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Abstract

In this paper, we develop in part and review various iterative unbiased finite impulse response (UFIR) algorithms (both
direct and two-stage) for the filtering, smoothing, and prediction of time-varying and time-invariant discrete
state-space models in white Gaussian noise environments. The distinctive property of UFIR algorithms is that noise
statistics are completely ignored. Instead, an optimal window size is required for optimal performance. We show that
the optimal window size can be determined via measurements with no reference. UFIR algorithms are
computationally more demanding than Kalman filters, but this extra computational effort can be alleviated with
parallel computing, and the extra memory that is required is not a problem for modern computers. Under real-world
operating conditions with uncertainties, non-Gaussian noise, and unknown noise statistics, the UFIR estimator
generally demonstrates better robustness than the Kalman filter, even with suboptimal window size. In applications
requiring large window size, the UFIR estimator is also superior to the best previously known optimal FIR estimators.
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1 Review
1.1 Introduction
In optimal estimation theory, unbiasedness is a key condi-
tion that is used to derive linear and nonlinear estimators.
A classical example is the ordinary least squares (OLS)
estimator proposed by Gauss in 1795 [1]. The Gauss-
Markov theorem states that if the noise is white and
has the same variance at each time step, the OLS esti-
mator is also the best linear unbiased estimator (BLUE)
[2]. In convolution-based optimal filtering, the unbiased-
ness constraint [2] leads to the unbiased finite impulse
response (UFIR) estimator [3,4]. An extremely useful prop-
erty of the BLUE and UFIR is that noise statistics are
not required. Another example is the maximum likeli-
hood estimator (MLE), which obtains the estimate at an
extremum of the density function of the state conditioned
on the measurements [5]. Like the BLUE and UFIR, the
MLE is suboptimal for finite data. However, if the sam-
ple size (memory) increases to infinity, each of them are
optimal.
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For finite data, unbiasedness does not guarantee the
minimum mean square error (MSE), which is comprised
of standard deviation and bias:

MSE = Var + Bias2 , (1)

where ‘Var’ is the error variance. Since the minimumMSE
is required by many applications, a minimization of (1) is
often desired at the expense of a small increase in bias.
That leads to different kinds of optimal solutions such as
the minimum variance unbiased estimator (MVUE), the
recursive Kalman filter [6], and the optimal FIR (OFIR)
filter [7,8]. The common disadvantage of these filters is
that noise statistics and initial errors are required. In view
of the fact that noise statistics and initial errors are com-
monly not well known, especially for time-variant models,
theoretically optimal estimators end up being subopti-
mal in practical applications. In this regard, engineering
experience says the following [9]:
Practical implementation of the Kalman filter is often

difficult due to the inability in getting a good estimate
of the noise covariance matrices.
That means that due to insufficient knowledge about

noise statistics, optimal estimators that minimize (1) may
be less accurate than unbiased ones that are derived under
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the invariant E{xn − x̂n} = 0, which leads to the unbiased-
ness condition

E{x̂n} = E{xn} , (2)

where xn indicates a state variable at discrete time step n,
x̂n its estimate, and E{x} is the expected value of x. Note
that the cost of equipment that is required for the charac-
terization of noise statistics cannot commonly be afforded
by users, and methods for the estimation of noise covari-
ance matrices via measurements are not well developed.
On the other hand, noise statistics are not always neces-
sary to get a good estimate that we illustrate below based
on an example.
Example 1. A linear signal xn is measured as zn = xn +
vn in the presence of zero mean white Gaussian noise vn
having variance σ 2

v = 1. The p-shift ramp UFIR estimator
matches this signal and is given by the convolution-based
estimate

x̂n+p =
N−1∑
i=0

h1i(N , p)zn−i , (3)

where the impulse response function is (eq. (89) of [17])

h1n(N , p) = 2(2N − 1) − 6n
N(N + 1)

+ 6p(N − 1 − 2n)
N(N2 − 1)

, (4)

p = 0 corresponds to filtering, p < 0 corresponds to |p|-
lag smoothing, and p > 0 corresponds to p-step prediction.
The estimation variance is defined as σ 2 = G(N , p)σ 2

v =
G(N , p), where G(N , p) = ∑N−1

i=0 h21i(N , p) is the noise
power gain (NPG) [11],

G(N , p) = 2(2N − 1)
N(N + 1)

+ 12p(N − 1 + p)
N(N2 − 1)

. (5)

The estimation variance is sketched in Figure 1 as a
function of N. Here, the 1/N bound is obtained by sim-
ple averaging that is optimal in the sense of error variance,
although with a 50% bias for a linear xn. The case of p = 0
corresponds to the ramp UFIR filter with h1n(N , 0) given
by (4), and we notice that denoising is inherently less effi-
cient in this case. If we set p = −N/2, the (N/2)-lag
smoother estimation error variance rapidly converges to
that of simple averaging. A similar effect can be observed
in the one-step prediction error variance with p = 1. Here,
a large error variance for small values ofN reduces to that
of the ramp filter as N increases. A common feature of
these plots is that the error variances decrease with the
reciprocal ofN. That means that noise in UFIR estimators
with large memory N � 1 may be very low and the esti-
mate may be almost optimal. This leads to the following
statement:
There is no need to use optimal estimators in many

applications. UFIR structures that ignore noise statistics
and initial estimation error statistics are able to produce
acceptable suboptimal estimates.

Figure 1 Estimation error variance σ2 for different UFIR
structures (Example 2). 1/N corresponds to simple averaging,
p= 0 to the ramp filter, p= 1 to the one-step predictor, and
p = −N/2 to the (N/2)-lag smoother.

UFIR estimators have attracted researcher’s attention
for decades, beginning with the work of Johnson [12] and
others, in which they extended the Wiener filter theory
to discrete finite time. Further, the ability of UFIR estima-
tors to produce nearly optimal estimates while ignoring
noise statistics was greatly regarded in the development of
estimators for polynomial signals [13-15]. Most recently
UFIR methods were extended to state space in batch
form [3,4,16-18] and in an iterative Kalman-like form
[19,20]. The latter has made the UFIR estimator a signifi-
cant rival of the Kalman filter and its applications can be
found in [10,21-24]. Even so, UFIR estimators still remain
somewhat beyond the typical range of traditional signal
processing techniques.
The basic operating principles of the optimal Kalman

and UFIR filters are summarized in Figure 2. At time n,
the Kalman filter requires the noise statistics at time n−1,
such as the process and measurement noise covariance
matrices Qn−1 and Rn−1 respectively, as well as the esti-
mation error covariance Pn−1. The optimal UFIR filter
ignores these statistics. Instead, it requires the optimal
averaging interval of Nopt points in order to be optimal.
In this paper, we develop in part the results achieved in

the field of UFIR filtering and review a family of iterative
UFIR algorithms for filtering, smoothing, and prediction
of time-varying (TV) and time-invariant (TI) discrete
state-spacemodels in whiteGaussian noise environments.
The following definitions will be used: UFIR estimator
satisfies the unbiasedness condition (2), OFIR estimator
minimizes the MSE (1), and Optimal UFIR (OUFIR) esti-
mator minimizes the MSE in the UFIR estimator by using
a window size Nopt.
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Figure 2 Basic operating diagrams of the optimal Kalman and
UFIR filters.

Section 1.2 presents the linear state-space model, for-
mulates the problem, and considers the batch p-shift UFIR
estimator along with the generalized NPG. Section 1.3
presents two forms of the p-shift iterative UFIR algo-
rithm. Section 1.4 discusses the estimation errors of the
UFIR estimators. Sections 1.5, 1.6, and 1.7 give the reader
a number of practical algorithms for filtering, smooth-
ing, and prediction. Section 1.8 considers an extension to
nonlinear systems. Section 1.9 discusses methods for the
determination of the optimal memory size Nopt. Finally,
section 1.10 concludes with some useful generalizations.

1.2 Linear model and batch UFIR estimator
Consider a class of discrete TV linear models represented
in state space with the state and observation equations as
follows:

xn = Fnxn−1 + Bnwn , (6)
zn = Hnxn + vn , (7)

where xn ∈ �K and zn ∈ �M are the state and observation
vectors, respectively. Here, Fn ∈ �K×K , Bn ∈ �K×P, and
Hn ∈ �M×K . Let us suppose that the state noise vector
wn ∈ �P and measurement noise vector vn ∈ �M have
zero mean white Gaussian components, E{wn} = 0 and
E{vn} = 0. We also assume that these vectors are mutually
uncorrelated, E{wivTj } = 0, for all i and j, and have the
following covariances:

Qn = E{wnwT
n } , (8)

Rn = E{vnvTn } , (9)

whereQn and Rn may be unknown to the engineer.
Now suppose that the p-shift estimatea x̂n+p|n of xn is

provided at time n + p with the UFIR estimator proposed
in [19,20]. We would like to modify this estimator and
review engineering algorithms for different kinds of fil-
tering, q-lag smoothing, and p-step prediction. We also
wish to estimate the estimation errors and generalize the
properties to facilitate a comparison with the OFIR and
Kalman algorithms.

1.2.1 Time-variant models
In convolution-based filtering (3), we suppose that mea-
surements zn are available on a time horizon of N points
(memoryb), from time m = n − N + 1 to time n, that
the estimator is causal, and that m � 0. In order to
find x̂n+p in state space, the batch p-shift UFIR estima-
tor [8,20] can be applied. For TVmodels, the p-shift UFIR
estimator was derived in [8], assuming that the negative
shift p is no smaller than −N + 1. Below, we modify
this estimator for arbitrary p, which is needed for one of
the smoother forms.
Let p = −N + 1 and consider the estimate (eq. (21)) of

[19]) at the initial pointm that gives us

x̂m = H−1
n,mZn,m , (10)

where H−1
n,m = (HT

n,mHn,m)−1HT
n,m is the generalized left

inverse, and

Hn,m = H̄n,mFn,m , (11)

Zn,m =
[
zTn zTn−1 . . . zTm

]T
, (12)

Fn,m = [Fm+1T
n,0 Fm+1T

n,1 . . . FTm+1 I︸ ︷︷ ︸
n−m+1

]T , (13)

H̄n,m = diag
(
Hn Hn−1 . . . Hm︸ ︷︷ ︸

n−m+1

)
, (14)

F r−g
r,h =

g∏
i=h

Fr−i = Fr−hFr−h−1 . . .Fr−g . (15)

One can notice that (10) is reminiscent of the familiar
OLS or BLUE, although the matrices are different.
To provide the estimate for any p, we find the state

transition matrix Bn,m(N , p) by writing (10) as x̂n+p|n =
Bn,m(N , p)x̂m|n. By combining the forward-time and
backward-time solutions [26], Bn,m(p) � Bn,m(N , p)
becomes

Bn,m(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fm+1
n+p,0 =

N−2+p∏
i=0

Fn+p−i , p > N1

I , p = N1 .(
Fn+p+1
m,0

)−1 =
(|p|−N∏

i=0
Fm−i

)−1

, p < N1

(16)
where N1 = −N + 1. The most general batch form of the
p-shift UFIR estimator for TV models is thus

x̂n+p = An,m(p)Zn,m , (17a)

= Bn,m(p)H−1
n,mZn,m , (17b)

where An,m(p) is the UFIR estimator gain; and p
can be arbitrary, −∞ � p � ∞. In the case of
−N + 1 < p < 0, one may also use a particular form of
(17b) shown in [19], (21) with Bn,m(p) = Fm+1

n+p,0.
If we now observe that the filter estimate with p = 0 is

x̂n = Fm+1
n,0 H−1

n,mZn,m , (18)
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then (17b) can alternatively be written as

x̂n+p = Bn,m(p)(Fm+1
n,0 )−1x̂n . (19)

This suggests that prediction and smoothing can be
organized based on the filtering estimate (18) if we use an
auxiliary p-shift gain matrix. We will show below that (19)
plays an important part in the design of UFIR algorithms.

1.2.2 Time-invariant models
In the special TI case, we have Bn,m(p) = Fn−m+p =
FN−1+p and the estimator becomes

x̂n+p = A(N , p)Zn,m (20a)

= FN−1+pH̄−1
N−1Zn,m , (20b)

where H̄−1
N−1 = (H̄T

N−1H̄N−1)
−1H̄T

N−1 and

H̄N−1 = ĤN−1F̄N−1 , (21)

F̄N−1 = (
FN−1T . . . FT I︸ ︷︷ ︸

N

)T , (22)

ĤN−1 = diag
(
H H . . . H︸ ︷︷ ︸

N

)
. (23)

Following (19), the estimate (20b) can alternatively be
written as follows:

x̂n+p = Fpx̂n , (24)

where the TI filter estimate is given by

x̂n = FN−1H̄−1
N−1Zn,m . (25)

A distinctive feature of both TV and TI batch UFIR esti-
mators is that they can be applied to models with noise
having arbitrary distributions and covariances. They can
also be represented in fast iterative Kalman-like forms
using an auxiliary matrix called the generalized NPG
(GNPG), which will be discussed next.

1.2.3 Generalized noise power gain
It follows from (5) that the NPG is a measure of howmuch
the measurement noise is suppressed at the FIR estima-
tor output. In state space, the NPG is defined via the MSE
[27], with the assumption that Bn = 0:

P̄n+p = E{(xn+p − x̂n+p)(. . . )
T }

= E{[ xn+p − An,m(p)Zn,m] [ . . . ]T }
= E{[ xn+p − An,m(p)Hn,mXn,m

− An,m(p)Vn,m] [ . . . ]T } , (26)

where

Xn,m =
[
xTn xTn−1 . . . xTm

]T
, (27)

Vn,m =
[
vTn vTn−1 . . . vTm

]T
. (28)

In view of the fact that the estimate is unbiased,
two first-two terms in the brackets of (26) are zero by
(2), which gives

P̄n+p = An,mE{Vn,mVT
n,m}AT

n,m , (29)

where E{Vn,mVT
n,m} is the measurement noise covari-

ance on the averaging interval. A simplification follows
instantly if one lets p = 0 and supposes that the model
is one-state and time-invariant one. That leads to the
estimation variance as follows:

σ 2
est = σ 2

v A(N)AT (N) , (30)

where the productA(N)AT (N) is known as the NPG [11].
More generally, the GNPG can thus be written as

Gn,m(p) = An,m(p)AT
n,m(p) (31)

to characterize the noise strength at the estimator output.
In particular, if the GNPG is an identity matrix, then no
noise reduction is provided by the estimator. If the GNPG
has components that are equal to zero, then the noise is
fully suppressed by the estimator.
By transforming (31) and utilizing (17b), (18), and (19),

one can find two equivalent GNPG forms corresponding
to TV models:

Gn,m(p) = Bn,m(p)(HT
n,mHn,m)−1BT

n,m(p) , (32a)

= Bn,m(p)(Fm+1
n,0 )−1Gn,m(Fm+1

n,0 )−TBT
n,m(p) ,

(32b)

where the GNPGGn,m = Gn,m(0) associated with filtering
is given as follows:

Gn,m = Fm+1
n,0 (HT

n,mHn,m)−1Fm+1
n,0

T . (33)

Similarly, using (20a), (24), and (25), the GNPG for TI
models can be represented as follows:

G(N , p) = FN−1+p(HT
N−1HN−1)

−1FN−1+pT , (34a)

= FpG(N)FpT , (34b)

where the GNPG G(N) = G(N , 0) for filtering is

G(N) = FN−1(HT
N−1HN−1)

−1FN−1T . (35)

Summarizing the generalizations provided for the batch
UFIR estimator, we notice again that this estimator
ignores noise statistics and initial errors in solving the
problems of smoothing, filtering, and prediction in a uni-
fied scheme. Its important applied property is that the
estimate becomes virtually optimal when N � 1 [20]. On
the other hand, large N leads to computational problems
owing to the large dimensions of the augmented matrices
and vectors. For fast computation, iterative Kalman-like
UFIR forms can be used, which will be discussed next.
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1.3 Iterative Kalman-like UFIR estimation
Similar to the recursive OLS [28], the UFIR estimator
can also be represented in a fast iterative form similar
to the Kalman filter as shown in [19,20]. The iterative
UFIR estimator requires that we start with initial values
that are available from the batch algorithm, which typi-
cally requires matrix computations on the order of K × K
dimensions, and then we iteratively update the estima-
tor output. The state estimate is taken when an iterative
variable reaches the current time n.

1.3.1 Time-varyingmodels
For TV models, the estimates (17b) and (19) suggest two
forms of iterative UFIR computation.

The direct form Following the derivations given in
Appendices I and II of [20], the direct form of the iterative
algorithm corresponding to (17b) is the following:

x̂l+p = Fl+px̂l+p−1 + Kl(zl − HlYl x̂l+p−1) , (36)

where Yl � Yl(p) = Ȳl(p)Fl+p and

Ȳl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F l+p+1
l,0 =

|p|−1∏
i=0

Fl−i , p < 0

I , p = 0 .(
F l−1
l+p,0

)−1 =
(
p−1∏
i=0

Fl+p−i

)−1

, p > 0

(37)

The bias correction gain Kl � Kl,m(p) is given here as

Kl = GlȲT
l H

T
l , (38)

where the GNPG Gl � Gl,m(p) is computed iteratively by

Gl = Fl+p(YT
l H

T
l HlYl + G−1

l−1)
−1FTl+p , (39a)

=[ ȲT
l H

T
l HlȲl + (Fl+pGl−1FTl+p)

−1]−1 , (39b)

where Ȳl = YlF−1
l+p. The initial values, x̂s+p and Gs, are

computed in short batch forms as

x̂s+p = Bs,m(p)H−1
s,mZs,m , (40)

Gs = Bs,m(p)(HT
s,mHs,m)−1BT

s,m(p) , (41)

where s = m + K − 1; and the iterative variable l ranges
from m + K to n. The estimator output is taken when
l = n. Since the UFIR estimate does not require initial
conditions, one may approximately set (40) to zero and let
(41) be the identity when N � 1. However, this simplifi-
cation may not always lead to good estimates for smaller
values of N.
The estimate at time n + p appears in (36) from an iter-

ative update beginning with time step m + K + p − 1. Its
flaw is that |p| past points before the N-point estimator
window are formally required for smoothing. This disad-
vantage is overcome in the two-stage form, which will be
discussed next.

The two-stage form The batch estimate (19) suggests
that another iterative UFIR form can be found if we first
set p = 0 in (36) and find the filter estimate:

x̂l = Flx̂l−1 + Kl(zl − HlFlx̂l−1) , (42)

in which

Kl = GlHT
l , (43)

Gl =[HT
l Hl + (FlGl−1FTl )−1]−1 , (44)

and the initial values are given as follows:

x̂s = Fm+1
s,0 H−1

s,mZs,m , (45)

Gs = Fm+1
s,0 (HT

s,mHs,m)−1Fm+1
s,0

T . (46)

Here, s = m + K − 1 and l ranges from m + K to n, as
before.
Given x̂n from (42) with l = n, the p-shift estimate can

then be computed utilizing (19) as

x̂n+p = Bn,m(p)(Fm+1
n,0 )−1x̂n . (47)

As can be seen, this second form available does not
require extra data points before the filtering window.
However, it requires two computational steps, unlike the
direct form (36).

1.3.2 Time-invariant models
Employing (20b) and (24), the p-shift estimate for TI mod-
els can also be found in two equivalent iterative forms.

The direct form If all of the model matrices are TI, we
have Yl = F1−p. Accordingly, (36) becomes

x̂l+p = Fx̂l+p−1 + Kl(zl − HF1−px̂l+p−1) (48)

and the bias correction gain (38) attains the form

Kl = GlF−pTHT , (49)

whereGl is computed iteratively as

Gl =[ F−pTHTHF−p + (FGl−1FT )−1]−1 . (50)

The initial values are computed as

x̂s+p = Fs−m+pH̄−1
s−mZs,m , (51)

Gs = Fs−m+p(HT
s−mHs−m)−1Fs−m+pT , (52)

where s = m + K − 1 and l ranges from m + K to n. The
desired state estimate is taken at l = n.

The two-stage form Provided the TI filtering estimate

x̂l = Fx̂l−1 + Kl(zl − HFx̂l−1) (53)

with

Kl = GlHT , (54)

Gl =[HT
l Hl + (FlGl−1FTl )−1]−1 , (55)
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and the initial conditions

x̂s = Fs−mH−1
s,mZs,m , (56)

Gs = Fs−m(HT
s,mHs,m)−1Fs−mT , (57)

where s = m + K − 1 and the iterative variable l ranges
fromm + K to n, the p-shift estimate can alternatively be
computed by (24) as follows:

x̂n+p = Fpx̂n . (58)

One may conclude that the algorithm of (53) and (58)
is very simple from a programming perspective. As was
shown in [8,19,20] and in many other studies, the UFIR
estimator is a strong rival to the Kalman filter if the noise
covariances are not known exactly.

1.4 Estimation errors
Next, we discuss errors in UFIR estimators assuming
white Gaussian noise. Given the instantaneous error

εn+p = xn+p − x̂n+p , (59)

where the estimate x̂n+p comes from either a TV or TI
model, the MSE Pn+p at time n + p can be defined as

Pn+p = E{εn+pε
T
n+p} . (60)

In spite of the fact that the UFIR estimator has
two equivalent forms (batch and iterative), the MSE
can rigorously be determined only via the batch form.
Finding closed analytical solutions for the MSE via
(19) and (25) implies a large mathematical burden
and is still a challenging problem. On the other
hand, a rigorous error computation may be unneces-
sary since estimation error covariances are not used
in the UFIR algorithms, and so reasonable approxima-
tions can serve us well in practical applications. Such
an approximation provided following [23] is given in the
Appendix.
The MSE upper bound (UB) PUB

n+p can be obtained
from an iterative computation of (114) for the general TV
model. Equation (114) implies that process noise covari-
ances are accumulated at each iteration. Therefore, the
predicted value from (114) is a bit larger than the actual
estimation error covariance for small N and significantly
larger for N � 1. For the same reason, the estimate of
(114) also diverges as p increases. The UB can thus be very
useful for filtering (p = 0) when N is not large and for
smoothing with small lags. In the case of prediction, the
future noise is neglected in (114) so it can serve as a tight
upper bound even for very large p.
The MSE lower bound (LB) can be found if we take into

consideration the fact that ifN � Nopt the UFIR estimator
order fits the system order. Therefore the system noise can

be neglected in (114) and the LB PLB
n+p can be found by

iterating
PLB
l+p = (I − KlHlȲl)Fl+pPLB

l+p−1F
T
l+p(. . . )

T + KlRlKT
l

(61)

until l reaches n. For TI models, (61) becomes

PLB
l+p = (I − KlHF−p)FPLB

l+p−1F
T (. . . )T + KlRlKT

l .
(62)

Equations (61) and (62) correspond to the direct estima-
tor forms of (36) and (48) respectively.
If one employs the two-stage forms of (47) and (58) and

the MSE LB for filtering (p = 0), this is defined using (61)
as follows:

PLB
l = (I − KlHl)FlPLB

l−1F
T
l (. . . )T + KlRlKT

l , (63)

then the p-shift LB for TV and TI models can be com-
puted, respectively, as follows:

PLB
n+p = Bn,m(p)Fm+1

n,0
−1PLB

n Fm+1
n,0

−TBT
n,m(p) , (64)

PLB
n+p = FpPLB

n FpT , (65)

where PLB
n is provided from (63) with l = n. Note that

the LB is associated with the NPG and serves well in the
three-sigma sense [27].

1.5 Filtering
Filtering is used when the state estimate is required at the
current time point n. It can also be projected to the future
(prediction), or smoothed by combining several filtering
estimates from the past. By letting p = 0 in (36), the UFIR
filtering estimate becomes

x̂l = Flx̂l−1 + Kl(zl − HlFlx̂l−1) , (66)

where the bias correction gain is

Kl = GlHT
l (67)

and the GNPG Gl is computed iteratively by

Gl =
[
HT

l Hl + (FlGl−1FTl )−1
]−1

. (68)

The initial values for (66) and (67) are respectively speci-
fied in short batch forms as follows:

x̂s = Fm+1
s,0 H−1

s,mZs,m , (69)

Gs = Fm+1
s,0 (HT

s,mHs,m)−1Fm+1
s,0

T , (70)

where s = m + K − 1, Fm+1
s,0 = ∏K−2

i=0 Fs−i, the iteration
index l ranges from m + K to n, and the estimate of the
current state is taken when l = n.
The MSE UB can be found for (66) by setting p = 0 in

(114), which gives

PUB
l = (I − KlHl)P−

l (I − KlHl)
T + KlRlKT

l , (71)
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where the predicted (a priori) estimate covariance P−
l �

Pl|l−1 is given by

P−
l = FlPUB

l−1F
T
l + BlQlBT

l (72)

with the initial value PLB
l−1 specified as for the Kalman

filter.
The LB appears from (72) by neglecting Ql, which gives

PLB
l = (I−KlHl)FlPLB

l−1F
T
l (I−KlHl)

T +KlRlKT
l , (73)

where the initial value PLB
l−1 can also be specified as in the

Kalman filter.
It can easily be shown that (71) is the Kalman a pos-

teriori estimate covariance, if we substitute Kl with the
Kalman gain. However, unlike the Kalman filter, (66) can
be applied to deterministic models. If that is the case
(Rl = 0 andQl = 0), then the estimation error is zero.
Several particular filtering solutions can now be dis-

cussed, which will be done in the following sections.

1.5.1 Fixed-horizon filtering
The fixed-horizon (fixed memory size N) iterative UFIR
filtering algorithm is summarized for TV models in
Table 1.
It is implied that measurements are available beginning

at time index 0, and the time index n starts at N − 1. The
initial values x̂s and Gs are computed using (69) and (70),
respectively. For each n, the iterative variable l increments
from m + K to n, and the desired estimate is taken when
l = n. Note that the estimation error computed by (71)
is minimal if one sets N = Nopt. A simplification for the
TI model is straightforward. One must just let all of the
matrices be TI in Table 1.

1.5.2 Full-horizon filtering
Full-horizon filtering can be applied to highly stable or
highly predictable systems such as those in astronomy,
precise clocks and oscillators [27], and others associ-
ated with near deterministic state-space models. The
full-horizon TV algorithm is given in Table 2.
This algorithm is the most simple. It requires only the

number of the states K since the filter memory window

Table 1 Fixed-horizon TV UFIR filtering algorithm

Stage

Given: K, N,m = n − N + 1 � 0, s = m + K − 1,

m + K � l � n .

Set: x̂s by (69) and Gs by (70) .

Update: Gl =[HT
l Hl + (FlGl−1FTl )

−1]−1 ,

x̂l = Flx̂l−1 + GlHT
l (zl − HlFlx̂l−1) .

Instruction: Use the estimate when l = n.

Table 2 Full-horizon TV UFIR filtering algorithm

Stage

Given: K, n � K .

Set: x̂K−1 by (69) and GK−1 by (70) form = 0.

Update: Gn =[HT
nHn + (FnGn−1FTn)

−1]−1 ,

x̂n = Fnx̂n−1 + GnHT
n(zn − HnFnx̂n−1) .

size changes with time; so,N = n+1. No additional infor-
mation is needed, and the algorithm thus has extremely
desirable engineering features. A natural extension of the
TV algorithm (Table 2) to the TI case is provided by
removing the time dependencies from the matrices.
The MSE UB and LB can be computed by (71) and (73)

if we substitute l with n. Note that the full-horizon UFIR
filter may demonstrate substantial decrease in the output
noise as n becomes large.

1.5.3 Tricky-horizon filtering
The tricky-horizon (time-variant memory size N)
algorithm can be used in adaptive filtering [29,30] and
whenever some reference information about the process
behavior is available. It implies an individual Nopt at
each time index n. Such flexibility allows better system
tracking with minimum residuals [19]. To implement
tricky-horizon filtering, the algorithm (Table 1) can be
used if we allow N to be variable.

1.6 Smoothing
Smoothing is commonly associated with a lag q > 0 relat-
ing the estimate at a given time index to measurements up
to and including some past index. By combining ‘future’
and past estimates, it becomes possible to obtain bet-
ter noise reduction for many practical applications. Note
that an infinity of smoother solutions exists [31]. We will
discuss two basic schemes for UFIR smoothers in this
section.

The direct form By letting q = −p > 0 in (36), the
smoothing estimate at n − q can be found iteratively as
follows [23]:

x̂l−q = Fl−qx̂l−q−1 + Kl
(
zl − HlYlx̂l−q−1

)
, (74)

where Yl = F l−q
l,0 =

q∏
i=0

Fl−i and l ranges from m + K to

n. The estimate x̂n−q is traditionally taken at l = n in each
iterative cycle.
The bias correction gain can be computed here using

the following:

Kl = Ȳ−1
l GlHT

l ,
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where Ȳl = YlF−1
l−q and Gl is given by (39b). The initial

values x̂s and Gl can be defined at s = m + K − 1 as,
respectively,

x̂s = B̄s,m(q)H−1
s,mZs,m , (75)

Gs = B̄s,m(q)(HT
s,mHs,m)−1B̄T

s,m(q , (76)

where B̄s,m(q) � B̄s,m(K , q) is given by

B̄n,m(N , q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−2−q∏
i=0

Fn−q−i , q < N − 1 ,

I , q = N − 1 ,(
q−N∏
i=1

Fm−i

)−1

, q > N − 1 .

(77)

Following (114), the MSE UB for (74) can be found to be
PUB
l−q = (I − KlHlȲl)P−

l−q(. . . )
T + KlRlKT

l + KlHlQ̃lHT
l K

T
l

(78)

where P−
l−q is given by (72) and

Q̃l = Q̆l + BlQlBT
l , (79)

Q̆l =
q∏

i=2
Yl(q − i)Bl−q−1+iQl−q−1+iBT

l−q−1+iYT
l (q − i) .

(80)

The MSE LB is obtained by neglecting Qn as
PLB
l−q = (I − KlHlȲl)Fl−q−1PLB

l−q−1F
T
l−q−1(. . . )

T + KlRlKT
l .

(81)

The two-stage form Provided the filtering estimate (66),
the second form for the TV and TI UFIR smoothers
become by (19) and (24) respectively

x̂n−q = B̄n,m(q)(Fm+1
n,0 )−1x̂n , (82)

x̂n−q = F−qx̂n , (83)

where B̄n,m(q) � B̄n,m(N , q) is given by (77).
The relevant estimation error covariance LBs become,

respectively,

PLB
n−q = B̄n,m(q)Fm+1

n,0
−1PLB

n Fm+1
n,0

−T B̄T
n,m(q) , (84)

PLB
n−q = F−qPLB

n F−qT , (85)

wherePLB
n is provided by (63) at l = n. As in filtering, here,

the LB can serve well in the three-sigma sense [27].

1.6.1 Fixed-interval smoothing
Among various smoothing problems, the fixed-interval
one is basic and often associated with smoothing
[25,32-34]. The fixed-interval UFIR smoother is intended
to provide an estimate x̂n−q|n with any lag 0 < q < M
utilizing measurement on a fixed interval of M points,
from time index n − M + 1 to n. Although M may not
be equal to Nopt, UFIR smoothing is most efficient when

M = Nopt. In fact, If M > Nopt, smoothing is inefficient
when Nopt < q < M, because q exceeds the length of the
averaging interval and smoothing virtually provides the
backward prediction, which has an estimation error larger
than in filtering. On the other hand, Nopt should not be
larger thanM, becauseM is commonly associated with an
available database.
Provided M = Nopt, two traditional forms can be

suggested for fixed-interval UFIR smoothing.

The direct form This form implements (74) as listed in
Table 3. A special peculiarity is that n starts atN−1+q in
order for the smoother to process only nonnegative time
indices. For TI models, the modification of this algorithm
is straightforward.

The two-stage form The two-stage form implementing
(82) can be used as shown in Table 4. To apply this
algorithm to TImodels, onemust compute x̂n−q = F−qx̂n.
A common feature of this algorithm is that two stages
are required: first filtering must be provided to get the
estimate at time n, then the obtained filter estimate is
projected to time n − q.

1.6.2 Fixed-lag smoothing
Fixed-lag smoothing is commonly used for denoising if a
time delay of q points is allowed [31,32,35,36]. Two basic
fixed-lag algorithms can be designed based on the UFIR
technique.

Fixed-lag OUFIR smoothing Provided Nopt, the
fixed lag q can be specified based on the process
properties to obtain the best denoising. Intuition
indicates that smoothing is best if the estima-
tion time is the center of the observation interval.
This holds true if the polynomial describing the process

Table 3 Direct fixed-interval TV OUFIR smoothing
algorithm

Stage

Given: K, N = constant, q,m = n − N + 1 � 0,

s = m + K − 1,m + K � l � n .

Set: x̂s by (75) and Gs by (76) .

Update: Gl =[HT
l Hl + (FlGl−1FTl )

−1]−1 ,

Kl =
(
q−1∏
i=0

Fl−i

)−1

GlHT
l ,

x̂l−q = Fl−qx̂l−q−1 + Kl
(
zl − Hl

q∏
i=0

Fl−ix̂l−q−1
)
.

Instruction: The algorithm is valid for any n � N − 1 + q. Use the

smoothed estimate when l = n. The fixed interval

ofM = N = Nopt points is from time indexm to n.
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Table 4 Two-stage fixed-interval TV OUFIR smoothing
algorithm

Stage

Given: K, N = constant, q,m = n − N + 1 � 0,

s = m + K − 1,m + K � l � n .

Set: x̂s by (75) and Gs by (76) .

Update: Gl = HT
l Hl + (FlGl−1FTl )

−1]−1 ,

x̂l = Flx̂l−1 + GlHT
l (zl − HlFlx̂l−1) .

Use x̂n when l = n and compute

x̂n−q = B̄n,m(q)(Fm+1
n,0 )−1x̂n .

Instruction: This algorithm is valid for any n � N − 1. The fixed

interval of M = N = Nopt points is from time

indexm to n.

behavior on the observation interval is of odd degree.
Otherwise, if the degree is even, denoising may be better
with shorter lags as shown in Figure eight in [17]. The
fixed-lag OUFIR smoothing algorithm is listed in Table 4
if one setsN = Nopt and q = constant. Its extension to the
TI case can be provided by replacing the x̂n−q equation in
Table 4 with x̂n−q = F−qx̂n.

Fixed-lag full-horizon UFIR smoothing This approach
implies that the filter window includes all the available
data, but the lag is fixed. Examples can be found in
highly predictable or quasi deterministic slow dynamics,
for which the estimates at time n and n − q do not signifi-
cantly vary from each other in terms of bias. The relevant
algorithm for TV models is listed in Table 5. Its exten-
sion to the TI case can be obtained by replacing the x̂n−q
equation in Table 5 with x̂n−q as x̂n−q = F−qx̂n.

1.6.3 Fixed-point smoothing
Fixed-point smoothing implies that measurements are
available from time index 0 up to the current time
point n, but the estimate is required at some fixed past

Table 5 Fixed-lag full-horizon TV UFIR smoothing
algorithm

Stage

Given: K, q = constant, n � K .

Set: x̂K−1 by (75) and GK−1 by (76) form = 0.

Update: Gn =[HT
nHn + (FnGn−1FTn)

−1]−1 ,

x̂n = Fnx̂n−1 + GnHT
n(zn − HnFnx̂n−1) .

Compute x̂n−q for n � q as

x̂n−q = B̄n,m(q)(Fm+1
n,0 )−1x̂n .

point 0 � v < n, where v is a constant [32,37]. The time-
varying lag is thus q = n − v. In such a formulation, the
UFIR smoother is always full-horizon as shown by the TV
algorithm in Table 6. By replacing the x̂n−q equation with
x̂n−q = F−qx̂n, it becomes applicable for TI models. Prob-
ably the most interesting application for such algorithms
is initial state estimation with v = 0. Note that the same
problem can be solved using the fixed-interval smoother
(Table 4) if we set the initial interval point to zero.

1.7 Prediction
State prediction plays a key role in many applications.
The one-step predictor is fundamental for digital feedback
control systems [38]. It is also commonly provided when
measurements are unavailable at some points [39] and
when estimates of long-term future behavior are required
[40]. Predictive estimation is necessary for global posi-
tioning system (GPS)-based applications when the GPS
receiver temporarily fails or when a signal is temporar-
ily unavailable [27]. Predictive estimation is required for
holdover in digital communication networks [41], for
maintaining normal functioning of certain systems dur-
ing down time [42,43], and for astronomy and climate
forecasting. The predictor goal is thus to compensate for
unavailable information. In many cases, linear predictors
do perform better than nonlinear ones [44].
To develop UFIR prediction, two algorithms [27] can

be used as shown in Figure 3. It is supposed that mea-
surements at each point are either available (◦) or not
(×). Utilizing Nopt available points from the immediate
past, the estimator provides a one-step ahead projec-
tion (•) from each point of this interval: from point 1
to 2a, from 2 to 3a, etc. At point 4, the measurement is
unavailable. Therefore, the predicted value 4a is utilized
at point 4. Further predictor equations can be organized
either with fixed steps or variable steps in the direct
and two-stage forms. It has been shown in [27] that
the variable-step approach is more precise in the short
term, and that there is not a large difference between the
estimates in the long term.

Table 6 Fixed-point TV UFIR smoothing algorithm

Stage

Given: K, v = constant � 0, q = n − v, n � K .

Set: x̂K−1 by (75) and GK−1 by (76) form = 0.

Update: Gn =[HT
nHn + (FnGn−1FTn)

−1]−1 ,

x̂n = Fnx̂n−1 + GnHT
n(zn − HnFnx̂n−1) .

Compute x̂n−q for n > v as follows:

x̂n−q = B̄n,m(q)(Fm+1
n,0 )−1x̂n .
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Figure 3 Basic UFIR prediction algorithms: (a) fixed-step and (b) variable-step, after [27].

1.7.1 Fixed-step prediction
In the fixed-step case shown in Figure 3a, p is often
unity, but in general may be arbitrary (p > 0). With
p = 1, prediction can permanently substitute for unavail-
able measurements with predicted values.

The direct form The one-step predictor appears from
(36) by setting p = 1:

x̂l+1 = Fl+1x̂l + GlF−T
l+1H

T
l (zl − Hlx̂l) , (86)

whereGl is computed iteratively by

Gl = Fl+1(HT
l Hl + G−1

l−1)
−1FTl+1 (87)

and the initial values are determined as

x̂s+1 = Fm+1
s+1,0H−1

s,mZs,m , (88)

Gs = Fm+1
s+1,0(H

T
s,mHs,m)−1Fm+1

s+1,0
T , (89)

whereFm+1
s+1,0 = ∏K−1

i=0 Fs+1−i, s = m+K − 1, and l ranges
from m + K to n. The desired estimate is obtained when
l = n.
For TI models, the one-step predictor becomes:

x̂l+1 = Fx̂l + GlF−THT (zl − Hx̂l) , (90)

Gl = F(HTH + G−1
l−1)

−1FT , (91)

x̂s+1 = FKH−1
s,mZs,m , (92)

Gs = FK (HT
s,mHs,m)−1FKT . (93)

Both predictors can be implemented in the algorithm
(Figure 3a) to satisfy the following condition: if zn is

unavailable at time n, then set zn = Hnx̂n for a TV model
and zn = Hx̂n for a TI one.
The two-stage form By (47) and (58), the second form of
the one-step predictor for TV and TImodels, respectively,
are the following:

x̂n+1 = Fn+1x̂n , (94)
x̂n+1 = Fx̂n , (95)

where x̂n is the filter estimate. This is themost widely used
prediction scheme.

1.7.2 Variable-step prediction
In the variable-step case illustrated in Figure 3b, the pre-
dicted estimates still compensate for unavailable measure-
ments (points 4, 5, 6), but they are not involved to produce
predictions, which is unlike the case of Figure 3a. Instead,
p continues to increment until the measurement becomes
available. At point 7, all measured and predicted values on
a horizon ofNopt past points are used to produce a predic-
tion at point 8a. There are no other differences between
fixed-step and variable-step prediction, and the estimates
(36), (47), (48), and (58) can be used in a straightforward
manner, along with the relevant error bounds.

1.8 Nonlinear models and extended filtering
For many applications, nonlinear systems can be modeled
in additive white Gaussian noise environments with the
state and observation equations as follows:

xn = fn(xn−1) + Bnwn , (96)
zn = hn(xn) + vn , (97)
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where fn(xn−1) and hn(xn) are time-varying nonlinear
vector functions and all other notations are given in (6)
and (7). If fn(xn−1) and hn(xn) are smooth enough, then
the first-order Taylor series expansion is often applied
to make the model approximately linear between two
neighboring points.
An expansion of fn(xn−1) around x̂n−1 and hn(xn)

around the prior estimate x̂−
n = x̂n|n−1 leads to

fn(xn−1) ∼= fn(x̂n−1) + Fnεn−1 , (98)
hn(xn) ∼= hn(x̂−

n ) + Hnε
−
n , (99)

where Fn = ∂fn
∂x

∣∣∣
x̂n−1

and Hn = ∂hn
∂x

∣∣∣
x̂−
n
are Jacobians and

ε−
n = xn − x̂−

n is the prior estimation error. Unbiasedness
implies E{εn} = 0, and a first-order approximation of the
expectation of fn(xn−1) leads to the prior estimate

x̂−
n = f̄n(xn−1) = fn(x̂n−1) . (100)

The expectation of the prior error can be written as
E{ε−

n } = E{xn − x̂−
n } = E{Fnεn−1 + Bnwn} = 0. A

first-order approximation of the average of hn(xn) is

h̄n(xn) = hn(x̂−
n ) . (101)

With (96) and (97) linearized in this way, UFIR filtering
can be applied as shown below.

1.8.1 Iterative EFIR filtering
Following the Kalman filter extension [45], the extended
unbiased FIR (EUFIR) filter estimate is shown in [46] to be

x̂l = x̂−
l + Kl[ zl − hl(x̂−

l )] , (102)

where the prior estimate is x̂−
n = fn(x̂n−1), the bias cor-

rection gain is Kl = GlHT
l , and Gl is computed iteratively

as

Gl =[HT
l Hl + (FlGl−1FTl )−1]−1 . (103)

The iterative EUFIR filtering algorithm is given in Table 7.
As can be seen, it has the same structure as Table 1, except

Table 7 EUFIR filtering algorithm for TVmodels

Stage

Given: K, N,m = n − N + 1,

s = m + K − 1,m + K � l � n.

Set: x̂s by (69) and Gs by (70)

Update: Fl by (100),Hl by (101),

Gl =[HT
l Hl + (FlGl−1FTl )

−1]−1,

Kl = GlHT
l ,

x̂l = fl(x̂l−1) + Kl[ zl − hl(x̂
−
l )] .

Remark: Use the estimate when l = n.

for the nonlinear functions in the estimate. Although the
EUFIR algorithm traditionally does not use noise statistics
or initial error statistics, the estimation error covariance
may be required to characterize the performance. An
analysis of error covariances is given in [46]. Note that,
in contrast to the first-order expansion, (98) and (99), the
second-order expansion involves noise statistics. How-
ever, as in the extended Kalman filter [28], the higher
order expansion typically does not lead to a definitive
advantage [46].

1.9 Memory for OUFIR estimators
The window size N plays an important role in UFIR esti-
mators. If N < Nopt, denoising appears to be inefficient:
the random error dominates, although bias is negligible. If
N > Nopt, the random error is small, but bias affects the
estimate.

Estimation of Nopt is still a challenging mathematical
problem that requires finding the derivative of the esti-
mate with respect to the convolution length N. Even so,
there are several available approaches. For low-degree
polynomial models, Nopt was found analytically in [47]. A
more general approach employing the bandlimited prop-
erty of signals was developed in [20]. Finally, an efficient
algorithm exploiting measurements was recently pro-
posed in [48]. In any case, it is much simpler to estimate a
scalar Nopt, rather than accurately estimating matricesQn
and Rn as is required in the Kalman filter.

1.9.1 Bandlimited signals
In real applications, a measured signal is causal and
bandlimited with some maximum frequency W. By
the Shannon theorem, the maximum sampling inter-
val that prevents aliasing is T = 1/2W . If mea-
surements are obtained with sampling interval T, then
only N = K points are available for averaging by
the K-state FIR estimator. If we use larger N, then
the estimate will be biased. In order to avoid bias,
we would need the model to be represented with a
larger number of states, and such a model may not
be acceptable or available.
Typically, measurements are provided at time steps τ <

T or even τ � T and Nopt can be calculated as follows
[20]:

Nopt = ⌊
(2Wτ)−1 + 1

⌋
, (104)

where 	x
 means the maximum integer that is less
than or equal to x. A simple analysis shows that if
N > Nopt, aliasing causes a bias. If N < Nopt,
noise reduction is inefficient.

1.9.2 Known referencemodel
If the reference model for xn is known, then the full-
horizon UFIR filter (Table 2) with window size N = n+ 1
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can be applied to produce the estimate x̂n � x̂n|n via mea-
surements taken from time index 0 to n. Following (60),
the N-variant MSE Pn can thus be defined by

Pn = E{εnεTn }, (105)

where εn = xn − x̂n. The MSE (105) will be minimal if we
minimize it to obtain nopt and let Nopt = nopt+1. In doing
so, one can either minimize the trace tr(Pn) if Nopt needs
to be applied to all of the states, or the (kk)th component
P(kk)n of Pn corresponding to the kth state, respectively,

Nopt = argmin
n

(trPn) + 1 , (106)

Nkopt = argmin
n

(P(kk)n) + 1 . (107)

It has been shown in [48] that by increasing n, the first
minimum in both (106) and (107) corresponds to Nopt.
The problem, however, arises when the reference model
xn is unknown, as it usually is.

1.9.3 Unknown referencemodel
The case of unknown model for xn is typical. In this case,
we estimate Nopt via the mean square value (MSV):

Vn = E{(zn − Hx̂n)(zn − Hx̂n)T } , (108)

in which zn and x̂n are both known. It has been shown in
[48] that the estimate N̂opt of Nopt can be found via (108)
to minimize the estimation error of all of the states or the
kth one as, respectively,

N̂opt ∼= argmin
n

(
∂

∂n
trVn

)
+ 1 , (109)

N̂kopt ∼= argmin
n

(
∂

∂n
V(kk)n

)
+ 1 , (110)

where V(kk)n is the (kk)th component of Vn. The mini-
mization is performed by increasing n, starting withK−1,
until the first minimum. To avoid ambiguities when min-
imizing these functions, the number of points used in the
expected value must be sufficiently large, and smoothing
of the objective function may be desirable.

1.10 Some generalizations and conclusions
Based on extensive investigations provided by many
authors, now we provide some generalizations; compare
the trade-off between the OUFIR, OFIR, and Kalman
filters; and summarize the results in Table 8.

1.10.1 OUFIR vs. OFIR
Beginning with the early limited memory filter of
Jazwinski [5], OFIR filtering has been under develop-
ment for several decades. In control theory, fundamental
progress was achieved by Kwon et al. and his followers
[7,35,49-53]. In signal processing, solutions were found
by Shmaliy et al. [8,20,27]. It was shown in [52] that

different kinds of limited memory filters [5,54] are equiv-
alent to the OFIR one. The most serious flaws of this
technique are high computational complexity and high
memory consumption. With such poor engineering fea-
tures, OFIR estimators still have not gained currency and
their development remains mostly at a theoretical level.
On the other hand, OFIR estimators do not result

in estimation errors that are substantially smaller than
OUFIR ones, especially when N � 1. The rule of thumb
here is as shown in Figure 4: The error difference between
the OFIR and OUFIR estimates diminishes as N increases.
Note that the boundary value 10 . . . 30 in Figure 4 is flex-
ible and depends on the model. However, recalling that
FIR filters require a large order (window size N � 1)
to guarantee good performance, we obtain the following
conclusion:
Fast- and low-complexity iterative OUFIR algorithms

that ignore noise statistics and initial error statistics are
practically superior to the best-known OFIR ones.
Note that this deduction often holds even if N is small.

But in some applications, OFIR filters can be more appro-
priate because of their better accuracy.

1.10.2 OUFIR vs. Kalman filter
The well-known features of the Kalman filter are opti-
mality, fast computation, and low memory consumption.
However, the Kalman filter requires a priori initial con-
dition and noise statistics, and this is recognized as the
most annoying flaw of the Kalman filter. Because of
this requirement, the Kalman filter is suboptimal for all
practical purposes. Moreover, its optimality is guaran-
teed only if the noise sources are white, which is not
the case for many applications. Finally, the Kalman filter
applies only to stochastic models.
In turn, the iterative OUFIR filter ignores noise

statistics (except for the zero-mean assumption), allows

Figure 4 Effect of the estimator window size N on the error
difference between OUFIR and OFIR estimators. Threshold A
indicates where the difference becomes visually indistinguishable.
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Table 8 Critical evaluationof the Kalman, OFIR, andOUFIR filters

Kalman Batch OFIR Iterative OFIR Batch OUFIR Iterative OUFIR

[6] [7,8,20] [7,49] [3,4] [19,20]

Optimality: Optimal Optimal Optimal Unbiased Unbiased

Initial conditions: A priori A posteriori A posteriori Ignored A posteriori

Noise statistics: Required Required Required Ignored Ignored

Noise characteristics: White Arbitrary White Arbitrary Arbitrary

System model: Stochastic Arbitrary Arbitrary Arbitrary Arbitrary

Filter memory (points): 2 Nopt Nopt Nopt Nopt

Stability: May diverge BIBO BIBO BIBO BIBO

Operation: Fast Slow Medium Medium Approximately Nopt times slower than

Kalman; Fast with parallel computing

Memory consumption: Small Large Medium Large Approximately Nopt times more than

Kalman

Computational complexity: Low High Medium Medium Low

the noise to have any distribution and covariance,
exhibits BIBO stability, and serves for both stochas-
tic and deterministic models. However, it does not
guarantee optimality, especially when Nopt is small. It
requires (Nopt − 1)-times more computational time
and needs about Nopt times more memory than the
Kalman filter.

The Kalman filter is thus best when the noise is white
and its statistics are exactly known. Otherwise, one may
follow the rule of thumb sketched in Figure 5. As can
be seen, it is only within a narrow range around the
actual noise covariances that the OUFIR filter falls a bit
short of the Kalman filter. Otherwise, the OUFIR fil-
ter demonstrates smaller errors. The Kalman filter is
also the best filter under the ideal conditions. Other-
wise, its error grows more rapidly than the OUFIR,
meaning that the latter is more robust in real-world
applications (Figure 6).

Note that the error difference � between the two fil-
ters decreases with increasing Nopt. These observations
by diverse authors who have investigated uncertainties,
different kinds of noise sources, and other irregular per-
turbations result in the following important inference:

Under the real-world operating conditions, and when
noise statistics and initial error statistics are not known
exactly, the OUFIR estimator is able to outperform the
Kalman filter even if Nopt is not large.

Simulation results confirming these observations can be
found in [19,23,46].

2 Conclusions
The UFIR algorithms discussed in this paper cover many
applied problems associated with filtering, smoothing,
and prediction of discrete-time state-space models. The
most general conclusions one may arrive at by analyzing
these estimators are the following: 1) UFIR algorithms are
able to provide nice suboptimal estimates that are accept-
able for many applications; 2) The optimal window size
Nopt can easily be estimated experimentally; 3) The extra
time required by theUFIR iterations can be alleviatedwith
parallel computing; and 4) The extra memory required by
the UFIR estimators is not a problem for modern comput-
ers. So, we conclude that UFIR algorithms are strong rivals

Figure 5 Effect of errors in the noise covariances of the Kalman
and OUFIR estimates. The value � depends on N and becomes
insignificant when Nopt � 1.
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Figure 6 Effect of operating conditions on the Kalman and
OUFIR estimates. The value � depends on N and becomes
insignificant when Nopt � 1.

to the Kalman filter for real-world applications. The iter-
ative UFIR estimator commonly outperforms the OFIR
one even if Nopt is not large, and it is able to outperform
the Kalman filter under real-world operating conditions
and when the noise statistics are not known exactly. That
makes UFIR algorithms highly attractive for applications.
We see the followingmain trends in further developments
of FIR estimators. Optimal FIR filtering and smoothing
strongly require fast Kalman-like algorithms which are
similar to those developed for UFIR estimators and con-
sidered in this paper. Such algorithms are required for
smallNopt. In turn, iterative UFIR algorithms need further
optimization and robustification in non-Gaussian envi-
ronments and under the uncertainties. Special attention
should also be paid to fast algorithms for the determina-
tion ofNopt. Provided suchmodifications, one may expect
new efficient FIR solutions.

Endnotes
ax̂n+p|n means the estimate at time n + p given

measurements up to and including time n. Here, p = 0
corresponds to filtering, p > 0 corresponds to p-step
prediction, and p < 0 corresponds to q-lag smoothing,
where q = −p. We simplify notation by using
x̂n+p � x̂n+p|n.

b In different applications, the FIR estimator memory is
also called the receding horizon [53], sliding window [55],
averaging interval [56], etc.

Appendix
The covariance upper bound for TVmodels
Consider the MSE Pl+p = E{εl+pε

T
l+p} in which we

substitute the estimate x̂n+p with (36),

Pl+p = E{[ Fl+pεl+p−1 + Bl+pwl+p (111)

− Kl(zl − HlYlx̂l+p−1)] [ . . . ]T } .

To find an iterative computation of (111), measurement
zl needs to be expressed via xl+p−1. That can be done by
combining the forward and backward solutions as follows:

p > 1, xv : zl = HlYlxv + vl

... − Hl

p−2∑
j=0

Yl(p − j)Bv−jwv−j

p = 2, xl+1 : zl = HlF−1
l+1(xl+1 − Bl+1wl+1) + vl

p = 1, xl : zl = Hlxl + vl
p = 0, xl−1 : zl = Hl(Flxl−1 + Blwl) + vl

p = −1, xl−2 : zl = HlFl(Fl−1xl−2 + Bl−1wl−1)

... + HlBlwl + vl
p < 0, xv : zl = HlYlxv + vl + HlBlwl

+ Hl

|p|∑
j=1

Yl(p + j)Bv+jwv+j ,

where v = l + p − 1. Then deductive reasoning gives us

zl = Hl(Ylxl+p−1 + Ml) + vl , (112)

whereMl � Ml(p) depends on p as

Ml =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|p|∑
j=1

Yl(p + j)Bl+p−1+jwl+p−1+j + Blwl , p < 0 ,

Blwl , p = 0 ,
0 , p = 1 ,

−
p−2∑
j=0

Yl(p − j)Bl+p−1−jwl+p−1−j , p > 1

By (112), the MSE becomes

Pl+p = E{[ (Fl+p − KlHlYl)εl+p−1 + Bl+pwl+p

− Kl(HlMl + vl)] [ . . . ]T } . (113)

Taking into account that Pl+p−1 = E{εl+p−1ε
T
l+p−1},

Yl(p + 1) = Ȳl(p) and analyzing products of the noise
terms leads to the following:

Pl+p = (I − KlHlȲl)Fl+pPl+p−1FTl+p(. . . )
T

+ Bl+pQl+pBT
l+p + KlRT

l K
T
l

+ KlHlE{MlMT
l }HT

l K
T
l − Bl+pE{wl+pMT

l }HT
l K

T
l+p

− Kl+pHlE{MlwT
l+p}BT

l+p

= (I − KlHlȲl)Fl+pPl+p−1FTl+p(. . . )
T

+ Bl+pQl+pBT
l+p + KlRlKT

l

− Q̂l+pHT
l K

T
l − KlHlQ̂l+p + KlHlQ̄lHT

l K
T
l , (114)

where

Q̂l+p =
{
Bl+pQl+pBT

l+pȲT
l , p � 0 ,

0 , p > 0
(115)
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and in view of the fact that future noise is unknown and is
commonly estimated as 0, Q̄l � Q̄l(p) can be written as

Q̄l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|p|∑
j=2

Yl(p + j)Bl+p−1+jQl+p−1+j

×BT
l+p−1+jYT

l (p + j) + BlQlBT
l , p � 0 ,

0 , p > 0 .
(116)
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