estimated from the mean of
this curve.
This residual ring artifact detection technique is a new

feature. In no other reported work in this field has pro-
posed any technique for detecting such residual rings.
This detection step enhances the performance of the
total ring removal algorithm significantly. In addition to
that, the iterative band ring detection method proposed
here is also a novel concept compared to other reported
band ring detection schemes, e.g., polyphase decomposi-
tion of sinogram [15].

2.2 Classification of ring artifacts
After detecting the ring artifacts, they are categorized
into three different types. From a careful observation of
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Figure 5 Minor artifact detection. (a) Minor artifact in sinogram domain at detector cell i = 627, (b) response of artifact creating cell at i = 627
along with the responses of surrounding non-faulty detector cells, and (c) detection of artifact at i = 627.
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responses from different types of faults in a sinogram, it
is found that the responses of defected cells (a) may or
may not follow the overall pattern of response of the
adjacent non-defective cells, (b) follow the response of
non-defected cell with a constant or varying shift, and
(c) exhibit repetitive occurrence of a certain value in the
response of the fault. All these phenomena that are used
to classify different types of faults in a corrupted sino-
gram are summarized in Table 2, where ‘+ve’ and ‘-ve’
terms are used to mean whether the specific criteria is
present or not in a certain type of artifact. If the criteria
is present in a type of artifact, ‘+ve’ is entered in the col-
umn of that type and vice versa. Different types of faults
are described below.
2.2.1 Type 1 artifact
Artifacts of Type 1 occur due to completely dead cells
of the detector panel and/or damaged scintillator. It
does not follow the pattern of adjacent non-defective
cell at all. Moreover, in the response of this type of fault
repetitive occurrences of a particular value is observed.
An example of the response of this type of artifact is
given in Figure 6a. The value that has the highest occur-
rence in an array is defined as the mode of the array.
Let the response of a defective detector at the ith posi-
tion is denoted as xi(t). At first the mode md of xi(t) is
determined. Let us define a set Ci = {xi(t)|xi(t) = md} ,
which contains values of xi(t) equal to mode md for the
ith detector position. Then cm(i) = |Ci| denotes how
many times the mode has occurred in the detector cell
response. Since the property of repetitive occurrence of
a specific value is present only in Type 1 artifacts, cm(i)
of Type 1 faults will have much higher value than the
other two types of artifacts. This is illustrated in Figure
6c. Then, from this curve artifacts of Type 1 are easily
classified by using a simple thresholding technique. The
threshold Tcm for separating Type 1 artifacts from Type
2 and Type 3 artifacts is calculated as

Tcm =
δ

Nf

Nf∑
i=1

cm(i), (5)

where Nf is the total number of faulty detector cells
present in the sinogram, and the value for the parameter

δ is chosen to be the same as that in the second level of
detection.
The classification criterion proposed here is a new

one. This type of artifact was also classified in [15]. But
the classification technique was different. For classifica-
tion, at first the non causal first derivative of the sino-
gram was computed. Then the difference array was
calculated by taking the sum of derivative value along
each detector pixel. The criteria for separating the arti-
facts due to the dead pixels from the artifacts due to the
mis-calibrated pixels was based on this array. Generally,
Type 1 artifacts show higher value in the array than the
artifacts due to the mis-calibrated pixels. But if the mis-
calibrated pixel has a high amplitude shift from the
adjacent good pixels, then it will also have a high value
in the difference array and hence can be classified as
Type 1 artifact. Therefore, the classification technique
proposed in [15] may not be robust in such cases. But
in the proposed technique here, the classification criter-
ion is derived from the statistical property of the
response of faulty pixels. The most significant statistical
properties which are exclusive for each type of fault are
proposed here as classification criteria. Therefore, it can
be inferred that the proposed classification scheme will
be more robust in categorizing faults in a corrupted
sinogram.
2.2.2 Type 2 artifact
Type 2 artifact occurs due to the mis-calibrated detector
elements having time independent X-ray beam intensity.
It has no repetitive occurrence of a particular value in
the response of the mis-calibrated detector element. It
follows the response of the adjacent non-defective cell
but with an amplitude shift of almost constant value.
Response of this type of artifact is illustrated in Figure
7a.
2.2.3 Type 3 artifact
Type 3 fault may occur due to mis-calibrated detector
element having time dependent X-ray beam intensity. It
also does not have repetitive occurrence of a particular
value in the responses of the detector elements. It fol-
lows the pattern of the response of adjacent non-defec-
tive cells but the amount of shift from the response of
non-defective cells varies greatly from one point to
another (see Figure 7b).

Table 2 Different types of artifacts

Type-1 Type-2 Type-3

Origin of artifact completely damaged detector
pixel and/or damaged scintillator

mis-calibrated detector pixel having
time independent beam intensity

mis-calibrated detector pixel having
time dependent beam intensity

Resemblance with response of
adjacent non-defective pixel

-ve +ve +ve

Classifying criterion repetitive occurrences of a specific
value

constant shift from non-defective
response

varying shift from non-defective
response

Correction technique Inpainting DC shift Interpolation
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To classify artifacts of Type 2 and Type 3, an array is
calculated by taking the point to point difference
between the baselines of the adjacent defective and non-
defective cells. Their baseline estimation is the same as
that of the mean curve described earlier in the second
level detection of artifact. We define z1(t) as the baseline
of the response curve of a faulty detector cell at position
i and z2(t) as the baseline of its adjacent non-defective
cell. The point to point difference array for faulty detec-
tor at position i is then denoted by li(t). Then li(t) is
normalized and the standard deviation s of the normal-
ized array is calculated. Mathematically,

λi(t) = z1(t) − z2(t), (6)

λni(t) =
1

max(λi(t))
λi(t), (7)

σ =

√
1
N

∑
t

(λni(t) − μ)2. (8)

Here λni(t) denotes the normalized value of li(t) and
μ is the mean of λni(t) . Thus s for all the faulty detec-
tor cells except Type 1 are calculated and plotted
against the detector cell position. Since the response of
Type 3 artifact has varying shift from the adjacent non-
defective cell’s response, s of this type of fault will defi-
nitely have higher value than that of Type 2. This is illu-
strated in Figure 7c. The threshold level, Ts to separate
Type 3 artifacts from Type 2 is calculated in the same
way as in classification of Type 1. If cm(i) is replaced by
s(i) and Nf is replaced by Nf23 then Ts can be calculated

using (5). Here Nf23 = total number of Type 2 and Type
3 artifacts in the sinogram. The detected pixels that
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have their s higher than Ts are classified as Type 3 arti-
facts and the rest are grouped as Type 2 artifacts.

2.3 Correction of ring artifacts
While correcting the artifacts from the corrupted sino-
gram, Type 2 and Type 3 artifacts are required to be
corrected first. The inpainting algorithm employed to
correct Type 1 artifact divides the sinogram into two
regions. The Type 1 artifacts are defined as the target
region and the rest of the image is defined as the source
region. This algorithm takes information from the
source region to fill in the target region. For effective
implementation of the inpainting algorithm, the source
region is needed to be artifact free. For this purpose,
Type 3 and Type 2 artifacts are corrected first to pro-
vide an artifact free source region. Detailed description
of the correction techniques is presented in the
following.
2.3.1 Correction algorithm for Type 3 artifact
To correct this type of artifact interpolation technique is
used. In this type of artifact, defective response is quite
similar to that of a non-defective one. As it contains
some of the image information, complete reconstruction

by computationally cumbersome techniques like inpaint-
ing is not desired here. DC shifting is not appropriate
either because a deviation from the response by different
value at different points is not unlikely. Therefore, a
constant shifting will not remove artifacts of this type
rather there is a probability that it will introduce new
ring. Considering all these facts, interpolation technique
is proposed here for correcting artifacts of this type. At
first the positions of near most preceding and succeed-
ing non-defective detector cells are found. Then using
the responses of these two non-defective detector cells,
the response of the Type 3 artifact in between them is
interpolated. Spline interpolation technique is used for
this purpose.
Identification of Type 3 artifact and proposing a sepa-

rate correction technique suitable for this type of artifact
is a major novelty of this work. In [15], Type 2 and
Type 3 artifacts were not separately addressed. They
were grouped under the category of mis-calibrated arti-
facts and the normalization technique was used for cor-
recting both these types of artifacts. In the
normalization technique, every point on the defective
response curve is scaled by a fixed value. As can be
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Figure 9 Correction of Type 2 artifact. (a) Response curve of Type 2 artifact, (b) corrected response by the normalization technique, and (c)
corrected response by the proposed DC shift technique.
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Figure 8 Correction of Type 3 artifact. (a) Response curve of Type 3 artifact, (b) corrected response by the normalization technique, and (c)
corrected response by the proposed interpolation technique.

Rashid et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:93
http://asp.eurasipjournals.com/content/2012/1/93

Page 8 of 18



observed from Figure 8, that a fixed scaling for every
point of the defective response will not remove this type
of artifact. Figure 8b,c illustrate the performance of the
normalization technique and the proposed interpolation
technique on the response curve of a Type 3 artifact.
The normalization technique completely fails to correct
the response curve. Moreover, it creates new discrepan-
cies in some regions (see Figure 8b). Whereas the pro-
posed interpolation technique here corrects the faulty
response curve perfectly (see Figure 8c). Therefore, the
proposed technique definitely outperforms the normali-
zation technique and hence emphasizes the need of
categorizing these artifacts as a separate class and apply-
ing separate correction technique for this type.
2.3.2 Correction algorithm for Type 2 artifact
DC shifting technique is used to correct this type of
fault. Since in this case, the response of the faulty detec-
tor element shifts from the response of the adjacent
good detector by almost a constant value, therefore if
the response of the faulty detector element can be
shifted by that value then this type of fault can be cor-
rected. Assume that there is a Type 2 artifact at the

detector position i of the sinogram B(i, t). The amount
of shift necessary to correct the fault is calculated from

β(i) =
1

2Nt

(∑
t

∣∣B(i, t) − B(i − k1, t)
∣∣ + ∑

t

∣∣B(i, t) − B(i + k2, t)
∣∣) , (9)

where (i - k1) and (i + k2) are the indices of nearmost
preceding non-defective cell and succeeding non-defec-
tive cell, respectively. t is the index of view number and
Nt is the total view number. k1 and k2 are preceding and
succeeding lag parameters, respectively. In case of iso-
lated artifact, k1 = k2 = 1 and in case of contagious arti-
facts {k1, k2} > 1 depending on the width of the band
ring. If the mean value of the faulty pixel response xi(t)
is higher than that of both the adjacent preceding and
succeeding non-defective pixels’ responses then the cor-
rected response x̃i(t) is calculated as

x̃i(t) = xi(t) − β(i). (10)

In all other cases,

x̃i(t) = xi(t) + β(i). (11)

Here a new technique is used to calculate the DC shift
of the faulty detector. In [15], the normalization techni-
que was used to correct this type of artifacts. Normaliza-
tion technique works good on Type 2 artifacts but the
success of this technique depends greatly on the estima-
tion of corrected mean curve. Whereas our proposed
technique is free from such dependency. It calculates
the shift directly from the original sinogram. The perfor-
mance of the proposed method and the normalization
method on Type 2 artifact is shown in Figure 9. Both
the techniques remove the artifact quite satisfactorily.
2.3.3 Correction algorithm for Type 1 artifact
Exemplar based image inpainting technique [18] is
applied here to correct faults of Type 1. The whole sino-
gram I is divided into source region (F) and target
region (Ω) (see Figure 10). The contour of the target
region is δΩ. At first, this algorithm determines a filling
order. For this purpose, priorities of the patches (tem-
plate windows (Ψp) of size 9 × 9 pixels) on the fill front
are calculated. In general words, the patch Ψp that has
most of the pixels already in the source region and very
few on the target region has high priority. In this algo-
rithm, every pixel has a color value and a confidence
value. A pixel has a high confidence value if it is a part
of the source region or it is in the target region but
already filled by the algorithm.
Given a patch Ψp centered at the point p Î δΩ, its

priority P(p) is defined as

P(p) = C(p)D(p), (12)
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(a) (b)

Figure 10 Notation diagram for the inpainting algorithm. (a)
Given the patch Ψp, np is the normal to the contour δΩ of the
target region Ω and ∇Ip is the isophote (direction and intensity) at
point p; (b) after first iteration of the algorithm, the target region Ω

has shrank and its contour δΩ has moved deeper into it.

Table 3 Inpainting algorithm

1. Identify the target region Ω from the ring location of Type 1.

2. Set the iteration index k = 0.

3. Identify the fill front δΩk, i.e., contour of the target region Ωk.

4. Compute priorities P(p) for Ψp Î δΩk.

5. Find the patch Ψp with maximum priority, i.e., for
p = argmaxp∈δ�kP(p)
6. Find the exemplar Ψq Î F that minimizes d(Ψp, Ψq).

7. Copy the image data from Ψq to Ψp.

8. Update C(p).

9. Increase k by 1 for next iteration.

10. Check whether Fk = j. If yes then exit. Otherwise go back to step
3.
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where C(p) is the confidence term and D(p) is the data
term, which are defined as

C(p) =

∑
q∈�p∩� C(q)∣∣�p

∣∣ , (13)

and

D(p) =

∣∣∇Ip.np
∣∣

α
, (14)

where |Ψp| is the area of Ψp, a is the normalization
factor (e.g., a = 255 for a typical gray level image), (.) is
the dot product operator, and np is a unit vector ortho-
gonal to the fill front δΩ at the point p. All notations
are shown in Figure 10. For initialization, the function C
(p) is set to C(p) = 0 for Ψp Î Ω and C(p) = 1 for Ψp Î
(I - Ω). After determining the fill order, the patch with
the highest priority is filled with values extracted from
the source region. The patch in the source region which
is the most similar to Ψp is defined as the best exemplar
patch. The best exemplar patch Ψq is obtained from

�q = argmin
q∈φ

d(�p,�q), (15)

where the distance d(Ψp, Ψq) between the two patches
Ψp and Ψq is defined as the sum of the squared differ-
ences of the filled pixels in the two patches. Having

found the source exemplar Ψq, the value of each pixel
to be filled p Î (Ψp ∩ F) is copied from its correspond-
ing position inside Ψq.
After the patch Ψp has been filled with the new pixel

values, the confidence value C(p) is updated as

C(q) = C(p),�q ∈ (�p ∩ �). (16)

The whole inpainting algorithm as in [18] is given
here in Table 3.
To make this algorithm applicable to ring artifact cor-

rection, the entire sinogram image is divided into source
and target region. All stripes of the artifact correspond-
ing to Type 1 faults are replaced with a constant value
higher than the maximum value of the sinogram so that
these stripes can be identified by the algorithm as the
target region. This algorithm requires a specific color
value of the target region as an identifier. Therefore, the
image is first converted into an indexed image and then
to a RGB image. The stripe artifacts replaced with a
constant value are defined as the target region Ω and
the rest of the image as the source region F. Implemen-
tation of this technique on the sinogram is shown in
Figure 11.
The application of exemplar based inpainting in

removing stripe artifacts is a new approach. The more
general convolutional approach of image inpainting is in
particular not suitable for removing the wide band rings.
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Figure 11 Correction of Type 1 faults. (a) Type 1 artifact in sinogram domain, (b) stripe artifact replaced by a constant value, and (c)
corrected sinogram after inpainting.

ROI

(a) (e)(d)(c)(b)
Figure 12 Effect of changing patch window size on output image (C/W=.4557/.9265). (a) Original Capacitor image, (b) zoomed view of
ROI, zoomed view of output image with (c) Ψp = 9 × 9, (d) Ψp = 3 × 3, and (e) Ψp = 12 × 12.
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In such a case, the band ring will occupy most pixels in
the convolution window and as a result the source
information in the window will be reduced. Therefore
the inpainting of the target region may not be robust. If
the convolution window size is increased then there is a
possibility that the target region will be inpainted with
the values that are not relevant to it. Then the perfor-
mance of the inpainting algorithm may not be satisfac-
tory. But in the proposed inpainting technique instead
of convolution, the target region is filled by values that
are most relevant to it (i.e., by finding the best exemplar
patch). Therefore, blurring effect is more unlikely in this
algorithm. The proposed algorithm is also insensitive to
the patch window size. The effect of changing the patch
window size on output image is illustrated in Figure 12.
Here three different window size is implemented and in
all cases the image is corrected quite effectively irrespec-
tive of the window size which consequently proves the
robustness of the algorithm.

3 Result and analysis
The test images were acquired with a home made
micro-CT which consists of a CMOS FPD and a micro
focus X-ray tube (L8121 - 01, Hamamatsu, Japan). The
micro-focus X-ray source is a sealed tube with a fixed
tungsten anode having an angle of 25° against the elec-
tron beam and with a 200 μm-thick beryllium exit win-
dow. The emitted X-ray beam span angle is about 43°.
The source has a variable focal spot size from 5 μm to
50 μm depending on the applied tube power (Watt or
kVp mA). The maximum tube voltage and tube current
are 150 kVp and 0.5 mA, respectively. The micro-focus
X-ray source has been operated in a continuous mode
with an Al filter with a thickness of 1 mm. The FPD
(C7943CA-02, Hamamatsu, Japan) used in this experi-
ment consists of 1216 × 1220 effective matrix of transis-
tors, photodiodes with a pixel pitch of 100 μm and a
CsI:Tl scintillator. The CsI:Tl has a columnar structure
with a typical diameter of about 10 μm and a thickness
of 200 μm. A computer-controlled rotating system was
adopted in the object holder to achieve a cone-beam
mode scan in the micro-CT. The precision of the rota-
tional motion is 0.083° which allows the number of
views larger than 4,000. The system has the built-in
white and dark image correction schemes. Since our
micro-CT system does not provide the CT images in
Hounsfield unit (HU), we have normalized all the origi-
nal (uncorrected) reconstructed images so that the max-
imum pixel intensity is 1.0 with arbitrary unit. The
corrected images are scaled using the corresponding
normalization factor of the uncorrected images.
The performance of the proposed algorithm is com-

pared with two recently reported ring removal algo-
rithms [11,15]. The reported algorithm in [15] classifies

strong artifacts due to dead pixels and weak artifacts
due to mis-calibrated pixels and proposes 2D variable
window moving average (2D VWMA) and 2D weighted
moving average (2D WMA) filter for correcting the
strong rings and normalization technique for correcting
the mis-calibrated artifacts. The mis-calibrated artifacts
due to time dependency of beam intensity were not
separately classified and hence no algorithm was pro-
posed for correcting this type of artifact. There are four
adjusting parameters in that algorithm (rmax, rmin, lm, a)
which are required to be set manually. rmax and rmin are
suitably defined upper and lower threshold for detection
and classification of ring artifacts. lm is the number of
levels of polyphase decomposition of the sinogram
image. Polyphase decomposition is used in the reported
work to detect the band ring. a is a constant used in the
equation of detection algorithm of the ring removal
technique [15]. These parameter values are required to
be changed from one image to another for obtaining the
best result. But in the ring removal algorithm proposed
in this article, the data driven thresholding technique is
automatic and performs satisfactorily on all the test CT
images. The rigorous classification scheme presented
here discovers a new class of artifact in CT image (Type
3). Since three separate correction techniques are pro-
posed here for the three types of artifacts, the overall
performance of the correction algorithm is certainly
improved. Our proposed algorithm and the algorithm
presented in [15], both works in the sinogram domain.
To compare the performance of our sinogram proces-

sing technique with post processing techniques of ring
removal, a reported algorithm [11], which works in the
reconstructed image domain is also considered. This
algorithm applies mean and median filtering technique
to remove ring artifacts but it works in a different geo-
metrical plane (in polar coordinate). The filter width of
the ring correction in polar coordinate (RCP) method
[10] is selected as suggested in the original work, e.g.,
radial median filter width in polar coordinates,
MP

Rad = 15 ; azimuthal filtering in polar coordinates,

MP
AZi = 40 . On the other hand, the distance between the

support points in the azimuthal direction (dPAZ) for the
polar coordinate is needed to be adjusted for our test

CT images. We set dPAZ equal to 0.7°, instead of 0.8°. In
the original work [10], the distance between the support
points in the radial direction (dRA) for both the cartesian
and the polar coordinates is determined from the scan-
ner geometry. In our case, this parameter is set to 1.0
for the polar coordinate (dPRA) . The RCP method uses
three thresholds (Tmin, Tmax, and TRA) for image seg-
mentation and bone structure elimination. These three
thresholds are considered in HU unit in the original
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work. As in this work, the CT images are not calibrated
in HU unit, therefore, these thresholds should be
selected in such a way that the purpose of these thresh-
olds is served. The lower (Tmin) and upper (Tmax)
thresholds are set to the minimum and maximum values
of the ring intensities found in the CT image, respec-
tively. As a result, the image elements having intensities
above or below the ring artifact intensities are not
affected by the correction algorithm. Similarly, the third
threshold (TRA) is set to the maximum value of ring
intensities in the difference image obtained after median
filtering. The main draw back of the RCP method is its
failure to remove strong rings with varying intensities.
Because, they generally contain significant high fre-
quency information but the mean (low-pass) filtering in
the RCP method is not appropriate to retain the correct
varying intensity ring structures in the difference image
and thereby may result in poor performance of the algo-
rithm. In addition to that, this algorithm does not pro-
vide any classification scheme for the artifacts present in
a CT image.
For quantitative performance evaluation, we have

used two numerical indices. One is the peak signal-to-
noise ratio (PSNR) and the other is the mean struc-
tural similarity (MSSIM) [19]. The PSNR is related to
the intensity difference between the reference and the
corrected images. The second index, MSSIM can be
correlated to the perceptual quality of an image. It
considers luminance, contrast and structure similarity
between the reference and corrected images to deter-
mine the value of the index. But evaluation of these
two indices requires reference images, i.e., images free
from ring and radiant artifacts. In CT imaging refer-
ence image is hardly available and, therefore, in this
work three synthetic (computer simulated phantom)
sinogram images have been used. Different types of
stripe structures discussed in this article including sin-
gle, band, stripes from defective and mis-calibrated
detector elements are superimposed on the reference
sinogram images to generate corrupted sinogram
images. The proposed technique and the sinogram-
processing technique in [15] are applied on these cor-
rupted sinogram images and the post-processing tech-
nique [11], on the other hand, is applied on the CT
images reconstructed from the corrupted sinograms.
Now the above mentioned two indices can be calcu-
lated to quantify the visibility of errors between the
reference and corrected CT images. The first quantita-
tive index PSNR is defined as

PSNR = 20log10

(
M√
MSE

)
dB (17)

where,

MSE =
1
PQ

P−1∑
i=0

Q−1∑
j=0

[X(i, j) − Y(i, j)]2 (18)

where X|PQ and Y|PQ are the reference and corrected
CT images, respectively and, MI is the dynamic range of
the reference image.
To calculate the MSSIM index at first the reference

and corrected CT images are windowed and two signals,
i.e., x(x = [x1x2 ... xN]) and y(y = [y1y2 ... yN]) are gener-
ated in each window. Then these two signals are
weighted using a Gaussian weighting function, w =
[w1w2 ... wN] with a standard deviation of 1.5 samples,
where Σi=1 wi = 1. Then in each window, the estimates
of local statistics of x and y are calculated as:

μx =
1
N

N∑
i=1

wixi (19)

μy =
1
N

N∑
i=1

wiyi (20)

σx =

√√√√ 1
N − 1

N∑
i=1

wi(xi − μx)
2 (21)

σy =

√√√√ 1
N − 1

N∑
i=1

wi(yi − μy)
2 (22)

σxy =

√√√√ 1
N − 1

N∑
i=1

wi(xi − μx)(yi − μy) (23)

The SSIM index between signals x(x = [x1x2 ... xN]) and
y(y = [y1y2 ... yN]) in each window is calculated as [19]

SSIM =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(μ2
x + μ2

y + C2)
(24)

where, C1 = (K1 MI)
2, C2 = (K2MI)

2, K1 = 0.01, and K2

= 0.03. Finally, the mean SSIM (MSSIM) is evaluated as

MSSIM =
1
M

M∑
j=1

SSIMj (25)

where, SSIMj is the SSIM calculated at the jth local
window and M is the number of local windows in the
image.
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The calculated PSNR and MSSIM values for the three
simulated phantom images are shown in Table 4. As
can be observed from the table, the overall performance
of the proposed technique is better than the 2D
VWMA/WMA method on the simulated phantom
images. On the other hand, the performance of the post
processing based RCP technique is not found very
impressive on the simulated phantom images, which is
reflected in the lower MSSIM and PSNR values.
Next, to compare the performance of our proposed

algorithm with the two reported techniques [11,15], a
test image is chosen which has all the three types of
artifacts. The image of Rabbit-femur is an ideal example
of such an image (see Figure 13). The corrected images
obtained by the reported techniques and by our pro-
posed technique is illustrated in Figure 13b-d. As can be
observed from Figure 13b, the ring removal algorithm
presented in [15] fails to correct all the artifacts in the
image. The Type 3 artifacts near the center of the image
remain uncorrected. The reason behind the failure of
the algorithm in correcting Type 3 artifact is explained
earlier in the section of Type 3 artifact correction. The
2D VWMA/WMA technique works satisfactorily on the
outer ring of Type 1. The values of tunable parameters
are chosen as {rmax, rmin, lm, a} = {20, 2, 4, 1} for obtain-
ing the optimum results. On the other hand, in the cor-
rected image obtained by the technique presented in
[11] is still corrupted with a number of residual rings
(see Figure 13c). In addition to that, the radial artifacts
are also persistent in the corrected image. But, the pro-
posed technique here removes all the artifacts beauti-
fully to produce a ring free image (see Figure 13d). The
elegant detection and classification scheme and the
application of customized correction algorithm for each
type of artifact ensure the best result. The experimental
results on the Rabbit-femur image thus demonstrate the
efficacy of the detection, classification and correction
scheme proposed in this article.
The proposed ring removal technique corrects rings

without introducing visible distortion in the image. To
show this, test images of a Capacitor and a Rat-chest
are chosen (see Figure 14). The Capacitor image is an
example of highly structural object (see Figure 14a).

This image shows a number of fabrication layers in the
capacitor. There is a strong ring in one of these fabrica-
tion layers. To observe the hidden micro-structure of
the image this ring is required to be corrected without
impairing the visual quality of the image detail. From
Figure 14b, it can be seen that the proposed correction
technique applied on Capacitor image, neither obscures
nor distorts the structural details of the image. So, it
can be inferred that in preserving structural details of
the CT image, the performance of the algorithm is satis-
factory enough. Small animal imaging is an important
field of CT imaging. The Rat-chest image is an example
of small animal imaging. This image has very fine phy-
siological details (see Figure 14c). The corrected image
in Figure 14d obtained by the proposed algorithm illus-
trates that there is no distortion in the fine physiological
details of the image while all the ring artifacts are
removed successfully. This proves the effectiveness of
our algorithm in small animal imaging.
To prove the accuracy of the proposed algorithm,

another special case is considered. When a high contrast
circular object is placed at the center of rotation of the
CT image, it appears as a band of stripes in the sino-
gram domain. These stripes are part of image detail and
hence should not be corrected. Such a case is illustrated
in Figure 15. A thin gold wire is placed at the center of
rotation. The position of the gold wire in the uniform
phantom is marked by arrow in Figure 15a,b and as a
result, a band of stripes having width of 9 pixels (pixels
1159-1167 as shown in Figure 15e) is generated in the
sinogram (marked by arrow in Figure 15d). Since the
proposed ring removal technique is based on correcting
stripes from the sinogram domain, there is a probability
that it will identify the stripes as ring artifacts and hence
may correct them. But interestingly using the proposed
method, only a single pixel of the 9 pixels band is
detected as artifact and has undergone for correction.
The corrected image is shown in Figure 15c. The cor-
rection of only one pixel does not introduce noticeable
distortion of the image. In the first level of detection,
this band ring have very small amplitude in the sum
squared difference curve d(i) (marked by red circle in
Figure 15g) and in windowed data driven thresholding
technique it is not detected as artifact. But in the second
level of detection a single pixel (Pixel 1163) of the band
ring is detected from the plot of r(i) and classified as a
mis-calibrated artifact (Figure 15h). Since an iterative
search is conducted for band rings around only those
artifacts that are detected in the first level of detection,
therefore the band of stirpes around the 1163th pixel is
not detected as band ring. Thus from Figure 15f it is
seen that preserving this band of stripes, the algorithm
corrects all other ring generating stripes. Therefore,
based on the performance of the algorithm in this case

Table 4 Quantitative performance analysis of the ring
removal algorithms on simulated phantoms

Algorithms Phantom 1 Phantom 2 Phantom 3

PSNR MSSIM PSNR MSSIM PSNR MSSIM

2D VWMA/WMA
[15]

43.6207 0.9910 40.0263 0.9932 39.0318 0.9927

RCP [11] 23.7213 0.8600 27.0452 0.9500 26.0023 0.8904

Proposed
technique

42.0589 0.9926 41.0458 0.9960 45.0743 0.9948
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it can be predicted that the proposed technique will be
effective in other similar cases, e.g., when there is a
small lesion present at or near the iso-center.
3D cone beam volume CT imaging is a new imaging

modality. The proposed ring removal algorithm is also
applicable for cone beam geometry. Sinogram by sino-
gram processing technique is employed to correct such
2D cone beam projection images. At first a sonogram is
constructed from the 2D stack of projection data and
then the ring removal algorithm is applied to it. The

corrected sinogram is then transferred back into the
projection domain and then the next sinogram is read.
The process continues until all the 2D projections are
corrected. Finally, the FDK algorithm [20] is used to
reconstruct the corrected 3D cone beam volume CT
image. To demonstrate the effectiveness of the proposed
algorithm and to compare its performance on 3D cone
beam volume CT images with the 2D VWMA/WMA
and RCP techniques, Rat-abdomen image is chosen as
an example. The 2D VWMA/WMA method [15], the

(a) (b)

(c) (d)
Figure 13 Removal of ring artifact from Rabbit-femur image with metal implant using different methods. (a) Original corrupted image,
(b) corrected image by the 2D VWMA/WMA method, (c) corrected image by the RCP method and (d) corrected image by the proposed
technique. The residual rings in the corrected images are marked by arrows. (C/W = 0.7430/0.6821).
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RCP method [11] and the ring removal algorithm pre-
sented here are applied to correct three slices taken
from different locations. The tunable parameters used in
the 2D VWMA/WMA method, i.e., {rmax, rmin, lm, a}
are kept fixed for correcting each slice of the three
slices. To compare the performance of the proposed
technique with the two reported techniques, 401th,
601th and 801th slices are chosen from the test image
(see Figure 16). The region near the center of rotation is

marked as region of interest (ROI). The original slices
and zoomed view of their ROIs are illustrated in the
first column of Figure 16. The second, third and fourth
column correspond to the corrected slices obtained by
the 2D VWMA/WMA [15], the RCP [11], and the pro-
posed technique, respectively. The parameter values of
2D VWMA/WMA method are set as {rmax, rmin, lm, a}
= {30, 1, 4, 1}. As can be observed from the second col-
umn of Figure 16, that the ring removal technique

(a)

(d)

(b)

(c)
Figure 14 Removal of ring artifact from a structural object and small animal image using the proposed method. Corrupted images: (a)
Capacitor and (b) rat-chest. Corrected images: (c) capacitor and (d) rat-chest. (C/W = 0.5880/0.1686 for capacitor image and C/W = 0.6852/
0.6053 for rat-chest).
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reported in [15] fails to correct the rings near the center
of rotation of the image in all the test slices. In addition
to that, the algorithm also fails to correct some outer
rings from the 601th and 801th slices. Again in case of
the RCP technique [11], the corrected slices (see the
third column of Figure 16) are distorted by the presence
of radial artifacts. Blurring effect is also noticeable here.
In addition to that, the ring artifacts are also not

corrected effectively. A number of residual ring artifacts
are present in the corrected image. Whereas our pro-
posed algorithm removes all the ring artifacts from the
three slices of the 3D CT image successfully (see the
fourth column of Figure 16). Comparing the corrected
images obtained by the two reported techniques with
the corrected images obtained by our proposed techni-
que, it is quite obvious that the proposed technique
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Figure 15 Experimental results on uniform phantom with gold wire at the center of rotation. (a) Original Image, (b) zoomed view of ROI
of corrupted image, and (c) ROI of corrected image obtained by the proposed algorithm. (for a-c C/W = 0.5/1). (d) uncorrected sinogram, (e)
zoomed view of the band of stripes located at the center of the sinogram, and (f) corrected sinogram. (g) Plot of d(i) against detector position.
Only the data window containing the band of stripes is shown here. (h) False detection of a single stripe at i = 1163 from plot of r(i).
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Figure 16 Experimental results on 3D cone beam CT image of Rat-abdomen. Three slices from different positions of the 3D volume (Slice #
401, 601, and 801) have been shown in this figure. The top two rows correspond to the slice # 401, the middle two rows correspond to the
slice # 601 and the bottom two rows correspond to the slice # 801. The first column of the images show the original corrupted slices (a,i,q) and
their corresponding ROIs (e,m,u). The second column shows the corrected slices obtained by the 2D VWMA/WMA [15](b,j,r) and their
corresponding ROIs (f,n,v). The third column shows the corrected slices obtained by the RCP [11](c,k,s) and their corresponding ROIs (g,o,w).
The fourth column shows the corrected slices obtained by the proposed technique (d,l,t) and their corresponding ROIs (h,p,x). (C/W = 0.702/
0.594 (s#401), C/W = 0.622/0.755 (s#601), and C/W = 0.692/0.615 (s#801)). The residual rings in the corrected images are marked by arrows.
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here outperforms the reported algorithms convincingly.
Therefore, it can be inferred that the proposed algo-
rithm is comparatively effective in removing ring arti-
facts from 3D cone beam CT images.

4 Conclusions
This article has dealt with an improved ring artifact sup-
pression method for FPD based CT images. A rigorous
three step detection algorithm has been proposed here.
The detection technique exploits both the mean curve
and the difference curve to improve accuracy in ring
artifact detection. Introduction of a feedback loop for
detection is a new feature of the proposed ring removal
algorithm. The iterative band ring detection method is
also a new approach in detecting contagious artifacts,
which is a common phenomena in CT images. A new
class of artifacts has been included in the proposed clas-
sification scheme. All the threshold levels used in detec-
tion and clarification algorithm are data driven and
automatic. Separate correction algorithms have been
proposed here to correct each type of faults. Therefore,
customized correction algorithms ensures the best result
in removing ring artifacts from the CT images. The per-
formance of the proposed algorithm has been tested and
compared with other reported algorithms using both fan
beam and cone beam geometry based CT images. To
evaluate the performance of the proposed algorithm,
some special cases has also been considered, e.g., images
with highly structural and physiological details and
images with high contrast cylindrical object at the iso-
center. The comparative results have revealed that the
proposed technique removes the ring more effectively
compared to the other two reported techniques in this
article.
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