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Abstract

A recursive Bayesian approach to narrowband beamforming for an uncertain steering vector of interest signal is
presented. In this paper, the interference-plus-noise covariance matrix and signal power are assumed to be known.
The steering vector is modeled as a complex Gaussian random vector that characterizes the level of steering vector
uncertainty. Applying the Bayesian model, a recursive algorithm for minimummean square error (MMSE) estimation is
developed. It can be viewed as a mixture of conditional MMSE estimates weighted by the posterior probability density
function of the random steering vector given the observed data. The proposed recursive Bayesian beamformer can
make use of the information about the steering vector brought by all the observed data until the current short-term
integration window and can estimate the mean and covariance of the steering vector recursively. Numerical
simulations show that the proposed beamformer with the known signal power and interference-plus-noise
covariance matrix outperforms the linearly constrained minimum variance, subspace projection, and other three
Bayesian beamformers. After convergence, it has similar performance to the optimal Max-SINR beamformer with the
true steering vector.

Keywords: Array processing, Bayesian model, Digital beamforming, Steering vector uncertainty,
Minimummean square error estimation

1 Introduction
Digital beamforming is widely used in array signal pro-
cessing for enhancing a desired signal while suppressing
interference and noise at the output of an array of sen-
sors [1,2]. It has applications in fields, such as radar, sonar,
radio astronomy, speech processing, and wireless commu-
nications. [1-5]. It is well known, however, that the digital
beamformers are sensitive to error in the estimated sig-
nal steering vector. Any errors in the steering vector will
lead to signal distortions and degrade the beamforming
performance severely. The causes of steering vector error
in practical applications include improper array modeling,
pointing error, miscalibration, and source motion as well
as other effects [6-10]. Robustness with respect to steering
vector uncertainties in digital beamformers is desirable.
Several approaches are known to partly overcome the

problem of arbitrary steering vector error [11]. The most
popular of them are the diagonal loading approaches [12]
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and constrained minimum variance approaches [13-16].
The diagonal loading can be viewed as a means either
to equalize the least significant eigenvalues of the sam-
ple covariance matrix or to constrain the array gain. The
constrained minimum variance beamforming includes
directional constraints [13], derivative constraints [14],
quadratic constraints [15], and soft constraints on the
norm of the weight vector [16]. In these techniques,
robustness to steering vector uncertainty is increased
at the expense of a reduction in noise and interfer-
ence suppression. Recently, some developments based on
worst-case performance optimization [17,18] and sub-
space projection [19-22] were proposed. The worst-case
approaches ensure that the response of the beamformer
is above a given level for all steering vectors whose dis-
tance to the presumed steering vector is less than a certain
distance. The subspace methods estimate the signal-plus-
interference subspace to reduce mismatch.
Stochastic methods have also been proposed to tackle

the uncertainty of the steering vector [23-28]. The most
popular of them is Bayesian beamforming which derives
from minimum mean square error (MMSE) estimation
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[25-28]. In this method, the uncertain steering vector
or direction-of-arrival (DOA) is assumed to be a ran-
dom vector or random variable with a prior distribution
that describes the level of uncertainty. The corresponding
MMSE estimator can be viewed as a mixture of con-
ditional MMSE estimators combined according to the
data-driven posterior distribution function of the steering
vector or DOA given the data. More recently, a Bayesian
beamforming with order recursive implementation for
steering vector uncertainties was proposed in [28], which
has the form of a Kalman filter that is recursive in order
instead of time.
In this paper, we develop a narrowband beamformer

using the Bayesian approach based on [25,26,28]. In this
approach, the interference-plus-noise covariance matrix
and signal power are assumed to be known, and the
steering vector is assumed to be a complex Gaussian
random vector that characterizes the level of steering
vector uncertainty. Different from the Bayesian beam-
former in [28], the proposed method is a time-recursive
Bayesian beamformer which can make use of all previ-
ous observed data rather than just a recent short-term
integration (STI) window and can estimate the steering
vector recursively to approach the optimum performance.
In comparison with the beamformers of [25,26], the steer-
ing vector uncertainty is addressed and modeled as a
complex Gaussian random vector in this paper, while the
DOA uncertainty is considered in [25,26] and modeled
as a random variable. Unlike DOA, random modeling for
the steering vector can address not only the uncertain-
ties due to pointing error but also the uncertainties due to
scattering around the source, miscalibration, array defor-
mation, different gain, and phase responses of sensors in
the array, etc. These threemethods all apply themaximum
a posteriori estimation for the uncertain DOA or steer-
ing vector and have the assumption that the interferers
are located far away from the main lobe of the expected
beamformer.
The rest of the paper is organized as follows: In

Section 2, we present the signal model used in the paper.
Section 3 presents the derivation of MMSE estimation
and Bayesian beamformer. The recursive implementation
of the Bayesian beamformer is developed in Section 4.
Numerical simulations are reported in Section 5, and
conclusions are given in Section 6.

2 Signal model
Let us consider an array of N sensors. Assuming narrow-
band processing, theN×1 complex receiving sensor signal
at a snapshot k can be given by

xk = ask + ik + nk , (1)

where a is the N × 1 complex steering vector of interest,
sk is the desired signal with known power E{sks∗k} = σ 2

s .

ik and nk are the N × 1 interference and noise compo-
nents with known covariance matrix Ri+n = E{(ik +
nk)(ik+nk)H}. sk , ik , and nk are assumed to be zero-mean,
complex Gaussian random processes that are wide-sense
stationary and mutually independent, and their successive
snapshots are also statistically independent.
In practice, the true steering vector often deviates from

its presumed value for various reasons. It is often reason-
able to model these errors collectively as a random error
vector associated some prior information that is often
available in statistical form. Similar to [27,28], we assume
that the steering vector a has a complex Gaussian pri-
ori probability density function (PDF) with mean a0 and
covariance matrix C0, that is,

p0(a) = 1
πN |C0| exp

{
−(a − a0)HC−1

0 (a − a0)
}
. (2)

The array output signal is processed in STI windows
with K time samples. In each STI, the steering vector a in
(1) is assumed to be time-invariant, and the received sam-
ples are Xj = (xjK , · · · , x(j+1)K−1), where j is the index of
STI. The goal is to design a beamformer to estimate the
signal of interest sj = (sjK , · · · , s(j+1)K−1), which is a row
vector with length of K.

3 Bayesian beamformer
In this section, we consider a recursive Bayesian method
to estimate the desired signal vector sj with the opti-
mization criterion of MMSE. Given the received samples
X0:j = (X0, · · · ,Xj), the MMSE estimate of the signal vec-
tor is described by the conditional mean of sj given X0:j,
which can be expressed as [25,26]

ŝj = E{sj|X0:j} =
∫

sjp(sj|X0:j)dsj

=
∫ ∫

sjp(sj|X0:j, a)p(a|X0:j)dsjda (3)

=
∫

p(a|X0:j)E{sj|X0:j, a}da.

Based on the assumptions of sk , ik , and nk , we can derive
that sk is independent of xl for a different k and l when
the steering vector a is known. Then, sj and X0:j−1 are
independent given a. In addition, all elements of sj are
independent when Xj and a are given. So, we have

E{sj|X0:j, a}=E{sj|Xj, a}
=E{(sjK , · · · , s(j+1)K−1))|Xj, a}
=(E{sjK |Xj, a}, · · · ,E{s(j+1)K−1|Xj, a})
=(E{sjK |xjK , a}, · · · ,E{s(j+1)K−1|x(j+1)K−1,a}).

(4)
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For arbitrary jK ≤ k < (j + 1)K , the conditional
mean E{sk |xk , a} is an optimal MMSE estimator when it is
constrained to be linear [25]. That is

E{sk|xk , a} =
((
E{xkxHk |a})−1 E{xksHk |a}

)H
xk

= (
R−1
x (a)aσ 2

s
)H xk (5)

= σ 2
s aHR−1

x (a)xk ,

where E{xksHk |a} = aσ 2
s is owing to the assumptions of

zero mean and the mutual independence of sk , ik , and
nk . Rx(a) = σ 2

s aaH + Ri+n is the data covariance matrix
given a. Obviously, it is a spatialWiener filter with weights
σ 2
s R−1

x (a)a [25]. So, we have

E{sj|X0:j, a}=(σ 2
saHR−1

x (a)xjK , · · · , σ 2
s aHR−1

x (a)x(j+1)K−1)

=σ 2
s aHR−1

x (a)(xjK , · · · , x(j+1)K−1)

=σ 2
s aHR−1

x (a)Xj,
(6)

and the MMSE estimate of the signal vector is

ŝj =
∫

p(a|X0:j)σ
2
s aHR−1

x (a)Xjda = (wMMSE
j )HXj.

(7)

It is a beamformer-like data processing with weights

wMMSE
j = (

∫
p(a|X0:j)σ

2
s aHR−1

x (a)da)H

=
∫

σ 2
s R−1

x (a)ap(a|X0:j)da (8)

and known as the Bayesian beamformer. The Bayesian
beamformer is a weighted average of spatial Wiener fil-
ters with different steering vectors, which are combined
according to the value of the a posteriori probability for
each steering vector.

4 Recursive implementation of the Bayesian
beamformer

In this section, we compute the weights of the Bayesian
beamformer. According to the Bayesian principle, the
posteriori PDF p(a|X0:j) can be given by

p(a|X0:j) = p(a,X0:j)

p(X0:j)

= p(X0:j−1)p(a|X0:j−1)p(Xj|a,X0:j−1)

p(X0:j−1)p(Xj|X0:j−1)

= p(a|X0:j−1)p(Xj|a,X0:j−1)

p(Xj|X0:j−1)
.

(9)

Because successive snapshots of sk , ik , and nk are all
statistically independent, it can be seen from (1) that
xk is sample independent at different snapshots when a
is given. Then, Xj and X0:j−1 are independent given a
since they are in the different STI windows. So, we have
p(Xj|a,X0:j−1) = p(Xj|a) and

p(a|X0:j) = p(a|X0:j−1)p(Xj|a)
p(Xj|X0:j−1)

, (10)

where p(Xj|X0:j−1) = ∫
p(a|X0:j−1)p(Xj|a)da is the reg-

ularization probability. Assume that the posteriori PDF
p(a|X0:j−1) follows a complex Gaussian distribution with
mean aj−1 and covariance matrix Cj−1, that is,

p(a|X0:j−1)= 1
πN |Cj−1|exp

{
−(a− aj−1)

HC−1
j−1(a − aj−1)

}
.

(11)

As stated in [27,28], this Gaussian random model for
steering vector is general because it can address the
uncertainties due to many reasons, including DOA point-
ing error, array calibration error, scattering around the
source, propagation through an inhomogeneous medium,
and other systematic problems. Another reason of this
assumption is that the Gaussian distribution can be
expressed analytically, and we can obtain the recursive
expressions for aj−1 and Cj−1 in the following discussions.
The likelihood function p(Xj|a) can be given by [25]

p(Xj|a) =
(j+1)K−1∏

k=jK

1
πN |Rx(a)| exp

{−xHk R
−1
x (a)xk

}

= π−NK |Rx(a)|−K exp

⎧⎨
⎩−

(j+1)K−1∑
k=jK

xHk R
−1
x (a)xk

⎫⎬
⎭ .

(12)

The determinant |Rx(a)| has the form

|Rx(a)| = |σ 2
s aaH + Ri+n|

= |Ri+n||σ 2
s R

−1
i+naa

H + I|
= |Ri+n|

∣∣∣∣
(

1 0
σ 2
s R

−1
i+na I

) (
1 −aH
0 I + σ 2

s R
−1
i+naaH

)∣∣∣∣
= |Ri+n|

∣∣∣∣
(
1 −aH
0 I

) (
1 + σ 2

s aHR
−1
i+na 0

σ 2
s R

−1
i+na I

)∣∣∣∣
= |Ri+n|

(
1 + σ 2

s aHR
−1
i+na

)
.

(13)
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Expanding R−1
x (a) using the matrix inversion lemma, it

yields

R−1
x (a) = R−1

i+n − σ 2
s R

−1
i+naaHR

−1
i+n

1 + σ 2
s aHR

−1
i+na

. (14)

We note the sample autocorrelation matrix

R̂x,j = 1
K

(j+1)K−1∑
k=jK

xkxHk . (15)

So, the likelihood function is given by

p(Xj|a) = α(1 + σ 2
s β(a))−Kexp

{
Kσ 2

s aHR
−1
i+nR̂x,jR−1

i+na
1 + σ 2

s β(a)

}
,

(16)

where α = π−NK |Ri+n|−K exp
{

−
(j+1)K−1∑

k=jK
xHk R

−1
i+nxk

}

and β(a) = aHR−1
i+na. According to the derivation in [26],

(16) can be rewritten as

p(Xj|a) =
α(1+σ 2

s β(a))−Kexp
{
Kσ 2

s

(
2+σ 2

s β(ar)
1+σ 2

s β(a) β(a)− 1+σ 2
s β(ar)

1+σ 2
s β(a) a

H R̂−1
x,j a

)}
,

(17)

where ar is the ideal steering vector, which can be approx-
imated by aj−1. Calculating this likelihood PDF presents
a bigger difficulty. As in [25,26], we assume that the
expected projection of the steering vector into the inter-
ference subspace is small, or equivalently, the interferers
are located far away from themain lobe of the beamformer
using the steering vector ar . Therefore, the quadratic func-
tional β(a) can be approximated by the constant β(aj−1)
[25,26,28], which is defined by

β(aj−1) = aHj−1R
−1
i+naj−1. (18)

The likelihood function can be alternatively approximated
as

p(Xj|a)≈α(1+σ 2
s β(aj−1))

−Kexp
{
Kσ 2

s

(
μ(aj−1)β(a)−aH R̂−1

x,j a
)}

=γ exp
{
−Kσ 2

s aH
(
R̂−1
x,j − μ(aj−1)R−1

i+n

)
a
}
,

(19)

where

μ(aj−1) = 2 + σ 2
s β(aj−1)

1 + σ 2
s β(aj−1)

, (20)

and γ = α(1 + σ 2
s β(aj−1))−K is a normalization factor

that ensures the function integrates to one. Substituting

(11) and (19) into (10), the posterior PDF p(a|X0:j) can be
given by

p(a|X0:j)≈ η exp
{
−(a − aj−1)

HC−1
j−1(a − aj−1)

}
× exp

{
−Kσ 2

s aH
(
R̂−1
x,j − μ(aj−1)R−1

i+n

)
a
}

=ξexp
{
−(a − 	C−1

j−1aj−1)
H	−1(a − 	C−1

j−1aj−1)
}
,

(21)

where

	 =
(
Kσ 2

s R̂
−1
x,j − μ(aj−1)Kσ 2

s R
−1
i+n + C−1

j−1

)−1
, (22)

and η = γ

πN |Cj−1|p(Xj|X0:j−1)
, ξ = η exp{−aHj−1(C

−1
j−1 −

C−1
j−1	C−1

j−1)aj−1}. It can be seen that the posterior PDF
p(a|X0:j) is a complex Gaussian with mean aj and covari-
ance matrix Cj, which can be recursively expressed by

{
aj = 	C−1

j−1aj−1
Cj = 	

. (23)

Because β(a) can be approximated by β(aj−1), we use (14)
and have

R−1
x (a)a = 1

1 + σ 2
s aHR

−1
i+na

R−1
i+na

= 1
1 + σ 2

s β(a)
R−1
i+na

≈ 1
1 + σ 2

s β(aj−1)
R−1
i+na.

(24)

Substituting (24) into (8), the weights of the Bayesian
beamformer are approximated by

wMMSE
j ≈ σ 2

s
1 + σ 2

s β(aj−1)
R−1
i+n

∫
ap(a|X0:j)da

= σ 2
s

1 + σ 2
s β(aj−1)

R−1
i+naj,

(25)

where aj = ∫
ap(a|X0:j)da.

In summary, we assume that p(a|X0:j−1) is a complex
Gaussian PDF with mean aj−1 and covariance matrix
Cj−1. The proposed Bayesian beamformer in STI j can be
described as follows:

1) Compute R̂x,j using (15) and obtain R̂−1
x,j ;

2) Compute β(aj−1) and μ(aj−1) using (18) and (20);
3) Compute 	 using (22) and update aj and Cj using

(23);
4) Compute wMMSE

j using (25).
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At the end of this section, we state again that the
signal power σ 2

s and interference-plus-noise covariance
matrix Ri+n are assumed to be known in the proposed
beamformer. However, in practice, the signal power and
interference-plus-noise covariance are unknown. In each
STI, a simple method for estimating σ 2

s is the minimum
variance spatial spectral estimation using aj−1 [25], that is,

σ̂ 2
s = 1

aHj−1R̂
−1
x,j aj−1

. (26)

For the interference-plus-noise covariance matrix, we
can consider the output of the array in the absence of the

signal of interest and collect a long-term sample covari-
ance estimate for Ri+n [3].

5 Numerical simulation
In this section, we provide numerical illustrations of the
performances of the proposed Bayesian beamformer. A
uniform linear array withN = 10 omnidirectional sensors
spaced half a wavelength apart is considered. Even though
arbitrary noise is applicable to the proposed method, for
simplicity, we assume that the noise is a white complex
Gaussian with power σ 2

n = 1 in the simulations. A desired
source signal is from the broadside and generated as a ran-
dom complex Gaussian process with power σ 2

s . There are
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Figure 1 Output SINR versus STI index for different URs under different SNRs. INR = 10 dB and STI length is 512. (a) SNR = 10 dB,
(b) SNR = 0 dB, (c) SNR = −10 dB, (d) SNR = −20 dB, and (e) SNR = −30 dB.
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two interferers with the interference-to-noise ratio (INR)
10 dB and 30° and 60° away from the desired signal. Sim-
ilar to [27], we define the uncertainty ratio (UR) and the
signal-to-noise ratio (SNR), respectively, as

UR = 10 log10
(
tr{C0}
aHr ar

)
(27)

SNR = 10 log10
(

σ 2
s aHr ar
σ 2
n

)
, (28)

where tr{·} denotes the matrix trace. For algorithm ini-
tialization, we set C0 = 0.001I, and a0 is drawn from a

complex Gaussian distribution with mean ar and covari-
ance matrix C0. The performance evaluation criterion is
the output signal-to-interference-plus-noise ratio (SINR)

SINR(w) = 10 log10
(

σ 2
s wHaraHr w
wHRi+nw

)
. (29)

In all experiments, the STI block length is set to be
K = 512, and the optimum Max-SINR beamformer with
the true steering vector ar is provided as reference whose
weight is wMaxSINR = R−1

i+nar . In the first experiment,
we investigate the convergence of the proposed method.
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Figure 2 Output SINR versus SNR for different beamformers under different URs. INR = 10 dB and the results are obtained after 80,000 STI
frames. (a) UR = −20 dB, (b) UR = −10 dB, (c) UR = 0 dB, (d) UR = 10 dB, and (e) UR = 20 dB.
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Figure 3 Beampatterns of different beamformers from one trial. SNR = 10 dB, INR = 10 dB, UR = −10 dB, and the results are obtained after
100 STI frames.

Figure 1 shows the output SINR versus STI index for dif-
ferent URs under different SNRs. It can be seen that the
proposed recursive Bayesian beamformer has good con-
vergence performance. With the increase of time, the out-
put SINR converges to that of the Max-SINR beamformer
for different URs and SNRs. In the case of high SNR
and small UR, the convergence is very fast; otherwise,
the proposed Bayesian beamformer has slow convergence
speed.
For comparison purposes, we also display the perfor-

mances of the linearly constrained minimum variance
(LCMV) beamformer [29], subspace projection beam-
former [22], and other three Bayesian beamformers pro-
posed in [25,26,28], where the beamformers of [22,28,29]
are non-recursive STI block-based methods and the

beamformers of [25,26] are recursive. For the LCMV
beamformer, the weight is wLCMV = R̂−1

x,j a0
aH0 R̂

−1
x,j a0

, where we

constrain the weight to satisfy aH0 wLCMV = 1 and do
not use the diagonal loading. For the subspace projection
beamformer, the time-varying (on the STI scale) weight
vector is computed as P̂ja0, where P̂j = I − Ud,jUH

d,j is
the perpendicular projection matrix for the interference
subspace, and Ud,j contains normalized eigenvectors cor-
responding to the two largest eigenvalues in the decom-
position R̂x,j = Uj
UH

j such that Uj =[Ud,j|Us+n,j].
The Bayesian beamforming weight of [27] is σ 2

s (R̂x,j +
Kσ 2

s C0)−1a0. For the Bayesian methods in [25,26], they
cannot address the uncertainties due to some system-
atic problems such as array calibration error and drift
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Figure 4 The performance of the proposed beamformer with the estimated signal power by using (26). SNR = 0 dB, UR = 20 dB, and the
interference-plus-noise covariance matrix is known exactly. (a) The output SINR versus STI index for the Max-SINR beamformer and the proposed
beamformers with the true and estimated signal power. (b) The vectorial angle error versus STI index for the proposed beamformers with the true
and estimated signal power.
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Figure 5 The performance of the proposed beamformer with the estimated interference-plus-noise covariance matrix. L = 1 × K , 10 × K ,
and 100 × K samples were collected in the absence of the signal of interest, where K = 512, SNR = 0 dB, UR = 20 dB, and the signal power is
known exactly. (a) The output SINR versus STI index for the Max-SINR beamformer and the proposed beamformers with the true and estimated
INCM. (b) The vectorial angle error versus STI index for the proposed beamformers with the true and estimated INCM.

in sensor gains or phases, so the DOA uncertainty is
considered here. The source DOA is modeled as a ran-
dom variable with prior statistics, and the a priori PDF
of DOA is fixedly set to be uniform at 81 evenly spaced
points over [−10◦ : 10◦] in all simulations. Five hun-
dred Monte Carlo trials were run for different SNRs and
URs. Figure 2 shows the output SINR versus SNR for
different beamformers under different URs, where the
results are obtained after 80,000 STI frames. The beam-
patterns of different beamformers from one trial is shown
in Figure 3, where SNR = 10 dB, UR = −10 dB, and the
STI index is 100. The DOAs of the desired signal and
interferers are indicated by the vertical solid and dashed
lines, respectively.
From Figures 2 and 3, we can observe that the pro-

posed recursive Bayesian beamformer outperforms the
othermethods and has similar performance to the optimal
Max-SINR beamformer. Compared to the LCMV, sub-
space projection, and Bayesian method of [28], the pro-
posed method produces higher output SINR and better
beampattern shape. This is because the proposed beam-
former can exploit information about the steering vector
contained in past STI windows, while the LCMV, sub-
space projection, and method of [28] only simply use the
information in the current STI window. Compared to the
recursive Bayesian beamformers of [25,26], our method
shows some improvements in terms of output SINR and
beampattern shape, especially in the case of high SNR.
The reason is that we use (25) to calculate the beam-
former weights where Ri+n is assumed to be known, while
this assumption is not necessary for the beamformers of
[25,26]. In addition, from Figure 2, we can see that the
differences between our proposed beamformer and the
beamformers of [25,26] are not really significant until
some higher SNRs are encountered. The reason is that

there is less information about the steering vector of inter-
est contained in the received data when the SNR is much
lower. These three Bayesian beamformers have similar
performance after convergence, and the SINR improve-
ment of our method is insignificant in the case of lower
SNRs.
Finally, we assess the performance of the proposed

beamformer when the signal power and the interference-
plus-noise covariance matrix are inaccurate. As stated in
Section 4, we use (26) to estimate σ 2

s and collect a long-
term sample covariance estimate for Ri+n considering the
output of the array in the absence of the signal of inter-
est. Besides the output SINR, the vectorial angle error
between wMMSE

j and wMaxSINR is introduced to evaluate
the accuracy of beamforming weight, which is defined by

ϑ = arccos
(
abs{(wMaxSINR)HwMMSE

j }
‖wMaxSINR‖‖wMMSE

j ‖

)
, (30)

where abs{·} denotes the absolute value of a complex
number. When this value is close to 0, the proposed
beamforming weight in (25) approaches to the Max-SINR
beamformer weight.
Figure 4 is shown to assess the performance of

the proposed beamformer when the signal power is
estimated according to (26), where the interference-
plus-noise covariance matrix is known exactly and
SNR = 0 dB,UR = 20 dB. Figure 4a is the output SINR
versus STI index for the Max-SINR beamformer, the pro-
posed beamformer with true signal power, and estimated
signal power. Figure 4b compares the vectorial angle error
between wMMSE

j and wMaxSINR when the signal power is
known and estimated by using (26).
In Figure 5, some results are presented to assess

the performance of the proposed beamformer when
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Figure 6 The performance of the proposed beamformer with the estimated signal power and INCM. (26) is used to estimate signal power,
and L = 100 × K samples without signal of interest are collected to estimate INCM, where K = 512, SNR = 0 dB, and UR = 20 dB. (a) The output
SINR versus STI index for the Max-SINR beamformer and the proposed beamformers with the true and estimated signal power and INCM. (b) The
vectorial angle error versus STI index for the proposed beamformers with the true and estimated signal power and INCM.

the interference-plus-noise covariance matrix is inac-
curate, where the signal power is known exactly and
SNR = 0 dB,UR = 20 dB. In simulations, some long-
term samples of the array in the absence of the sig-
nal of interest are collected offline to estimate the
interference-plus-noise covariance matrix. Here, the
length of samples are L = 1 × K , 10 × K , and
100 × K , respectively, where K = 512 is the length
of STI. Figure 5a is the output SINR versus STI
index for the Max-SINR beamformer and the pro-
posed beamformer with true INCM and different esti-
mated INCMs, where the INCM is the abbreviation
of ‘interference-plus-noise covariance matrix’. Figure 5b
shows the vectorial angle error between wMMSE

j and
wMaxSINR.
From Figures 4 and 5, it can be seen that the proposed

Bayesian beamformer with estimated signal power using
(26) has similar performance to the beamformer with
the true signal power. For the effect of the interference-
plus-noise covariance matrix, when the sample length is
not long enough, the estimation of Ri+n is inaccurate,
which will result in the inaccuracy of wMMSE

j and per-
formance degradation of the proposed algorithm. With
the increase of sample length, the estimation of Ri+n is
more accurate, and the proposed beamformer has better
SINR evaluation and smaller vectorial angle error. Com-
pared to the inaccuracy of interference-plus-noise covari-
ance matrix, the signal power estimation error affects the
performance of the proposed beamformer more slightly,
which means that (26) can be used to estimate the sig-
nal power in practice. In other words, the accuracy of
Ri+n is predominant in the evaluation of the proposed
beamformer. Figure 6 shows the overall performance of
the proposed beamformer when signal power is estimated
using (26) and 100 × K samples without the signal of

interest are adopted to estimate Ri+n. From Figure 6,
we can see that there is a small performance degrada-
tion compared to the proposed beamformer with the
true signal power and interference-plus-noise covariance
matrix.

6 Conclusions
In this paper, a recursive Bayesian approach is pro-
posed to mitigate uncertainty in the steering vector
for narrowband beamforming. By assuming that the
steering vector is a complex Gaussian random vec-
tor, the beamformer can be viewed as a mixture of
conditional MMSE estimates weighted by the poste-
rior PDF of the random steering vector. To make use
of the information about a steering vector contained
in past STI windows, a recursive algorithm is devel-
oped to estimate the posterior PDF of the steering vec-
tor. Simulation results show better performance of the
proposed beamformer compared with the LCMV, sub-
space projection, and other three Bayesian beamform-
ers. After convergence, it has similar performance to
the optimal Max-SINR beamformer with true steering
vector. A future direction of research consists of gen-
eralizing this algorithm to consider the unknown signal
power and unknown interference-plus-noise covariance
matrix.
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