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Abstract

Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity,
and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor
networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key
application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical
importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization
algorithm for scenarios where received signal strength indicator readings are used. We approach the localization
problem by formulating an alternative problem that uses distance estimates locally computed at each node. The
formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which

the relaxed problem yields to the same solution as the original problem are given and a distributed consensus-
based implementation of the algorithm is proposed based on an augmented Lagrangian approach and primal-
dual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation
in real sensor networks, ie, it is scalable, robust against node failures and requires only local communication
among neighboring nodes. Simulation results show that running an additional local search around the found
solution can yield performance close to the maximum likelihood estimate.

1 Introduction
The deployment of a large number of scattered sensors
in a certain area constitutes a very powerful tool for
sensing and retrieving information from the environ-
ment (e.g., temperature, humidity, motion). The main
features of wireless sensor networks (WSN) are that of a
large number of low-cost nodes with limited computa-
tional and power resources. WSNs must also be scalable
and robust against changes in topology (i.e., node failure
or addition of new nodes), as well as energy efficient.
These are the major design issues in WSNs that make
the development of simple and efficient algorithms a
challenging problem. These limitations also make cen-
tralized approaches not very suitable for being used in
WSNs. Localization is a key task (often mandatory) in
many applications [1] and therefore, distributed localiza-
tion algorithms are of high practical importance.

There exist different measurement sources that can be
fused in order to get an estimate of the target’s position
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[1,2], like time-of-arrival (TOA), time-difference of arri-
val (TDOA), angle of arrival (AOA) or received signal
strength indicator (RSSI). In this article, we focus on
single antenna nodes without tight synchronization abil-
ities, which leads us to the use of RSSI measurements
for the localization task. One of the main challenges
when using RSSI measurements is that the mapping
between the measurement and target’s position is non-
linear and hence, finding a suitable solution becomes
more challenging. Some approaches to deal with non-
linearities are based on particle filtering principles [3].
In the context of WSN particle filtering approaches
have also been proposed for localization and tracking
using RSSI measurements [4-8]. In general, particle fil-
tering approaches have shown very good performance
when dealing with RSSI measurements but they are
centralized and suffer from a high computational cost
and hence, their applicability in a real scenario is
questionable.

A recent approach based on convex optimization con-
cepts has been proposed in [9,10] for the node localiza-
tion problem. In [9] a semidefinite relaxation approach
is used to cast the localization problem into a
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semidefinite program (SDP) that can be solved effi-
ciently via interior point methods, see [11] and refer-
ences therein. The obtained position estimate through
SDP is then further refined via an iterative algorithm.
Although the proposed method provide near optimal
results (i.e., close to the Cramer-Rao bound) they are
centralized so their application to WSN may be limited.
The problem of source localization using energy mea-
surements has also been treated in [12], where a distrib-
uted algorithm based on projections onto convex sets is
presented. The algorithm is shown to asymptotically
approach the maximum likelihood (ML) estimate as the
number of nodes increases when the target lies in the
convex hull defined by the node’s coordinates. In [13],
an alternative approach is presented that can handle
variations in the path-loss exponent. However, in both
approaches no restrictions are imposed in the communi-
cation among nodes. In real applications this will cause
rapid battery depletion if far away nodes are to commu-
nicate. Further, in both approaches the estimation is
performed only by a subset of nodes that are selected
according to their received signal to noise ratio. The
main drawback is that such subset must be known to
every node in the network. In a real scenario, the
required signaling and routing overhead necessary for
node coordination may limit their application.

In this contribution, we propose a distributed algo-
rithm for localization in WSN’s by fusing RSSI measure-
ments. We approach the ML estimation problem by
solving a simplified and more tractable problem which
allows the use of convex optimization tools for its dis-
tributed solution. More precisely, we use an augmented
Lagrangian approach with a primal-dual decomposition
[14,15]. The developed approach offers an advantage
over centralized approaches as it is scalable, robust
against changes in network’s topology and requires only
local communication among neighboring nodes. These
are key properties very desirable in the context of
WSN’s.

The article is organized as follows: Section 2 intro-
duces the localization problem and the underlying pro-
pagation model. In Section 3, we present the
localization approach based on RSSI readings and its
distributed implementation is presented in Section 4.
Simulations are provided in Section 6, while some com-
ments and concluding remarks are given in Section 7.

Notation

Bold lower- and upper-case letters denote vectors and
matrices, respectively. For vector quantities the operator
|| - || denotes Euclidean norm while for matrices it
refers to the Frobenius norm. The symbol 0 denotes a
matrix of appropriate dimensions whose entries are all
zeros. The symbol I is used to denote the identity
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matrix of appropriate dimensions. The optimal value of
a variable x in an optimization problem is denoted by
x*. The symbol R” is used to denote the set of real n-
dimensional vectors while S7 is used to denote the set
of symmetric, # x n positive semi-definite matrices.

2 Problem formulation and definitions

Consider a wireless sensor network, as the one depicted
in Figure 1, consisting of M nodes randomly deployed
on a certain area (in the same x-y plane). Nodes are sta-
tic and able to communicate with adjacent nodes that
lie within a given range for communications. Nodes are
aware of their own location but not aware of the loca-
tion of any other element in the network. Assume the
presence of a target node that emits beacon frames that
can be heard by all nodes in the network. The goal is to
determine the location of the target node in the x-y
plane.

For getting estimates of the target position, nodes
employ RSSI measurements. The use of RSSI readings is
of practical convenience when working with real hard-
ware as they do not need tight synchronization require-
ments. We assume that the RSSI follows a linear
relationship with the received power (we assume they
are equal). Let denote r,, as the received power at node
m. A common assumption, see [2] and references
therein, is that the received power follows a lognormal
distribution with a distance-dependent mean as

dm) + Ny, (1)

Tm = pm — 10, log,, (d
0

where p,, is the received power (in dB) at reference
distance dy, ¢, is the path-loss exponent, d,, is the true
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Figure 1 Wireless sensor network. Schematic representation of

the network used for the simulations. Blue circles represent the

nodes and the link between them indicates that those nodes can

communicate. The target is represented as a red square.
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distance between the target and the mth node and
i ~ N(0,02) is a Gaussian random variable of zero

mean and variance o.2. The received power r,, will be
used to get an estimate of the true target position.

3 Localization strategies

In this section, we present different localization strate-
gies using the received power (in dB) at the nodes. We
first consider the (centralized) ML estimate and then we
propose to use a suboptimal strategy based on local dis-
tance estimate at each node. We show that the proposed
localization strategy can be implemented in a fully dis-
tributed way by only local communication among neigh-
boring nodes.

3.1 ML estimation

Consider the presence of a centralized unit that gathers all
measurements coming from the nodes. Letr = [ry, ..., 1y
1* be a vector whose components are the different mea-
surements taken by each sensor and denote x = [x, yt]T €
R? as the target’s position. The true distance between the
target and the mth sensor can be then expressed as

dm: ||X—Cm||, (2)

where ¢,, = [%,, ¥,,]" € R? are the coordinates of node
m with m = 1, ..., M. The vector of measurements r
can now be written as

o1 — 10aslog.. (X<l
! ! 10 do n

=p(x)+n(3)

pm — 10aplogy, <HX :l CMH) i
o

where the vector n ~ A(0,Y) is jointly Gaussian
with zero mean and covariance X. It is easy to see that r
will follow a Gaussian distribution with mean g(x) and
covariance Y, that is

plrix) = ep[-126- k()Y r-nt)] ()

1
(2r)M?/det Y

where p(r ; x) is the probability density function of r
with parameter x. The ML estimate of the target posi-
tion is then

Xmr, = argmax p(r; X), (5)
X

which is equivalent to maximizing the log of p(r ; x).
Neglecting all terms that do not depend on x it is easy
to see that

Ky = arg min u(x)TZ_llL(x) - 21‘TZ_1u(x). 6)

Page 3 of 11

The objective to be minimized in (6) is not convex
and therefore, finding the global optimum is not an
easy task. In Figure 2 (left), we have an illustration of
how the objective in (6) looks like for a network of 20
nodes over a normalized square area. It is clear that
the function is not convex and that several local
minima and saddle point may exist. Instead of dealing
directly with the ML estimate we propose to use a
suboptimal approach that offers a reasonable good per-
formance and that allows for its distributed
computation.

3.2 Practical approach

In this section, we propose to estimate the target’s
position based on local distance estimates computed at
each node. The use of local distance estimates allows
the derivation of simple and distributed estimators of
the target’s position. We have that, for the propagation
model (1), the ML estimate of the distance between
the mth node and the target is given by

= do10 (") 7)

Taking the square at both sides of (2) and further
developing, it is easy to see that the following equation
must be satisfied

&3 =x"x — 2cdx + || ||?

2 T T 2
diy =x'x — 2¢X + ||cpml|
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Figure 2 Contour plot of the objective function. This figure
represents, on the left, the contour plot of the log of the original
ML cost function in (6) while on the right side we have the
modified (suboptimal) cost function in (11).




Béjar and Zazo EURASIP Journal on Advances in Signal Processing 2012, 2012:95

http://asp.eurasipjournals.com/content/2012/1/95

Rearranging terms we can express (8) in a more com-
pact form as

di —lleill? <
=(x'x)-1-2 X ©)
3y — lleml]? Ch
——
C

where 1 is a M x 1 vector of all ones. However, we do
not have the actual distances to the target but a noisy
version of them as per (7). Define the vector

A ~ T
b=[llcal =&, ... llewll? =& and the vector-

valued cost function f(x): R? » R as

f(x) = (x'x)- 1 —2Cx +b. (10)

We can then get an estimate of the target’s position
by minimizing the norm of (10). In order to incorporate
robustness and make the localization task more applic-
able to realistic scenarios we propose to use a weighted
version of the cost function (10). In a WSN it may hap-
pen that some of the nodes exhibit a bias in their mea-
surements due to the presence of obstacles.
Additionally, nodes do not have precise information
about their own locations instead, some errors may be
present. The incorporation of weights will mitigate the
effects of biased nodes and uncertainties in nodes’ posi-
tions. So we compute an estimate % of the true target’s
position x as the solution to the following non-linear
(weighted) least-squares problem

X = minimize ||Df(x) H , (11)
X

where D = diag (71, . . ., Yar) is a diagonal weighting
matrix with y,, 2 0 for all m =1, ..., M. A proper
choice for the weights would be inversely proportional
to the variance of the measurements. As we are assum-
ing the log-normal model for the measurements it is
well known that the variance of the ML estimate (7) is
proportional to the square of the true distance to be
estimated [2,16]. With this consideration in mind we
may choose to weight our measurements inversely pro-
portional to the measured distance, that is 1, =1 /Zim

This problem has been studied in [17,18] where a dis-
tributed version of the Gauss-Newton method can be
used for its solution. In this study, we present a more
flexible approach that uses concepts from convex opti-
mization theory. The proposed approach has better con-
vergence properties and also makes it straightforward to
include additional constraints to the problem that may
prevent it from instabilities. In order to proceed let’s
write problem (11) as the following equivalent problem
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% = minimize M (X" — 2cT x + by )2 (12)

Note that, although (11) and (12) are equivalent pro-
blems (i.e., with the same solution), they are different
because in the latter case we are minimizing the squared
norm of Df(x). The minimization of the squared norm
is motivated by the fact that it allows a simple distribu-
ted implementation as it can be guessed from the struc-
ture of (12). The use of the objective in (12) is well
motivated by the fact that we get a smoother surface at
the cost of introducing some bias with respect to the
ML solution (see Figure 2 (right)). However, if the bias
is small, we may still get to the ML estimate by per-
forming a local search around the solution of (12). How-
ever, in order to use convex optimization methods we
need problem (12) to be convex. Unfortunately, the
objective function is not convex because we are adding
the squares of quadratic convex but not necessarily posi-
tive functions [11]. It would be interesting to exploit
some hidden convexity of the problem so that convex
optimization methods can be applied.

A possible approach to make the problem convex is to
use semidefinite relaxation technique. Let X = xx* and
note that Tr (X) = ||x||% where Tr() is the trace opera-
tor. We can rewrite the problem as

M
min)}’r}?ize Zm:l Y (Tr(X) — 2c}nx + bm)Z 13)

subject to X = xx"

We now have that the objective is convex as it is the
composition of an affine function of X and x with a
convex function [11]. However, the above problem is
still non-convex due to the non-linear constraint X =
xx". We can then relax the equality constraint by repla-
cing it with a semidefinite constraint. As a result we end
up with the following (convex) SDP

M
o T 2
Inln)g?lze E oy Y (Tr(X) — 2¢, x + b)

subject to X — xx' = 0
XeS?

(14)

where G2 is the set of 2 x 2 symmetric positive semi-
definite matrices. As we are allowing for a larger feasible
set, the optimal value of problem (14) would provide a
lower bound on the optimal value of the original pro-
blem (12). However, if the optimal solution X* of (14) is
of rank-one, we have that the semidefinite relaxation
approach is not a relaxation at all and the found solu-
tion x* of (14) is also optimal for (12).

It would be interesting to give conditions under which
(14) provides a rank-one solution so that the obtained
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solution is optimal for the original problem, too. To that
end let define the matrix A as

23 Ym¥Xm 23 o Vm¥m =D Vm
A= |23 vmXn 2, Vm¥mXm — Dy YmXm | (15)
23 o VmYmXm 2, merzn = 2w Ym¥m
and let the vector d be given by
é= Zm ymbmxm (16)
Zm Vmbm)/m
We then define the following feasibility problem
find {z t}
. 2 <
subject to ||z||* <t (17)

with variables z € R? and t € R,. The above problem
is convex since it belongs to the class of second-order
cone program (SOCP) [11]. Based on the feasibility pro-
blem (17) we can state the following result:

Proposition 1. Assume problem (12) has at least one
strictly feasible point. If problem (17) is not feasible, then
the optimal solution x* of the semidefinite relaxed pro-
blem (14) is also optimal for the original problem (12).

Proof. See the Appendix. O

Corollary 2. If matrix A is singular then, the solution
X* of (14) is of rank one with X* = x*x** and x* is also
optimal for (12).

Proof. 1t follows directly from Proposition 1. If A is
singular then, problem (17) is infeasible (because matrix
A is not invertible) so that the relaxed problem is not a
relaxation at all. O

It is worth to mention that the feasibility problem (17)
can be easily checked without the requirement of an
optimization solver. If matrix A is singular then, the
problem is infeasible and we are done. If however,
matrix A is full-rank, we compute A™'d (which is
unique) and check whether it satisfies the second order
cone (SOC) constraint ||z|| > < ¢ If the constraint is not
met then we conclude that the problem is infeasible.

4 Distributed algorithm

One of the main advantages that offers the considered
approach is that it allows for a distributed implementa-
tion. We assume that nodes communicate with their
one-hop neighbors as dictated by the communication
graph G(V, E), where V is the set of vertices and E is the
set of edges of the graph. By only local communication
exchange, nodes can agree to compute some desired (glo-
bal) quantity using consensus algorithms [19].
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Let’s proceed by reformulating problem (14) into a
SDP with a single matrix variable Z € S3. For that pur-
pose, let us formulate the following problem

Yoy Vi (Tr(MyZ) + by — 1)?
subjectto Z(3,3) =1
Ze$S?

miniZmize
(18)

00
o
With the above problem definition we have the follow-
ing equivalence:

Lemma 1. The two problems (14) and (18) are equiva-
lent. Further, if we denote Z* as the optimal solution to
(18), then the optimal solution x* of (14) is given by x* =
(23, 1), Z*(3, 2)I".

Proof. See the Appendix. O

Now that we have established the equivalence between
problems (14) and (18) through Lemma 1 we show how
to solve it in a distributed way. For that purpose we use
the optimization framework for consensus-networked
systems as proposed in [15] that uses an augmented
Lagrangian approach [14]. The framework in [15] gener-
alizes the previous work of [20] as it can also handle
convex but not necessarily strictly convex objective
functions. The augmented Lagrangian method adds a
quadratic penalty term to the objective function that is
zero at the optimal solution. The resulting problem is
then equivalent to the original problem as both of them
end up with the same solution. Augmented Lagrangian
methods are also attractive because they offer better
convergence properties than standard primal-dual
decomposition methods. A detailed treatment about
augmented Lagrangian methods and their properties can
be found in [14].

In order to derive a distributed solution consider first
the introduction of M new variables and a global con-
sensus constraint into the problem as

where M,, =1—2 [ j| and I is the identity matrix.

IniZn{ién}ze andzl Ym(Tr(MpZy,) + by — 1)?

subject to Z(3,3) = 1 (19)
Z,=7
ZeS?

The problem is now separable in the objective func-
tion (as it is the sum of M terms, each one dependent
of one node) but we still have the coupling “consensus”
constraint Z,, = Z. However, we do not need to impose
that all nodes agree on the same quantity instead, we
can only force nodes to agree with their one-hop neigh-
bors. Let N, be the set of neighbors of node m, we can
then reformulate the problem as
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mir{lzirr}lize M Yn(Tr(MpZy) + by — 1)?

subjectto Z,,(3,3) = 1 (20)
Zm = ],] € Nm
Zn €S3

The two problems (19) and (20) are equivalent pro-
vided that the underlying graph is strongly connected
[20]. We can now use the developed framework in [15]
to derive an augmented Lagrangian method for the dis-
tributed solution of (20). Consider then, the introduc-
tion of the additional variables Wy, ; € S} and formulate
the equivalent problem

. M 2
minimize Tr(M,,Z b, —1
(Zunh (Wi} Lot V(T (MnZon) + b = 1)

subject to Z,,(3,3) =1

Zy = Wm,jr ] € Nm (21)
Zj = Wm,jr ] S Nm
Zn€S3
The penalized problem [14] can be written as
e . M 2
II(IZI;I)I(%:UZ)E D omet Ym(Tr(MimZy,) + by — 1)
+5 Yot ey (1Zon = Winl 12 +11Z; — Winj112)
subject to Z,(3,3) = 1 (22)

Zm = Wm,]', ] S Nm
Zm :Wm,j: ] ENm
ZyeS?

where ¢ >0 is a constant that controls the penalization
of the disagreement among neighbors. In general, ¢
could be a sequence as long as it is non-decreasing. The
choice of ¢ has a direct impact on the rate of conver-
gence of the distributed algorithm [14]. There is no gen-
eral rule to choose ¢ and its value will vary depending
on the problem at hand. It becomes clear from the for-
mulation of problem (22) that the penalty term is zero
at the optimum and, therefore the optimal solution to
(22) is also optimal for (20). We can now find a solution
of (22) by solving its dual problem. By relaxing the con-
sensus constraint we form the partial augmented
Lagrangian L, as

LT}, (@il il Wing]) = 32 yn(Ti(MaZ) + by — 1)
M
Dt Dy, T (Zn = Wan)
S TH (2~ Way))

. M
5Dt Doy, (12 = W 41125 = Wo117)

(23)

where I'),,, ; and @, ; are the Lagrange multipliers.
We then have that the dual problem is given by

maximize inf L.({Twi}l, {®Puil, {Zn), (Wi
e A (({Tmil {®Pmj} {Zm}, (W})

subject to Z,,(3,3) = 1
Zn€S3

(24)
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The problem is now separable and strictly convex
which allows its solution by alternating the minimization
over Z,, and W, ; as

k+ k k k
S0 = minimize L (0, (@), (Za), (W)

. J mj
subject to Z,,(3,3) =1 (25)
ZneS?

Wi < minimize L, ({rﬁ,ﬁ}}, @), Zi), {wm,j}) (26)

Wi

and then performing an update of the Lagrange multi-
pliers using a subgradient step

(k+1) (k)
r0 o1 s (Zy — W) (27)
o0 = 0l 4 (2 — W) (28)

where the superscript ®' denotes the kth iteration. Fol-
lowing the same steps as in [15], it can be shown that

o =~ (29)
wit = 1z« ) (30)

LetA,, ;=T,, ;= -®,, ;and define ¥,, = A, ; - A;
m- Based on the above results it can be easily shown
that the solution to problem (24) is obtained in a dis-
tributed way by alternating between the following two
updates

ng”) = minzimize Y (Te(MyZyy) + by, — 1)?
# T (WnZn) + ¢ Yjen, 1Zn = 320 —Z)I2 (31)
subject to Z,,(3,3) = 1
Zy€S3
and
\Ilglf+1) _ \I’%) s Z <Z£f+1) _ Z]-(k+1)) (32)
jeNm
with \1;%”:0 andm=1,..., M

The network will then operate as follows: At the
beginning of the kth iteration, each node locally solves
(31). Then, nodes broadcast the computed estimates

Z%‘*l) to their neighbors. With the local estimates of

the corresponding neighbors at hand, each node
updates its multipliers as in (32). The process is
repeated until all nodes converge to the same solution
which, in turn would be the same as in the centralized
case.
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5 Approaching the ML estimate

So far, we have shown how to solve (11) by formulating
the relaxed problem (14). We have also provided condi-
tions under which the solutions to (11) and (14) coin-
cide. Further, the solution can be computed in a
distributed fashion using convex optimization tools.
However, the performance of the followed approach in
(11) is below that of the ML estimate (6). In order to
come closer to the ML solution we could perform an
additional local search that improves the obtained esti-
mate through the solution of (14). The idea is to run a
distributed optimization routine, taking the solution of
(14) as the starting point, to solve for (6). If the pre-
viously computed estimate by solving (14) is close to the
ML estimate we may converge to it by optimizing in the
neighborhood of the solution of (14), otherwise we will
converge to a local optima but still improving
performance.

Observe that the ML estimate (6) can be cast into a
non-linear least-squares problem of the form of (11).
Assuming that X is positive definite, we can write the
ML estimation problem (6) as the following uncon-
strained optimization problem

XML = minixmize |1 (X)1]2, (33)

where fyp(x) = S (r - g(x)) and S is the Cholesky
factorization of the inverse covariance matrix, i.e., S'S
= ¥'. A local minimum of the above non-linear least-
squares problem (33) can be found using an iterative
descent algorithm like the Gauss-Newton method
[11,21]. The standard (centralized) Gauss-Newton pro-
cedure is given in Algorithm 1, where hg, represents
the descent direction (i.e., direction that reduces the
value of the cost function) and J% = J(x¥) with J(x) e

RM*?  representing the Jacobian matrix of
fun(x) = [fML(x), ..., fME(x)]" whose entries are given
by
afM!
D=5, (), =1 Mj=12 (34)
j

Algorithm 1 Gauss-Newton method

1: x % xo k = 0 {Initialization}

2: while ! found &k < kya, do

3: hg, I - goT Jky-1 gT ¢ (xF) {Descent
direction}

4: if A hy, then

5:  found = true

6: end if

7. x% D gp xP 4 h,, {Update}

8 kKk+1

9: end while
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If the covariance matrix X has no special structure,
then the problem (33) requires a central entity that gath-
ers all the information coming from the nodes in order
to solve it. However, it is reasonable to assume indepen-
dence of the noise processes among the nodes so that X
has a diagonal structure, say Y = diag(o?,....0%). In
that case, matrix S = diag(1/03, . . ., 1/0,) is also diago-
nal and we can exploit the problem structure in order to
find a distributed implementation of the Gauss-Newton
procedure given in Algorithm 1. Note that for finding a
distributed implementation of Algorithm 1, it suffices to
find a way to compute the descent search direction hg, is
a distributed fashion. For such purpose, let first note that
J(x) has a block-wise structure given by

—10a

miar &= €)' J1(x)
169 = 5 - (35)
aMﬁigoéA,\:”z x—cum)’ Im(x)

Based on the block-wise structure of matrix J(x) it is
easy to note that

JX)TE) =Y Tn(®) Tn(x) (36)

J(x) fun(x) = > 1) (x) (37)

and therefore, the above quantities can be computed
in a distributed fashion by means of average consensus
[19]. Once we have computed the products (36) and
(37), it is straightforward to compute the descent search
direction hyg,

Based on these observations we propose here a fully
distributed algorithm, shown as Algorithm 2, which
asymptotically approaches the same result as in the cen-
tralized case using only local information and the
exchange of low-volume intermediate results within
each node’s 1-hop neighborhood. We immediately note
that the Steps 3-6 and 11-12 can all be performed
locally by each node. The only communication occurs in
the Steps 8 and 9 via standard average consensus Algo-

rithms [19]. Seeing how A%k) e R2x2 and is symmetric,

and yrfk) e R2, we conclude that each consensus round
requires a broadcast of only five real values.
Algorithm 2 Distributed Gauss-Newton localization
1: g9 same initial value Vimm € M
2:for k=0to K-1do

(k) - — IOam

3 m 2 (’A((k) - Cn)T

20 _ ¢

Om n
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begin consensus

AL 3 Al Lo

k k A

p e L = LTy (1)
10: end consensus
ISR NOPEPN ORI O (0Ty) 13 0TE (20
12:  gle1) 500 [ (B
13: end for

6 Numerical simulations

In this section, we provide several numerical examples
in order to evaluate the performance of the proposed
approach. For the simulations we consider a network of
randomly deployed nodes over an area of 100 x 100
squared meters. We have used the same propagation
model for all the nodes with reference power p,, = -40
dB at reference distance dy = 1 m and path-loss expo-
nent o, = 2 form =1, ..., M. We further assume that
the noise processes are independent and identically dis-
tributed with n, ~ N(0, o) for all m.

In Figure 3, we have simulated the distributed locali-
zation task using a network of 50 nodes (see Figure 1)
with a randomly located target. We have performed dis-
tributed estimation of the target’s position by the alter-
nating between (31) and (32) with penalty parameter ¢ =
0.05. We have plotted in Figure 3 the error between
each node’s local estimate and the centralized solution
of the problem. As it can be appreciated, the distributed
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algorithm converges to the optimal centralized solution
as the number of iterations increases.

We have also simulated the localization task over the
same network of Figure 1. For the propagation model
the measurement noise variance has been set to

agB =9. We have evaluated the performance of the pro-

posed approach with and without weights (labeled SDP
and wSDP, respectively) over 1000 random target loca-
tions (test points). We compare our approach with Mul-
tilateration localization approach [2]. As shown in [2], if
one node is chosen as a reference, then the localization
problem can be linearized. Therefore, it allows its dis-
tributed implementation by means of consensus since it
can be cast into a least-squares problem where each
node locally contributes to the global cost function.
Note, however that nodes must first agree on a common
reference. For the simulations, we have chosen the node
with the closest distance estimate to be the reference.
We also provide the performance of the ML estimate
for comparison purposes. The empirical cumulative dis-
tribution function (CDF) of the localization error is
represented in Figure 4. As it can be observed in Figure
4, the performance of the proposed scheme outperforms
that of Multilateration. Further, we observe that the use
of weights improves the localization accuracy of the
algorithm so that we come closer to the ML estimate.
The performance of the algorithm has also been tested
for different values of the measurement noise variance.
The results are displayed in Figure 5 where the average
error over 1000 locations is depicted as a function of
the measurement noise standard deviation. Again, we
can appreciate the performance improvement of the
proposed approach compared to multilateration as can
be seen in Figure 5. We have also displayed the results

error [m]

40
iteration number

Figure 3 Error versus iteration. Norm of the difference between
the local (distributed) and the centralized estimate as a function of
the iteration number.

1 =
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Figure 4 Empirical CDF of the localization error. This figure
represents the empirical CDF of the localization error for the
considered methods based on 1000 realizations.
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Figure 5 Error versus noise. Average localization error as a
function of the measurement noise standard deviation for the
considered methods. The average is taken over 1000 different
realizations.

when combining the proposed distributed localization
approach with a local search (wWSDP+local). The local
search is performed in a distributed fashion following
the steps in Algorithm 2. As it can be observed the
results of such combination provide close to ML perfor-
mance. This implies that our method is capable of pro-
viding good estimates that could be used to run a local
solver in order to come close to the ML estimate.
Although not guaranteed to converge to the ML solu-
tion, the local search can only provide better estimates
(in the ML sense).

7 Conclusions

We have presented a distributed localization approach
over sensor networks using consensus and convex
optimization. An alternative problem to the ML posi-
tion estimation problem has been proposed based on
local ML distance estimates at each node. In order to
circumvent the non-convexity of the problem, semide-
finite relaxation technique has been employed and
conditions that guarantee zero gap between the relaxed
and the original problem have been given. A distribu-
ted algorithm based on an augmented Lagrangian
approach using primal-dual decompositions have been
proposed and it has been shown to converge to the
centralized solution. The approach is suitable for its
real implementation in WSN as it is scalable, robust
against changes in topology and energy efficient by the
use of only local broadcast-type communication among
nodes. Another interesting property of the proposed
algorithm is that it allows the introduction of addi-
tional convex constraints to the localization problem
in a straightforward manner.
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The proposed algorithm is intended to be usable in
real networks and its suitability in terms of accuracy
would be determined by the application at hand. How-
ever, if higher accuracy is required, we could run an
additional optimization step around the found solution.
We have verified by means of simulations that the
combination of our suboptimal method with a local
search provides a localization error close to the ML
estimate.

It is worth to mention that the proposed approach has
a direct application to distributed tracking in WSN’s as
well. The tracking procedure would be based on the
jointly estimated target’s position. As all nodes share the
same estimate, they could use that estimate to locally
run a tracking filter in order to follow the movement of
the target.

Appendix 1: Proof of Proposition 1
To show the validity of Proposition 1, consider first the
Lagrangian of (14) which is given by

M
L(X, %) = > ym(Tr(X) — 26, x + by)® — Tr(¥ (X — xx")) (38)

m=1

with ¥ > 0 being the Lagrange multipliers. Since pro-
blem (14) is convex and there exists, by assumption, at
least a strictly feasible point, Slater’s constraint qualifica-
tions are satisfied and therefore, strong duality holds.
Moreover, from duality theory we have that, at the opti-
mum, the derivative of the Lagrangian with respect to X
and x must be zero, that is

M
VXL(X, X) =2 yu(Tr(X) — 26, X + by )T — W = 0 (39)
m=1
and
M
ViL(X, X) = =4 ) yu(Tr(X) — 26X + by ey — 2¥x = 0 (40)
m=1

From Equation (39) it becomes clear that ¥ must be a
diagonal matrix. This fact, together with the comple-
mentary slackness condition

Tr(¥(X —xx")) =0 (41)

implies that the off-diagonal elements of X must equal
those of xx'. However, this does not necessarily mean
that X is of rank one. From the complementary slack-
ness condition (41) we have that X will equal xx* when-
ever the constraint is active (i.e., ¥ = 0). So by finding
under which conditions ¥ = 0 we will find the condi-
tions that guarantee that the solution of (14) coincides
with the solution of the original problem (12). For that
purpose, if we set ¥ = 0 we have from (39) and (40)
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that

M
Z Ym(Tr(X) — 2¢) x+ b)) = 0

m=1

(42)

M
Z Ym(Tr(X) — 2¢) X + by )y = 0

m=1

(43)

Let ¢t = Tr(X) and z = [z1, 22]" = x, keeping in mind
that c,, = [%,,, ¥,»], we can rewrite the above equations
as

2 (Z mem) z1+2 (Z Vm}’m) 2y — (Z )’m) L= Z Yinbm (4‘4)

2 <Z mefn) 21 +2 (Z ym)’mxm) 2 — (Z mem> L= Z YmbmXm (4‘5)

2 (Z mem}’m> 21 +2 <Z }’m}’gn) Z = <Z )’m}’m) L= Z Yimbmym (46)
which can be expressed in a compact way as

A [ﬂ _y (47)

Therefore, ¥ will be equal to 0 only if (47) has a solu-
tion where x = z and Tr(X) = ¢ Additionally, we have
that for the solution to be a feasible point it must be
satisfied that Tr(X - xx*) > 0 which implies that Tr(X)
> ||x||? or, equivalently ||z||*> < t. This implies that if
problem (17) is infeasible, then ¥ = 0 and hence, X =
xx"' so that the solution of the relaxed problem (14)
coincides with that of the original problem (12), which

proves Proposition 1.
(]

Appendix 2: Proof of Lemma 1
By the Schur’s complement we have that

X—XXT>;O<:>{XX}>;0 (48)

x' 1

Let introduce a new variable Z = [g >1<:| We then

have that Tr(X) = Tr(Z) - 1 and that

ax=[0"1]zZ [cﬂ =T (Z [C%, g])

By rearranging terms and the previous conditions on
Z we end up with problem (18) and the equivalence is

(49)
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established. The equivalence between the two solutions

follows directly from the definition of Z.
]
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