Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

Exploring super-resolution implementations

across multiple platforms

Brian Leung and Seda Ogrenci Memik’

Abstract

The performance of many applications, such as video streaming, webcam conferencing, and aerial surveillance, all
greatly depend on video quality. A major issue with higher quality video is that either more data bandwidth or
storage resources must be dedicated for transferring or storing the video. However, if the low-resolution video is
transferred or stored in order to conserve data bandwidth and storage space, super-resolution is a viable solution
that can be applied afterwards on the receiving end to rectify the poor quality of the low-resolution video. Super-
resolution is an imaging technique that leverages motion blur and multiple low-resolution frames to construct a
high-resolution frame. In our paper, we implement and analyze a super-resolution algorithm across multiple
platforms ranging from purely hardware to purely software and even a mix of both hardware and software. More

implementation.

programmable gate arrays, Graphics processor

specifically, we examine the performance for a field-programmable gate array (FPGA) implementation on two
different FPGAs, a software/hardware solution on a FPGA with a soft core processor, a general purpose graphics
processing unit (GPGPU) implementation, and a MATLAB implementation. Overall, we found that the GPGPU
provides the best overall performance with up to 29 FPS with 35 iterations of the super-resolution algorithm. A
high-performance FPGA can have comparable performance and rival the GPGPU in some cases. One of the
interesting results was that the hardware/software FPGA combination performed worse than the pure software

Keywords: Super-resolution algorithm, Video processing, High-resolution frame, Streaming video, Field

1. Introduction

In the recent years, there has been a considerable rise in
the use of internet video streaming applications, such as
Hulu, YouTube, and Netflix. A study has shown that these
sites accounted for 42.7% of the United States' internet traf-
fic in 2010 [1]. In addition, findings have shown that during
primetime (8 to 10 pm) television hours, Netflix customers
account for about 20% of the United States' internet
bandwidth consumption [1]. Rising usage in internet
bandwidth has become a pressing issue - so much so
that many internet service providers are starting to im-
pose bandwidth caps on their customers [2,3].

Part of the problem is the fact that transmitting decent
streaming video quality requires a large amount of band-
width. Video compression techniques do exist to help alle-
viate the problem, but certain techniques are susceptible to

* Correspondence: seda@eecs.northwestern.edu
Electrical Engineering and Computer Science Department, Northwestern
University, Evanston, IL 60208, USA

@ Springer

packet losses in transmitted compressed video streams,
which could damage video quality [4,5].

A possible alternative solution is to stream low-quality
video but then implement a super-resolution algorithm on
the receiving end to upscale the streaming video. Super-
resolution is an imaging technique that uses multiple low-
resolution frames to construct a high-resolution frame. It
leverages on the fact that the frames are all unique and pro-
vide different information of the same scene in the video.
Thus, packet losses or a dropped frame will not have as
much of an impact on image quality compared to some
video compression techniques.

In our paper, we examine an implementation of a super-
resolution algorithm that can be used to upscale video on a
number of different platforms ranging from pure hardware
to pure software implementations. We also examine a
mixed hardware and software implementation in an at-
tempt to determine the feasibility of a typical consumer
utilizing such implementations.

© 2013 Leung and Ogrenci Memik; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:seda@eecs.northwestern.edu
http://creativecommons.org/licenses/by/2.0

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

In addition to having applications for streaming video,
super-resolution has many applications in numerous fields.
In some cases where poor video quality is due to hardware
limitations, namely the complementary metal-oxide semi-
conductor (CMOS) sensor resolution or a lens on a cam-
era, super-resolution can be used to help rectify or
improve video quality. Examples of hardware limitations
include the CMOS sensor on a video graphics array (VGA)
camera where the resolution is already fixed or the zoom
length of the lens of a digital camera that is fixed. Note that
although the process technology for a sensor can be
changed to improve resolution, it can also introduce new
problems [6]. If the video is not up to par, super-resolution
can be used to boost image quality and resolution.

Super-resolution also has applications in military surveil-
lance for unmanned aerial vehicles (UAV). Aerial video
feeds are often used for intelligence, surveillance, close air
support for ground troops, and reconnaissance missions.
However, since the camera is often attached to the belly or
wing of the airplane, the recorded video is subject to flight
vibrations and disturbances from the elements. Video qual-
ity from UAVs is often marred by noise, jitters, and blurry
frames [7,8]. Again, super-resolution can be utilized in this
case to improve video quality so that the UAV can make
better decisions based on the video feeds. Note that the jit-
ters and blur can actually improve the super-resolution re-
sults and help the algorithm produce a more detailed and
stabilized frame.

The purpose of this paper is to examine several different
implementations across multiple platforms of the super-
resolution algorithm in terms of performance. More specif-
ically, we chose to examine a field-programmable gate
array (FPGA) hardware solution with a budget FPGA and
high performance FPGA, a mixed hardware/software
FPGA implementation, a general purpose graphics pro-
cessing unit (GPGPU) implementation, and a strictly soft-
ware solution in MATLAB. We compare each of these
solutions in terms performance. We made an effort to
choose equipment with a reasonable price to performance
ratio as we are not looking to tweak for ultrahigh
performance nor spend exorbitant amounts of money on
hardware. The prices for the hardware for the
implementations range from US$495 to US$717. We are
simply examining the options a consumer or small com-
pany with limited funds may consider.

Our experimental results lead to the following conclu-
sions. When comparing the FPGA implementation on the
Stratix III with the GPGPU implementation, for a low
number of iterations, the Stratix III FPGA outperforms the
GPGPU implementation. However, for ten iterations or
more, the GPGPU is able to outperform the FPGA. The
number of iterations required typically depends on the type
of application. For improving web chatting video or a video
stream, it may be sufficient to run the algorithm for less

Page 2 of 8

than ten iterations on the FPGA; however, if the applica-
tion is to analyze the details of a video stream, more itera-
tions may be required, and a GPGPU would be preferable
in this case.

The rest of the paper is organized as follows. We discuss
related work in Section 2. We present the details of the
super-resolution algorithm we implemented in Section 3.
In Section 4, we detail the architecture of each of our hard-
ware, software, and hardware/software techniques. We
present our results in Section 5. Finally, we conclude in
Section 6.

2. Related work

The concept of super-resolution first emerged in work
published by Tsai and Huang [9] in which they utilized
frequency domain methods to improve image quality.
Their initial research inspired a series of other works in
this field. Irani and Peleg followed in the subsequent
years and developed an iterative feedback super-resolution
algorithm [10,11], which is the same algorithm we imple-
ment in this paper across multiple platforms. More recent
works focused on different computational methods for
interpolation [12,13] to accelerate the fusion of multiple
samples during image super-resolution. These methods
are specifically optimized for the case of nonuniformly
sampled image frames. While these approaches provide
more sophisticated optimization methods, their imple-
mentation in resource-constrained hardware platforms
such as FPGAs is challenging. Therefore, we opted to
study the trade-offs associated with different platforms
(FPGA, mixed HW/SW, GPUs) with an algorithm of less
complexity, where hardware implementation in resource-
constrained environments is still feasible.

Along another track, several works have considered ac-
celerating super-resolution for real-time operation on
FPGAs. Angelopoulou et al. proposed combining an adap-
tive image sensor in conjunction with an FPGA for spatial
resolution enhancement [14]. In a following paper, they fo-
cused on the developing of the spatial resolution enhance-
ment implementation on the FPGA - namely an iterative
back projection method in which low-resolution frames are
loaded to memory and read for processing to generate a
high-resolution frame [15]. Bowen and Bouganis have
examined implementing their own weighted mean super-
resolution algorithm combined with an existing multiframe
super-resolution algorithm [16]. Our FPGA-based tech-
niques implement the original algorithm by Irani and Peleg
[10,11]. Unlike the previous works, we do not focus only
on a single FPGA hardware platform but also on hard-
ware/software FPGA implementation, MATLAB imple-
mentation, FPGA implementation on a budget FPGA and
performance FPGA, and GPGPU implementation.

There has also been some research in the realm of using
GPGPUs for super-resolution. Cluff et al. had developed a

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

super-resolution algorithm on a GPGPU as part of a hier-
archical dense correspondence algorithm [17]. Our work is
different in that we aim to compare the trade-offs between
the multiple implementations, hardware, hardware/soft-
ware, and software, in terms of performance.

3. Super-resolution algorithm

For the various hardware and software architectures
examined in this paper, we implemented the super-
resolution algorithm developed by Irani and Peleg [9,10].
Although this particular super-resolution algorithm is older,
we have seen in our own experience that it is still used in
some industry applications, such as UAVs. This is an itera-
tive feedback algorithm in which the pixel information of
several low-resolution frames is combined to form a single
high-resolution frame. Each of the individual frames
provides slightly different and valuable information in
creating the super-resolution frame. Note that none of
the low-resolution frames are exactly identical; they are
all different, and thus, the algorithm leverages on this
fact to extract the details from each low-resolution
frame and combine them to form a single high-resolution
frame. As a byproduct, this algorithm also aids in image
stabilization.

3.1. Algorithm flow
An enlarged hypothesis frame, H, is first created from sev-
eral sequential low-resolution frames. The initial hypothesis
frame can either be a simple bicubic interpolation of one of
the frames or a bicubic interpolation of the average of all
the low-resolution frames. Afterwards, this hypothesis
frame is iteratively altered and adjusted with the informa-
tion from all of the low-resolution frames.

The super-resolution algorithm can be described by
Equation 1 below:

N

ICOVEA

0

[Fw (H,04)=04])

Super_resolution (input:Original Low Resolution
Frames [Oy,..., O,/; output:SR_Frame)
H = Bicubic_Interpolation(Avr(Oy, ...,0y));
Fori=1to N
Forj=1tok
SumFrame = SumFrame + F k'l(F (H, Oy)-Oy);
End loop;
H =H — SumFrame;
End loop;
SR _Frame = H;
Return SR_Frame;

Pseudo Code for the SuperResolution Algorithm.

Page 3 of 8

Algorithm 1 runs for N iterations specified by the user.
The hypothesis frame, H, is adjusted in each of the itera-
tions of the algorithm. F, is a function that is used to
align the hypothesis frame with the original low-
resolution frames. These are then subtracted with each
of the original, individual low-resolution frames, O, F!
is a function that reverses the alignment and enlarges
the error frame. These are summed over the number, 7,
of low-resolution frames so that it can be used to adjust
the hypothesis frame, H.

The pseudocode shown above summarizes the main
steps, and Figure 1 depicts a block diagram of the compu-
tation. As shown, the original enlarged hypothesis frame
enters a loop that runs for N iterations, which is user
determined. During the first stage, the high-resolution
hypothesis frame is scaled down to the same size as
the low-resolution frames. Then, image registration
and alignment of the low-resolution hypothesis frame
to the original low-resolution frames is performed.

In the second stage, differences of the scaled down
aligned hypothesis frame and the original low-resolution
frames are taken. This generates multiple error/difference
frames between the hypothesis and each of the low-
resolution frames. Finally, all of these difference frames
are combined and enlarged back to the high-resolution
frame size. This creates the enlarged combined error
frame that will be used to adjust the hypothesis frame.

A difference is now taken between the enlarged com-
bined error frame and the enlarged hypothesis frame.
This final step helps to adjust the hypothesis frame to be
used in the next iteration. When the algorithm has com-
pleted the specified N iterations, it outputs the super-
resolution frame.

3.2. Super-resolution example

Figure 2 shows a comparison using bicubic interpolation
and the super-resolution algorithm to generate a high-
resolution frame. The original low-resolution frame sizes
are 240 x 320 pixels. The high-resolution frame is 480 x
640 pixels. Note that this example of the super-resolution
algorithm is performed using five low-resolution frames
with ten iterations.

We have zoomed in specifically to the sign, which has
‘TIMSON DR’ printed on it. In this particular example,
visible advantages of the super-resolution algorithm are
in improved color contrast and decreased overexposure
in comparison to the bicubic interpolation technique.

4. Architecture

We have developed four different implementations of
the super-resolution algorithm across a variety of plat-
forms ranging from pure software to pure hardware and
some with a mix of both hardware and software. This sec-
tion will provide details of each of the implementations -

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

Page 4 of 8

Enlarged
Hypothesis Frame
H Run for N iterations
"\ Original \
Low-resolution | low-resolution

hypothesis frame| frame rror frame
F,(H)) Fi(..)

_- ° - Combined

error frame

20 O—e}—0

L]
Super-resolution
i

: {1

T
/

L/

F(= reg/align transform, scale down

Figure 1 Super-resolution algorithm overview.

F-Y() = inv reg/align transform, scale up

J

FPGA, FPGA with custom instructions (CI), GPGPU, and
MATLAB.

4.1. FPGA

As shown in Figure 3, the FPGA implementation con-
tains three main parts - the M4k memory blocks to store
the low-resolution frames and the resulting high-

Super-resolution

Figure 2 Original low-resolution (240 x 320) image and
cropped high-resolution image comparing bicubic
interpolation and super-resolution.

resolution frame, the control logic, and the floating point
pixel calculation module constructed from single preci-
sion, 32-bit floating point operators. The following
optimization steps have been implemented to achieve a
high performance implementation:

4.1.1. Memory layout optimization

The M4k memory blocks are initially preloaded with the
low-resolution frames. Multiple M4k blocks were neces-
sary, and the frames had to be divided among these
blocks. Vectors that contain information about the necessary
pixel shifts are also provided to align the low-resolution
frames that are stored. The pixel shifts correspond to offsets
in memory; thus, an additional shifting module did not need
to be implemented.

4.1.2. Timing optimization of functional blocks through
application-specific pipelining

The control logic takes care of multiplexing, the correct
data pixels from the memory locations to the floating
point pixel calculation module. In addition, this module
includes a clock cycle counter. The following floating
point pixel calculation module and memory access stages
of the design are all pipelined. Each block in Figure 3 -

Altera Cyclone Il FPGA \
M4k Memory . N

Blocks ‘

| Control Logic J

Adjust Compare
Hypothesis § Resize with Low Resize
Frame with Error Resolution Frame |
Error Frame Frame
\ =N Floating Point Pixel Calculation Module/

Figure 3 FPGA implementation overview.

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

memory accesses and writes, the resizing frame, compare
with low-resolution frame, resize error, and adjust hypoth-
esis frame with error frame - are stages of the pipeline.
We found that the longest latency of all the pipelined
stages is 12 clock cycles at 103.15 and 122.25 MHz for the
Cyclone II FPGA and Stratix III FPGA, respectively. Thus,
every stage of the pipeline is 12 clock cycles. The counter
helps ensure that the correct pixel data from the M4k
memory blocks are flopped into the floating point pixel
calculation module at the correct time.

The floating point pixel calculation module performs
the algorithm outlined in Figure 1 and writes the resulting
high-resolution pixel back to the portion of the M4k
memory block reserved for the final high-resolution
frame. This module mainly consists of floating point
multiplication and floating point addition modules for the
resizing stages, floating point subtraction and floating
point addition modules for the comparison stage to gener-
ate the error frame, and floating point subtraction mod-
ules for the hypothesis adjustment stage. Note that we
used a combined floating point addition and subtraction
unit, in which a single bit was used to designate the mod-
ule as either a subtract operation or an add operation. All
of the floating point operations are single precision (32-
bit) floating point operations. The shared add and subtract
unit requires seven clock cycles to complete, and the
multiplication unit requires five clock cycles to complete.

4.2. FPGA with custom instructions
This implementation is a combination of hardware and
software. The general overview of the architecture is
shown in Figure 4. A NIOS II soft core processor (Altera
Corporation, San Jose, CA, USA) is instantiated and
used in conjunction with dedicated single precision,
32-bit floating point custom instructions (floating point
multiply, floating point subtract, and floating point
addition).

The NIOS II soft core processor is a RISC processor
constructed using the logic resources on the FPGA
board and is capable of compiling and running C code.

/ Altera Cyclone Il FPGAY \
P :

NIOS I
Softcore
Processor
(RISC)

CProgram
Pipeline _ E

Figure 4 FPGA with custom instructions (Cl) overview.

A

4

Page 5 of 8

The dedicated floating point custom instructions are dir-
ectly connected to the arithmetic logic unit (ALU) pipe-
line stage of the NIOS II processor. Within the ALU,
there is a MUX selecting between output from the float-
ing point custom instructions and regular ALU opera-
tions, which is controlled by the C code.

All floating point operations in the super-resolution al-
gorithm are off-loaded to the dedicated floating point
custom instructions. Thus, the general algorithm and
control logic are written in C and run on the NIOS II
processor. However, the actual floating point calculations
are accelerated and performed by the dedicated hard-
ware implemented as custom instructions on the FPGA.

This method is particularly friendly to software devel-
opers in that the data transfer and floating point compu-
tations are transparent to the software programmer. The
only requirement would be to specify that the operation
is to be off-loaded to the custom instructions with a
simple command.

5. Results

In this section, we will present our results and an ana-
lysis of the performance. For each of our individual
platforms, we used five consecutive low-resolution
frames from a 240 x 320 video stream to generate a
single 480 x 640 frame. The performance metric is
frames per second (FPS), which is calculated by measur-
ing the time that it takes to process a single super-
resolution frame.

5.1. Platform setup

For the FPGA implementation, we targeted two different
FPGA boards, a Cyclone II FPGA and a Stratix III
FPGA, to compare the performance between a budget,
low-end FPGA and a high-performance FPGA. We used
the Quartus II 9.0 environment to develop our hardware
design. We used the floating point addition, floating
point subtraction, floating point multiplication, and
M4K RAM memory modules included in the Quartus II
software within the Megawizard tool to implement the
super-resolution algorithm. These are single precision,
32-bit modules.

As for the FPGA CI implementation, we used the
Quartus II 9.0 software with SOPC builder to instantiate
the NIOS II processor. We used the NIOS II 9.0 soft-
ware environment to develop and compile our C code
and to enable support for off-loading floating point cal-
culations to the floating point custom instructions on

Table 1 FPGA logic usage

FPGA Cyclone I FPGA Stratix Ill
Percent logic used Percent logic used
95% 93% 35%

FPGA CI

Percent logic used

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

Table 2 Performance comparison

Page 6 of 8

FPGA Cyclone Il FPGA Stratix Il FPGA CI GPGPU MATLAB
Iterations Time (s) FPS Time (s) FPS Time (s) FPS Time (s) FPS Time (s) FPS
5 0.045 22.38 0.017 59.692 3.51 0.29 0.021 4718 3.15 032
10 0.089 11.19 0.034 29.846 643 0.16 0.023 4273 491 0.20
15 0.134 746 0.050 19.897 930 0.11 0.026 39.04 6.69 0.15
20 0.179 5.60 0.067 14.923 1230 0.08 0.028 3594 843 0.12
25 0.223 448 0.084 11.938 15.21 0.07 0.030 33.29 10.65 0.09
30 0.268 373 0.101 9.949 18.10 0.06 0.033 3040 11.99 0.08
35 0313 320 0.117 8527 21.10 0.05 0.034 29.02 13.82 0.07

the FPGA. Note that this implementation was only
implemented on the Altera DE2 board containing the
Cyclone II FPGA.

For the GPGPU implementation, we ran the super-
resolution algorithm on a NVIDIA 8800 GT graphics
card with CUDA v2.0. The GPGPU version of the super-
resolution algorithm involves writing C code with
CUDA extensions. The main portions of the code con-
sist of transferring the low-resolution frames and
resulting high-resolution frame between the host (com-
puter) to the device (GPGPU), writing the kernel to do
the frame resizing, writing the kernel to compare and
generate the error frame, and writing a kernel to adjust
the hypothesis with the error frame data.

As a general purpose alternative, we also implemented
the super-resolution algorithm in MATLAB. This is a
tool often used by scientists because of the ease of use
and ability to easily manipulate matrices and images.
The super-resolution algorithm depicted by the pseudo-
code in Section 3.1 and Figure 1 is implemented. All
functions were custom-written except for the bicubic
interpolation function, which was taken from MATLAB.
We have not utilized any toolboxes to off-load computa-
tion to special units, such as GPU. We found the tool-
box for GPU utilization to be quite buggy at the time of
our development and decided to avoid any instability.
We have also relied on the fact that we present a pure
GPU implementation for comparison anyway. Our
MATLAB implementation was on a desktop machine
that had an Intel 2.53 GHz Core 2 Duo processor with 3
GB of RAM.

5.2. FPGA resource usage

Table 1 provides the percentages of logic used for the
FPGA Cyclone II implementation, the FPGA Stratix III
implementation, and the FPGA CI implementation. The
reported resource usage for the FPGA Cyclone II imp-
lementation and FPGA CI implementation are after ma-
pping the design to the Altera DE2 development board
while the FPGA Stratix III results are based on reports
obtained after the place and route tool in Quartus II. As

it is evident from the results, the FPGA CI implementation
requires much less logic resources because it only requires
the instantiation of the NIOS II processor and the dedi-
cated floating point hardware.

5.3. Performance analysis

Table 2 provides the computation times and FPS with
varying iterations of the super-resolution algorithm
across all of our implementations.

Figure 5 shows a graphical representation of the FPS re-
sults for all of our implementations. As can be seen, the
FPGA CI implementation provided the worst overall per-
formance in terms of FPS among the five implementations
- even worse than the pure software version in MATLAB.
The subpar performance of this implementation can be at-
tributed to the fact that the algorithm is implemented in
C code running on the 50-MHz NIOS II processor. Al-
though there are benefits of off-loading the floating point
operations to dedicated hardware, the overhead of trans-
ferring the data and slow processor outweigh the benefits
of the faster hardware-based floating point calculation
modules. In addition, there is no way to increase the num-
ber of parallel floating point operations as the C code is
run sequentially whereas the pure FPGA implementation
could have multiple pixel processing units running in par-
allel. The C code is sequentially executed, and operations

Frames per Second (FPS) vs Iterations

65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

~—e—FPGACyclone Il
——FPGACI
GPGPU
——MATLAB
~=—FPGA Stratix IIl

Frames per Second (FPS)

5 10 15 20 25 30 35

Iterations

Figure 5 Frames per second (FPS) comparison.

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116

http://asp.eurasipjournals.com/content/2013/1/116

are sequentially passed off to the optimized hardware-
based floating point custom instructions.

As can be seen, the pure software implementation on
MATLAB marginally outperforms the FPGA CI imple-
mentation by brute force of the performance capability
of the processor.

The hardware-based FPGA Cyclone II implementation
has mediocre performance but is markedly better than the
MATLAB and FPGA CI implementations. However, it is
unable to outperform or even reach the levels of computa-
tional power of the GPGPU. This is due to the fact that the
Cyclone II FPGA is a lower end FPGA board and has lim-
ited logic resources.

When using the high-end Stratix III FPGA, the per-
formance is much better than the Cyclone II FPGA. The
Stratix III FPGA is based on the 65-nm technology and
contains much more available logic elements in com-
parison to the 90-nm technology of the Cyclone II
FPGA. With more available densely packed logic, we
were able to incorporate more pixel processing units to
increase parallel pixel processing. We fit up to four float-
ing point pixel calculation modules on the Cyclone II
FPGA as opposed to nine on the Stratix III FPGA. In
addition, the compiled design had a higher clock speed
for the Stratix III FPGA at 122.25 MHz compared to the
Cyclone II FPGA at 103.15 MHz. With a higher clock
speed and logic resources available, the Stratix III FPGA
was able to provide much better performance when
compared to the Cyclone II FPGA.

When comparing the FPGA implementation on the
Stratix III with the GPGPU implementation, it can be seen
that for a low number of iterations, the Stratix III FPGA
outperforms the GPGPU implementation. However, for ten
iterations or more, the GPGPU is able to outperform the
FPGA. The number of iterations required typically depends
on the type of application. For improving web chatting
video or video stream, it may be sufficient to run the algo-
rithm for less than ten iterations on the FPGA; however, if
the application is to analyze the details of a video stream,
more iterations may be required, and a GPGPU would be
preferable in this case. There also seems to be a steep drop-
off in performance as the number of iterations increase for
the Stratix III FPGA implementation. This can be attrib-
uted to the fact that the GPGPU is a more specialized hard-
ware and is designed to deal with floating point graphics
and matrix operations that works well with the super-
resolution application.

The GPGPU implementation provides the best overall
performance. It is able to achieve better than 29 FPS for
even up to 35 iterations.

6. Conclusions
In our analysis of the super-resolution algorithm across
multiple platforms - FPGA implementation (Cyclone II

Page 7 of 8

and Stratix III), FPGA CI implementation, GPGPU im-
plementation, and MATLAB implementation - we found
that the GPGPU fared best in terms of overall perform-
ance. The GPGPU implementation is able to provide up
to 29 FPS for 35 iterations of the super-resolution algo-
rithm. The worst overall performance came from the
FPGA CI implementation due to the much slower clock
speed and data transfer times to the dedicated floating
point modules. Although those individual floating point
modules are designed and tweaked for maximum per-
formance, they were not able to overcome the overhead
of the much slower NIOS II processor and data transfer
rates. As expected, the MATLAB software implementa-
tion also performed near the bottom of the group. The
FPGA Cyclone II implementation had mediocre per-
formance, and the FPGA Stratix III implementation ri-
valed the GPGPU performance in some cases. Choosing
between the Stratix III and GPGPU would strongly de-
pend on the application.

Competing interests
The authors declare that they have no competing interests.

Received: 31 October 2012 Accepted: 16 May 2013
Published: 5 June 2013

References

1. Sandvine, Fall 2010 Global Internet Pheonomena (2010). http://www.sandvine.
com/news/global_broadband_trends.asp. Accessed 26 March 2013

2. R Singel, Comcast Rolls Out Broadband Meters Coast to Coast. (Wired, 2010).
http://www.wired.com/business/2010/04/comcast-broadband-meters/.
Accessed 26 March 2013

3. RSingel, AT&T Puts Broadband Users on Monthly Allowance. (Wired, 2011). http//
www.wired.com/business/2011/03/att-dsl-cap/. Accessed 26 March 2013

4. D Wu, YT Hou, Zhu W, Zhang Y, Peha JM. Streaming video over the
internet: approaches and directions. IEEE Transactions on Circuits and
Systems for Video Technology 11(3), 282-300 (2001)

5. ESetton, T Yoo, X Zhu, A Goldsmith, Cross-layer design of ad hoc networks for
real-time video streaming. IEEE Wireless Communications 12(4), 59-65 (2005)

6. SC Park, MK Park, MG Kang, Super-resolution image reconstruction: a
technical overview. [EEE Signal Processing Magazine 20(3), 21-36 (2003)

7. Y Wang, R fevig, RR Schultz, Super-resolution mosaicking of UAV
surveillance video, in 15th IEEE International Conference on Image Processing
(, San Diego, 2008)

8. AH Yousef, Z Rahman, Super-resolution reconstruction of images captured
from airborne unmanned vehicles, in Proceedings of SPIE, vol. 7701
(Orlando, 2010)

9. RY Tsai, TS Huang, Multiframe image restoration and registration. Advances
in Computer Vision and Image Processing 1, 317-339 (1934)

10. D Keren, S Peleg, R Brada, Image sequence enhancement using sub-pixel
displacements, in Computer Society Conference on Computer Vision and
Pattern Recognition, Ann Arbor, 1988

11, Mlrani, S Peleg, Super resolution from image sequences. ICPR 2, 115-120 (1990)

12. A Gilman, DG Bailey, SR Marsland, Least-squares optimal interpolation for
fast image super-resolution, in IEEE International Symposium on Electronic
Design, Test and Application (, Ho Chi Minh City, 2010)

13. A Gilman, Least-squares optimal interpolation for direct image super-resolution.
PhD Thesis, School of Engineering and Advanced Technology (Massey
University, Palmerston North, 2009)

14. ME Angelopoulou, CS Bouganis, P Cheung, G Constantinides, Robust real-time
super-resolution on FPGA and an application to video enhancement. ACM
Trans. Reconfigurable Technol. Syst 2(4) (2009). 22:1-22:29

15. ME Angelopoulou, CS Bouganis, PYK Cheung, GA Constantinides, FPGA-based
real-time super-resolution on an adaptive image sensor. Applied
Reconfigurable Computing 4, 125-136 (2008)

http://www.sandvine.com/news/global_broadband_trends.asp
http://www.sandvine.com/news/global_broadband_trends.asp
http://www.wired.com/business/2010/04/comcast-broadband-meters/
http://www.wired.com/business/2011/03/att-dsl-cap/
http://www.wired.com/business/2011/03/att-dsl-cap/

Leung and Memik EURASIP Journal on Advances in Signal Processing 2013, 2013:116 Page 8 of 8
http://asp.eurasipjournals.com/content/2013/1/116

16. O Bowen, C Bouganis, Real-time image super resolution using an FPGA, in
International Conference on Field Programmable Logic and Applications
(Heidelberg, 2008), pp. 89-94

17. S Cluff, BS Morse, M Duchaineau, JD Cohen, GPU-accelerated hierarchical
dense correspondence for real-time aerial video processing, in Workshop on
Motion and Video Computing. Snowbird 8-9, 1-8 (Dec 2010)

doi:10.1186/1687-6180-2013-116

Cite this article as: Leung and Memik: Exploring super-resolution
implementations across multiple platforms. EURASIP Journal on Advances
in Signal Processing 2013 2013:116.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	1. Introduction
	2. Related work
	3. Super-resolution algorithm
	3.1. Algorithm flow
	3.2. Super-resolution example

	4. Architecture
	4.1. FPGA
	4.1.1. Memory layout optimization
	4.1.2. Timing optimization of functional blocks through application-specific pipelining

	4.2. FPGA with custom instructions

	5. Results
	5.1. Platform setup
	5.2. FPGA resource usage
	5.3. Performance analysis

	6. Conclusions
	Competing interests
	References

