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Abstract

This paper considers the problem of direction-of-arrival estimation for periodically modulated signals using one
uniform linear array of sensors. By means of modulating the sources with periodic modulation sequences, we can
form a series of linear equations relating the autocorrelation matrices of the received data and the outer products of
the scaled steering vectors. Solving these linear equations yields a group of Hermitian matrices formed from the outer
products of the scaled steering vectors. Then taking the eigendecomposition of these Hermitian matrices, we can
obtain all the scaled steering vectors. By utilizing a special structure of the scaled steering vectors, we can find the
directions of signals impinging on the array. We also examine the relation of the modulation sequences and the
estimation performance, and a design of the modulation sequences to resist the effect of spatial noise is proposed.
One merit of the proposed method is that it can be used in the scenarios of more sources than sensors. The
simulation result also shows that it has the capacity to distinguish the closely spaced sources.
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1 Introduction
The subject of array signal processing is concerned with
the extraction of information from signals collected using
an array (or arrays) of sensors [1,2]. One important infor-
mation is the direction of arrival (DOA) of the incident
signals. Take wireless communications for example, the
information of DOA can be used for mobile localization
for directional transmission in the downlink [3]. Hence,
the DOA estimation of sources is one important research
topic, and various algorithms in this field over the past
decades have been proposed [1-7]. One of the famous
algorithms is the multiple signal classification (MUSIC)
algorithm proposed in [4]. The merit of the algorithm
is that the accuracy of estimation can be obtained for
large data samples or at high signal-to-noise ratio (SNR)
scenarios. Another famous algorithm is the determinis-
tic method developed by Van Der Veen [5]. Instead of
requiring the statistical data and the search procedure in
the angular spectrum inherently in the MUSIC algorithm,
the deterministic method estimates the DOA directly in
terms of eigenvalues of a certain matrix obtained from the
received data. Due to the limitation of space, we cannot
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introduce all algorithms of DOA estimation, and we refer
the interested readers to [1,2,7] and the references therein
for a detailed review.
In digital communications, although the actual trans-

mitted symbol stream is unknown to the receiver, some
a priori information of the transmitted signals, for exam-
ple, the modulation scheme, is available to the receiver.
The receiver can take advantage of this extra information
with the received data to carry out some tasks including
source separation and channel estimation [8-11]. Partic-
ularly in [9,10], the signal sources transmitted are first
multiplied at a symbol rate by known amplitude-variation
sequences, called modulation sequences, to aid symbol
recovery or channel estimation at the receiver. However,
there is little research for DOA estimation using modu-
lation sequences. This motivates our research interest in
developing a new DOA estimation method for one uni-
form linear array (ULA) based on modulation sequences.
Our idea and method are shown as follows: By means

of modulating the sources with periodic modulation
sequences, we can form a set of autocorrelation matri-
ces of the received data. Then the set of autocorrelation
matrices allows us to formulate a series of linear equations
relating the outer products of the scaled steering vectors.
Solving the set of linear equations produces a group of
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Hermitian matrices, which are the outer products of the
scaled steering vectors. Then taking the eigendecompo-
sition of these Hermitian matrices, we can obtain all the
scaled steering vectors. By utilizing a special structure
of the scaled steering vectors, we can find the direc-
tions of signals impinging on the array. We also examine
the relation of the modulation sequences and the esti-
mation performance, and a design of the modulation
sequences to resist the effect of spatial noise is proposed.
The merit of the proposed method is that it can be used
in the case of more sources than sensors. In addition, the
method has the capacity to distinguish the closely spaced
sources.
It is worth to mention that since the periodically modu-

lated signals are artificial, the proposedmethod is suitable
for communication signals. One possible application of
the proposedmethod is mobile localization for directional
transmission in the downlink since the modulation for-
mats of the mobile units are available to the base station
in the uplink [3,11].
This paper is organized as follows: Section 2 briefly

reviews the systemmodel and provides basic assumptions.
In Section 3, we derive the estimation method and discuss
some properties of the proposed algorithm. Simulation
results are given in Section 4. Section 5 concludes this
paper.

1.1 Notations
(·)∗, (·)T , and (·)H denote the complex conjugate, trans-
pose, and conjugate transpose operations, respectively.
The notation ‖ · ‖2 is the 2-norm. The symbols R and C

represent the set of real numbers and the set of complex
numbers, respectively. IM is the identity matrix of dimen-
sionM×M.A◦B is theHadamard product ofmatricesA ∈
Cm×n and B ∈ Cm×n ([12], p. 190), and A(:, k) and A(l, :)
are the kth column vector and the lth row vector of A,
respectively. For a vector b ∈ Cm, b(r1 : r2) is the subvec-
tor formed from the r1th element to the r2th element of b.
In addition, for anym×mmatrixG = [ gk,l]0≤k,l≤m−1, we
define the operation �j(G) = [ g0,jg1,j+1 · · · gm−1−j,m−1]T ,
for 0 ≤ j ≤ m − 1, i.e., �j(G) is the column vector formed
from the jth superdiagonal of G.

2 Problem statement
Consider a uniform linear array of M sensors where adja-
cent sensors are separated with equal distance d. The
sensor array receives N narrowband sources from far-
field whose directions of arrival are θ1, θ2, · · · , and θN ,
respectively. Before transmission, each source si(k), ∀i =
1, 2, · · · ,N , is multiplied by a real and periodic modula-
tion sequence ci(k). Then the standard system model is
shown as follows:

y(k) = Asp(k) + w(k), (2.1)

where y(k) ∈ CM is the received vector at time k.
A = [a(θ1) a(θ2) · · ·a(θN )] ∈ CM×N is the array response
matrix with the ith column being the steering vector
a(θi) = [ 1e−jφ(θi) e−j2φ(θi) · · · e−j(M−1)φ(θi)]T ∈ CM of
source i, where φ(θi) = 2πd sin(θi)

λ
and λ ≥ 2d is the signal

wavelength. w(k) ∈ C
M is the spatial noise vector at time

k. sp(k) ∈ CN is the transmitted vector defined as follows:

sp(k) = [ c1(k)s1(k)c2(k)s2(k) · · · cN (k)sN (k)]T
= C(k)s(k), (2.2)

where C(k) = diag[ c1(k)c2(k) · · · cN (k)]∈ R
N×N and

s(k) = [ s1(k)s2(k) · · · sN (k)]T ∈ CN .
The purpose of this paper is to develop a method of

estimating θi for i = 1, 2, · · · ,N , using the second-order
statistics of the received data based on the following
assumptions:

(i) The source vector s(k) is a zero-mean, temporally
and spatially uncorrelated, and wide-sense stationary
vector with E[ |si(k)|2]= d2i . The noise vector w(k) is
zero-mean, wide-sense stationary, and
E[w(m)w(n)H ]= σ 2

wδ(m − n)IM , where δ(·) is the
Kronecker delta function. In addition, the source
signal is uncorrelated with the noise, i.e.,
E[ s(m)w(n)H ]= 0, ∀m,n.

(ii) The DOA θi ∈ [−π
2 ,

π
2
]
, i = 1, 2, · · · ,N .

(iii) Each of the modulation sequences ci(k),
i = 1, 2, · · · ,N , is periodic with period P ≥ N + 1,
i.e., ci(k) = ci(k + P).

3 DOA estimation
In this section, we first derive the estimation method
when noise is absent. The design of the modulation
sequences when noise is present is given in Section 3.2.
Some further discussions about the proposed method are
given in Section 3.3.

3.1 The proposed method
Using (2.2), the system model (2.1) for the noiseless case
can be expressed as

y(k) = AC(k)s(k). (3.1)

Taking the expectation of y(k)y(k)H for k = 1, 2, · · · , P
and using assumption (i), we obtain the following P auto-
correlation matrices:

Rk = E[ y(k)y(k)H ]
= AC(k)DC(k)AH , k = 1, 2, · · · , P, (3.2)

where D = diag[ d21d
2
2 · · ·d2N ]∈ R

N×N . Since D and
C(k) are real and diagonal matrices, (3.2) can be further
expressed as

Rk = AD 1
2C(k)2D 1

2AH

= HC(k)2HH , k = 1, 2, · · · , P. (3.3)
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Here we let AD 1
2 = H = [ h1h2 · · ·hN ] with hi =

dia(θi) be the scaled steering vector for i = 1, 2, · · · ,N .
Since C(k) is a diagonal matrix formed from the peri-

odic modulation sequences c1(k), c2(k), · · · , cN(k) with
period P by assumption (iii), we know that C(k)2 is also
periodic with period P, i.e., C(k)2 = C(k + P)2, which
implies that Rk+P = Rk , for example, R1+P = R1. In
addition, for the purpose of DOA estimation, we need
the following proposition to aid our derivation of the
proposed method.
Proposition 1. For k = 1, 2, · · · , P, the ith upper diagonal
of Rk can be expressed as follows:

�i(Rk) =

⎡
⎢⎢⎢⎣

H(1, :) ◦ H(1 + i, :)∗
H(2, :) ◦ H(2 + i, :)∗

...
H(M − i, :) ◦ H(M, :)∗

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Zi

⎡
⎢⎢⎢⎣
c1(k)2
c2(k)2

...
cN (k)2

⎤
⎥⎥⎥⎦

∀i = 0, 1, 2 · · · ,M − 1,

(3.4)

where Zi ∈ C
(M−i)×N and �i(Rk) ∈ C

M−i is a vector for
i = 0, 1, · · · ,M − 1.

Proof. Please see Appendix.

With the aid of Proposition 1, we obtain the vectors
�i(R1), �i(R2), · · · , �i(RP) from (3.4) to form a matrix Vi
shown as follows:⎡

⎢⎢⎢⎣
(�i(R1))

T

(�i(R2))
T

...
(�i(RP))T

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Vi

=

⎡
⎢⎢⎢⎣
c1(1)2 c2(1)2 · · · cN (1)2
c1(2)2 c2(2)2 · · · cN (2)2

...
...

...
...

c1(P)2 c2(P)2 · · · cN (P)2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
W

Xi

∀i = 0, 1, 2 · · · ,M − 1,
(3.5)

where Xi = ZT
i ∈ R

N×(M−i) , Vi ∈ C
P×(M−i), and W ∈

RP×N . From (3.5), it is obvious that each column of Vi can
be written as a linear equation shown as follows:

Vi(:, k) = WXi(:, k), k = 1, 2, · · · ,M − i. (3.6)

Since P > N by assumption (iii), we can appro-
priately design the modulation sequences {cn(1), cn(2),
· · · , cn(P)}, n = 1, 2, · · · ,N , to make the matrixW be full
column rank. Then for each i, i = 0, 1, · · · ,M−1, the least
squares solutions of (3.6) are shown as follows:

Xi(:, k) = (WTW)−1WTVi(:, k), k = 1, 2, · · · ,M − i.
(3.7)

Then each column of Xi, solved by (3.7), is used to form
the matrix Xi, ∀i = 0, 1, · · · ,M − 1. Taking the transpose

of Xi, we obtain Zi since Zi = XT
i , i = 0, 1, · · · ,M − 1. In

addition, from (3.4), we know that

Zi =

⎡
⎢⎢⎢⎣

H(1, :) ◦ H(1 + i, :)∗
H(2, :) ◦ H(2 + i, :)∗

...
H(M − i, :) ◦ H(M, :)∗

⎤
⎥⎥⎥⎦ . (3.8)

By writing down the elements in Zi with the aid of the
Hadamard product, we observe that

Zi = [Zi(:, 1) Zi(:, 2) · · · Zi(:,N)
]

= [
�i(h1hH1 ) �i(h2hH2 ) · · · �i(hNhHN )

]
∀i = 0, 1, · · · ,M − 1.

(3.9)

By collecting the nth column of each Zi, i = 0,
1, · · · ,M − 1, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z0(:, n) = �0(hnhHn )

Z1(:, n) = �1(hnhHn )
...

...
...

ZM−1(:, n) = �M−1(hnhHn )

∀n = 1, 2, · · · ,N .

(3.10)

Since for each n, hnhHn is a Hermitianmatrix, the vectors
in (3.10) obtained from (3.7) allow us to form N rank-
one Hermitian matrices Qn = hnhHn , which is the outer
product matrix of hn, n = 1, 2, · · · ,N . Then each column
vector hn of H is estimated up to a scalar ambiguity αn by
computing the unit-norm eigenvector associated with the
maximal eigenvalue of the matrixQn, i.e.,

ĥn = hnαn, n = 1, 2, · · · ,N . (3.11)

Since hn = a(θn)dn, we have

ĥn = a(θn)dnαn

= [
1e−jφ(θn)e−j2φ(θn) · · · e−j(M−1)φ(θn)

]T dnαn
∀n = 1, 2, · · · ,N .

(3.12)

Then we divide each scaled steering vector ĥn into
two subvectors, namely ĥn1 = ĥn(1 : M − 1) and
ĥn2 = ĥn(2 : M). It is clear that ĥn1 = ĥn2ejφ(θn) and ejφ(θn)

can be obtained from the least squares solution. Then the
DOA θn is thus obtained from the angle of ejφ(θn).

Remark 1. If the array is only composed of two sensors,
i.e., M = 2, then hn is a 2 × 1 vector, and it is obvious
that ĥn(1, :) = ĥn(2, :)ejφ(θn). In this case, we can divide
the first entry of ĥn by the second one to obtain the DOA
for n = 1, 2, · · · ,N . In other words, the proposed method
can carry out the DOA estimation using only two sensors
in theory.
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3.2 The design of themodulation sequences
Wehave derived the estimationmethod in Section 3.1.We
now discuss how to design the modulation sequences to
combat the effect of noise on DOA estimation.
When noise is present, the systemmodel (3.1) becomes

y(k) = AC(k)s(k) + w(k) (3.13)

and the autocorrelation matrices in (3.3) become

Rk = E[ y(k)y(k)H ]
= HC(k)2HH + σ 2

wIM, k = 1, 2, · · · , P. (3.14)

Since the noise variance only appears on themain diago-
nal of Rk , the groups of vectors �i(Rk), i = 1, 2, · · · ,M−1
in (3.4) remain unchanged, and only the group of vectors
�0(Rk) needs to be changed as

�0(Rk) = Z0
[
c1(k)2 c2(k)2 · · · cN (k)2

]T + σ 2
w1M

∀k = 1, 2, · · · , P,
(3.15)

where 1M = [
1 1 · · · 1]T ∈ RM. In this case, V0 in (3.5)

becomes

V0 = WX0 + σ 2
w

[1P1P · · ·1P
]

︸ ︷︷ ︸
M columns

. (3.16)

Then the correspondingM linear equations from (3.16)
become

V0(:, k) = WX0(:, k) + σ 2
w1P, k = 1, 2, · · · ,M. (3.17)

From (3.7), we know that the solutions of (3.17) become

X̂0(:, k) = (WTW)−1WTV0(:, k)
= (WTW)−1WT (WX0(:, k) + σ 2

w1P
)

= X0(:, k) + σ 2
w(WTW)−1WT1P

= X0(:, k) + σ 2
wq, k = 1, 2, · · · ,M,

(3.18)

where q = (WTW)−1WT1P . From (3.18), we know that
X̂0(:, k) is the actual X0(:, k) plus a perturbation term
σ 2
wq due to noise. Since q is formed from the modulation

sequences, we need to design the modulation sequences
to minimize ‖q‖2 and the effect of the resulting per-
turbation term. However, the high nonlinearity of the
modulation sequences contained in q makes it difficult
to design. Hence, we adopt another reasonable design
criterion which is also used in [10] to tackle this problem.
From (3.18), we know the X̂0(:, k) = X0(:, k) if and only

if 1P is orthogonal to every column ofW, i.e.,

WT1P = [w1 w2 · · · wN
]T 1P = 0, (3.19)

wherewi = [
ci(1)2 ci(2)2 · · · ci(P)2

]T ∈ R
P is the ith col-

umn of W, ∀i = 1, 2, · · · ,N . If the modulation sequences
can be selected tomeet the orthogonality condition (3.19),
the effect of noise is completely eliminated, but this is
impossible since the entries of w1,w2, · · · ,wN and 1P are

positive. Therefore, we seek to choose the modulation
sequences such that 1P is as close to being orthogonal to
wi as possible, for i = 1, 2, · · · ,N . To this end, we define
the following correlation coefficients:

γi = wT
i 1P

‖wi‖2‖1P‖2 , i = 1, 2, · · · ,N , (3.20)

and try to choose the modulation sequences to minimize
the correlation coefficient γi subject to the following two
constraints:

1
P

P∑
k=1

ci(k)2 = 1, (3.21)

ci(k)2 ≥ τ > 0, ∀1 ≤ k ≤ P (3.22)

for i = 1, 2 · · · ,N . Roughly, constraint (3.21) normalizes
the power gain of the modulation sequence of each source
to 1, and constraint (3.22) requires that at each instant, the
power gain is no less than τ . Note that the optimization
problem is identical to the case considered in [10], and the
resulting optimal sequences are given by, for any fixed 1 ≤
mi ≤ P,

ci(k) =
{ √

P(1 − τ) + τ , k = mi√
τ , k 
= mi, 1 ≤ k ≤ P (3.23)

for i = 1, 2, · · · ,N . In the study of blind channel esti-
mation using periodic modulation [10], the two-level
sequence in (3.23) is also shown to be optimal for
mitigating the channel noise effect. In addition, with
the optimal solution in (3.23), the corresponding γi is
γopt = 1√

P(1−τ)2+τ(2−τ)
, ∀i = 1, 2, · · · ,N . Note that

γopt decreases as τ decreases, and thus, the noise effect
imposed on V0 is reduced and hence estimation perfor-
mance improves. We will give a simulation example to
illustrate this property.
From (3.23), we know that each of the N modulation

sequences is a two-level sequence with a single peak in
one period. However, to make the matrix W be full col-
umn rank such that the least squares solutions (3.7) can
be computed, the peak locations of the N modulation
sequences in one period need to be distinct with one
another, i.e., mk 
= ml for all k 
= l. Without loss of
generality, we can letmi = i for i = 1, 2, · · · ,N .

Remark 2. It is worth noting that even for the colored
noise case, the design ofmodulation sequences is the same
as the case of white noise. To see this, we know that if
the zero-mean, wide-sense stationary noise vector w(k)
in assumption (i) now becomes colored, then the M × M
autocorrelation matrix Rw = E[w(k)w(k)H] becomes a
Hermitian and Toeplitz matrix with �i(Rw) = σ 2

w(i)1M−i,
∀i = 0, 1, · · · ,M − 1. In addition, the autocorrelation
matrix of the received vector in (3.14) becomes Rk =
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E[ y(k)y(k)H ]= HC(k)2HH + Rw, which means for i =
0, 1, · · · ,M − 1,

�i(Rk) = Zi
[
c1(k)2 c2(k)2 · · · cN (k)2

]T + σ 2
w(i)1M−i

(3.24)

and

Vi = WXi + σ 2
w(i)

[1P1P · · ·1P
]

︸ ︷︷ ︸
(M−i) columns

. (3.25)

The least squares solution of (3.25) is

X̂i = (WTW)−1WTVi
= Xi + σ 2

w(i)(WTW)−1WT [1P1P · · ·1P
]

︸ ︷︷ ︸
(M−i) columns

. (3.26)

From (3.26), it is obvious that if WT1P =[w1 w2 · · · wN
]T 1P = 0, then the effect of noise can be

eliminated. From here, the discussion and derivation are
the same as the content from (3.19) to (3.23). Hence we
know that the optimal sequences given in (3.23) can work
well for the colored noise case. We will give a simulation
in Section 4 to demonstrate this feature.

3.3 Discussions
We now discuss some notable features of the proposed
method. First, from the result at the end of Section 3.1,
we know that after ĥn is estimated, the DOA angle θn can
be obtained from the linear equation ĥn1 = ĥn2ejφ(θn).
Since ĥn is an M × 1 vector, the DOA angle θn can be
acquired provided that M ≥ 2, where M is the number
of sensors for the ULA. Hence, the proposed method can
carry out DOA etimation not only for the case of more
sensors (M ≥ N), but also for the case of less sensors
(M < N), as long as the number of sensors M ≥ 2. Sec-
ond, the DOA θn ∈[−π

2 ,
π
2 ], n = 1, 2, · · · ,N , may not be

distinct with each other since from Section 3.1, we know
that the estimates of θ1, θ2, · · · , and θN are independently
obtained from the corresponding scaled steering vectors
ĥ1, ĥ2, · · · , and ĥN , respectively. Hence, the proposed
method possesses the capacity to distinguish the closely
spaced sources. We will give a simulation to demonstrate
this feature. The third feature of the proposed method is
that it provides a design of the modulation sequences to
minimize the effect of noise on DOA estimation and thus
improves the accuracy of the solution.
We now summarize the proposed approach as the fol-

lowing algorithm:

1. Collect the received data {y(m)}Sm=1, where S divides
P, the period of the modulation sequences.

2. Compute the autocorrelation matrices R̂1, R̂2, · · ·
R̂P , via the following time average:

R̂k = 1
S/P

S
P −1∑
n=0

y(k+nP)y(k+nP)H , k = 1, 2, · · · , P.

(3.27)

3. Use the autocorrelation matrices in (3.27) to form
V0, V1, · · · , VM−1, and use the designed modulation
sequences (3.23) to formW.

4. Obtain the matrices X0, X1, · · · , XM−1 using the
least squares solutions in (3.7) with the aid of the
matrices V0, V1, · · · , VM−1, andW obtained from
the previous step.

5. Form N rank-one Hermitian matrices Q1,Q2, · · · ,
QN from Zi = XT

i , i = 0, 1, · · · ,M − 1, with the aid
of (3.10).

6. For eachQn = hnhHn , compute the estimate ĥn as
the unit-norm eigenvector associated with the
maximal eigenvalue of Qn, ∀n = 1, 2, · · · ,N .

7. Divide each scaled steering vector ĥn into two
subvectors, namely ĥn1 = ĥn(1 : M − 1, :) and
ĥn2 = ĥn(2 : M, :). Then obtain the DOA from the
angle of the least squares solution of the linear
equation ĥn1 = ĥn2ejφ(θn).

4 Simulation
In this section, we use several simulations to demon-
strate the performance of the proposed method. For all
simulation examples, the SNR is defined as SNR =
E
[‖y(k)−w(k)‖22

]
E
[‖w(k)‖22

] . We use the root-mean-square error
(RMSE) of angles as the performance measure, which

is defined as RMSE =
√
E

[
1
N

∑N
n=1(θn − θ̂n)2

]
, where

θ̂n is the estimate of θn. The number of Monte Carlo
trials is 500. The source symbols are independent and
identically distributed binary phase-shift keying signals.
The noise is zero-mean and white Gaussian (except for
simulation 3).

4.1 Simulation 1 - underdeterminedDOA estimation
In this simulation, we execute two underdetermined
experiments where the number of sensors is less than
the number of sources. There are six signal sources
in both experiments with the corresponding DOA:
{θ1, θ2, · · · , θ6} = {−60◦,−45◦,−30◦, 30◦, 45◦, 60◦}. For
both experiments, we set d = 0.5λ and we adopt the mod-
ulation sequence ci(k) in (3.23) for source i with period
P = 7 and peak location mi = i, i = 1, 2, · · · , 6.
The number of symbol blocks is S = 700. In the first
experiment, we set SNR = 10 dB, and the number of
sensors is increasing from two to five. Simulation results
in Figure 1a show that increasing the number of sensors
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Figure 1 RMSE of angles for underdetermined cases. (a) SNR = 10 dB. (b) Four sensors.

improves the performance of DOA estimation. This may
be due to more information obtained to average out the
computational error and noise effect for more sensors.
In the second experiment, the ULA is only composed of
four sensors. From Figure 1b, we observe that the RMSE
of angles decreases as SNR increases. In addition, both
experiments also show that the estimation performs bet-
ter for smaller τ , which is consistent with our analysis in
Section 3.2.

4.2 Simulation 2 - comparison with existingmethods
In this simulation, we examine the performance of the
proposed method with those of the conventional MUSIC
algorithm [4] and the deterministic method [5] for two
sources. The ULA is composed of five sensors with d =
0.5λ. For the proposed method, the modulation sequence
ci(k) for source i is chosen as in (3.23) with period P = 3,
τ = 0.2, and peak location mi = i, i = 1, 2. The number
of symbol blocks is S = 900. We first consider a case of
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nonclosely spaced sources: {θ1, θ2} = {−15◦, 15◦}. Simu-
lation results in Figure 2a show that the proposedmethod
performs better than both methods in [4,5] except for the
deterministic method for SNR > 15 dB. Then we con-
sider the case of two closely spaced sources: {θ1, θ2} =
{−15◦,−12◦}. Since the MUSIC algorithm fails to resolve
the closely spaced signals under the simulation setting, we
only compare the proposed method with the determinis-
tic method. From Figure 2b, we observe that the proposed
method performs better than the deterministic algorithm
for this case. It also shows that the capacity of the pro-
posed method to distinguish two closely spaced sources is
good.

4.3 Simulation 3 - underdeterminedDOA estimation in
the presence of colored noise

In this simulation, we examine the performance of the
proposed method with that of the Khatri-Rao (KR) sub-
space method [6] for the colored noise case. The additive
colored noise w(n) is generated by passing a zero-mean
with unit variance white sequence wv(n) through a finite
impulse response filter c(z) = 1.2+0.6z−1+0.3z−2 whose
output is w(n) = c(z)wv(n). Assume that there are four
signal sources with {θ1, θ2, θ3, θ4} = {−60◦,−30◦, 30◦, 60◦}
and the ULA is composed of three sensors with d = 0.5λ.
For the proposed method, the modulation sequence ci(k)
for source i is chosen as in (3.23) with period P = 5,
τ = 0.2, and peak location mi = i, i = 1, 2, 3, 4. Since the
KR subspace method is suitable for the quasi-stationary
signals, we randomly choose the standard deviation of sig-
nals following a uniform distribution on [ 0, 2

√
3] such

that the variance is 1. In addition, 50 frames with each
period being 100 are used to carry out the simulation for
the KR subspace method. In other words, the number of
symbol blocks is S = 5, 000. From Figure 3, we observe
that the KR subspace results in better performance for
SNR < 7 dB. However, for SNR > 7 dB, the proposed
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Figure 3 Colored noise case.

method achieves smaller RMSE of angles than that of the
KR subspace method.

5 Conclusion
This paper has proposed a new DOA estimation algo-
rithm for one ULA based on periodic modulation. The
proposed method has three notable features. First, the
proposed algorithm can handle more sources than sen-
sors, which may be few as two. In addition, the great
capacity to distinguish the closely spaced sources is the
second feature of the proposed method. The final feature
of the proposed method is that the performance of the
estimation algorithm depends on the choice of the modu-
lation sequences to resist the noise effects. Hence, we can
properly choose the modulation sequences to improve the
performance of estimation. Simulation results are used
to demonstrate the performance of the proposed method
and to compare it with some existing methods.
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Figure 2 Comparisonwith existing methods. (a) θ1 = −15◦, θ2 = 15◦. (b) θ1 = −15◦ , θ2 = −12◦ .
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Appendix
Proof of Proposition 1
Preliminary
Let a = [

a1 a2 · · · aN
] ∈ R1×N , b = [

b1 b2 · · · bN
] ∈

C
1×N , and f = [

f1 f2 · · · fN
] ∈ C

1×N be three row
vectors. Then it is easy to verify that (a◦b)fH = (b◦ f∗)aT .

Proof. Let e(k) = [
c1(k)2 c2(k)2 · · · cN (k)2

]
for k = 1,

2, · · · , P. From (3.3), we know that

Rk = HC(k)2HH

= [
c1(k)2h1 c2(k)2h2 · · · cN (k)2hN

]HH

=

⎡
⎢⎢⎢⎣
e(k) ◦ H(1, :)
e(k) ◦ H(2, :)

...
e(k) ◦ H(M, :)

⎤
⎥⎥⎥⎦ [H(1, :)H H(2, :)H · · · H(M, :)H

]
.

Then for each i, i = 0, 1, · · · ,M − 1, �i(Rk) can be
expressed as follows:

�i(Rk) =

⎡
⎢⎢⎢⎣

(e(k) ◦ H(1, :))H(1 + i, :)H
(e(k) ◦ H(2, :))H(2 + i, :)H

...
(e(k) ◦ H(M − i, :))H(M, :)H

⎤
⎥⎥⎥⎦ . (1)

From the Preliminary, we know that (1) can be further
expressed as

�i(Rk) =

⎡
⎢⎢⎢⎣

(H(1, :) ◦ H(1 + i, :)∗) e(k)T
(H(2, :) ◦ H(2 + i, :)∗) e(k)T

...
(H(M − i, :) ◦ H(M, :)∗) e(k)T

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

H(1, :) ◦ H(1 + i, :)∗
H(2, :) ◦ H(2 + i, :)∗

...
H(M − i, :) ◦ H(M, :)∗

⎤
⎥⎥⎥⎦ e(k)T .

(2)

(2) asserts the result given in Proposition 1.
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